JPS6157571B2 - - Google Patents

Info

Publication number
JPS6157571B2
JPS6157571B2 JP11476579A JP11476579A JPS6157571B2 JP S6157571 B2 JPS6157571 B2 JP S6157571B2 JP 11476579 A JP11476579 A JP 11476579A JP 11476579 A JP11476579 A JP 11476579A JP S6157571 B2 JPS6157571 B2 JP S6157571B2
Authority
JP
Japan
Prior art keywords
oxide
oxides
gas detection
gas
combustible gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11476579A
Other languages
Japanese (ja)
Other versions
JPS5639453A (en
Inventor
Shigekazu Kusanagi
Shigeo Akyama
Tooru Nobetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11476579A priority Critical patent/JPS5639453A/en
Publication of JPS5639453A publication Critical patent/JPS5639453A/en
Publication of JPS6157571B2 publication Critical patent/JPS6157571B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は酸化インジウムを有効成分中の主成
分とする可燃性ガス検知素子に関する。 従来より実用されている可燃性ガス検知素子の
殆どは、n型酸化物半導体である酸化スズ
(SnO2)や酸化亜鉛(ZnO)あるいはγ−酸化第
二鉄(γ−Fe2O3)を有効成分とする焼結体から
なるものであつた。 この発明は、このような現状の中に、同じくn
型酸化物半導体である酸化インジウムを有効成分
中の主成分とする新規な実用性ある可燃性ガス検
知素子を提供しようとするものである。 酸化インジウムは、可燃性ガスに接触したとき
素子として使用するに充分な抵抗値変化を示す、
すなわち充分なガス感応特性を有する。しかし、
その焼結体は、素子抵抗値が非常に小さいため、
これをガス漏れ警報器に用いようとすると、回路
設計が困難になる等の問題が発生し、実用上難点
がある。 そこで、この発明者らは、酸化インジウムのす
ぐれた特性を減却させることなく素子抵抗値を実
用性ある領域にまで高めるため、これに適した添
加物の使用を考え、種々のものについて詳細に検
討した。その過程で、特別の酸化物、ことにアル
カリ土類酸化物、アルミニウム族酸化物、遷移金
属酸化物、炭素族酸化物、白金族酸化物、希土類
酸化物のなかから選ばれた特別の酸化物がこのよ
うな添加物としてすぐれていることを見出した。 さらに、一般に、ガス検知用酸化物半導体は、
可燃性ガス濃度がある程度高くなると、ガス濃度
変化に対する抵抗値変化の割合が濃度に比例して
は増加せず飽和に達する傾向がみられるところ、
酸化インジウムもこの例にもれず、しかも、酸化
インジウムの場合、これ単独では可燃性ガスが比
較的低濃度である段階においてすでに飽和に達
し、実用濃度域での素子抵抗値変化の濃度に対す
る関係が直線型とならない、すなわち素子抵抗の
濃度依存性(濃度分離性)がやや小さいという問
題もあるのであるが、これに前記の特別に選ばれ
た酸化物を副成分として添加するとこのような問
題も直ちに解決されることが分つた。 この発明は、以上の知見に基づいて完成された
ものであつて、これを詳しく述べるとつぎのとお
りである。 この発明にかかる可燃性ガス検知素子は、その
有効成分すなわちガス検知能を示す成分が酸化イ
ンジウムを主成分として構成されている。酸化イ
ンジウムは普通In2O3という酸化形態で素子中に
存在すると考えてよいが、これ以外の酸化形態で
存在することも自由であり、その酸化形態の区別
は問われない。この可燃性ガス検知素子において
は、このような主成分に対し、アルカリ土類酸化
物、アルミニウム族酸化物、遷移金属酸化物、炭
素族酸化物、白金族酸化物および希土類金属酸化
物のなかから特別に選ばれた下記酸化物(なお、
後述するように、酸化物ではないが、金属白金も
副成分になりうるので、この明細書では金属白金
もこの特別に選ばれた酸化物の中に含めることと
する)の1種または2種以上のものが副成分とし
て添加されているのであり、これによつて、酸化
インジウムの素子抵抗値が低すぎるという問題お
よび濃度依存性(濃度分離性)が小さいという問
題を解決するように図つている。 この発明において、有効成分中の副成分として
特別に選ばれたものはつぎのとおりである。すな
わち、アルカリ土類酸化物としては酸化マグネシ
ウム(MgO)、酸化カルシウム(CaO)、酸化ス
トロンチウム(SrO)および酸化バリウム
(BaO)が選ばれ、アルミニウム族酸化物として
は酸化アルミニウム(Al2O3)および酸化ガリウ
ムが選ばれている。これらのうち、酸化ガリウム
は普通Ga2O3という酸化形態で素子中に存在する
と考えてよいが、これ以外の酸化形態で存在する
ことも自由であつて、その酸化形態の区別は問わ
れない。つぎに、遷移金属酸化物としては、酸化
バナジウム、酸化クロム、酸化鉄、酸化マンガ
ン、酸化ニツケル、酸化ハフニウム(HfO2)およ
び酸化タングステンが選ばれている。これらのう
ち、酸化バナジウムは普通V2O5という酸化形態
で、酸化クロムは普通Cr2O3という酸化形態で、
酸化鉄は普通α−Fe2O3という酸化形態で、酸化
マンガンは普通MnO2という酸化形態で、酸化ニ
ツケルは普通NiOという酸化形態で、そして、酸
化タングステンは普通WO3という酸化形態で、
それぞれ素子中に存在すると考えてよいが、これ
ら以外の酸化形態で存在することも自由であつ
て、その酸化形態の区別は問われない。炭素族酸
化物としては酸化ケイ素および酸化ゲルマニウム
が選ばれている。酸化ケイ素は普通SiO2という
酸化形態で、また、酸化ゲルマニウムは普通
GeO2という酸化形態でそれぞれ素子中に存在す
ると考えてよいが、これら以外の酸化形態で存在
することも自由であり、その酸化形態の区別は問
われない。希土類酸化物としては、酸化イツトリ
ウム(Y2O3)、酸化スカンジウム(Sc2O3)、酸化
ランタン(La2O3)、酸化セリウム、酸化プラセ
オジム、酸化サマリウム(Sm2O3)および酸化ガ
ドリニウム(Gd2O3)が選ばれている。酸化セリ
ウムは普通CeO2という酸化形態で、また、酸化
プラセオジムは普通Pr2O3という酸化形態でそれ
ぞれ素子中に存在すると考えてよいが、これら以
外の酸化形態で存在することも自由であり、その
酸化形態の区別は問われない。もつとも、この発
明において、普通に選ばれる酸化物の酸化形態が
上記のように式示されているからといつて、これ
らの酸化物が化学量論的に厳密にこれら式示のご
とき組成を有するものに限られるというわけでは
ない。すなわち、これらの酸化物には非化学量論
的組成のものも含まれてよいのである。 なお、ガス検知素子をつくるに当たつては、ガ
スを検知する能力(ガス検知能)を示す成分にバ
インダーとして機能する成分や単なる増量剤とし
て働く成分等が加えられることもある。このよう
なときにおいても、ガス検知能を示す成分が酸化
インジウムと前掲の特別に選ばれた酸化物とから
なるものでありさえすれば、この発明の範囲に入
る。この明細書において、この発明にかかる可燃
性ガス検知素子は有効成分中の主成分が酸化イン
ジウムからなり、副成分が前掲の各酸化物よりな
る群から選ばれた1種または2種以上のものから
なると述べたのは、正に、上記のように、実際に
ガス検知素子をつくるに当つてはガス検知能を示
す成分以外の成分がしばしば添加されることを考
慮した結果である。もつとも、このように述べた
からと言つて、上記のような有効成分のみで可燃
性ガス検知素子が構成されている場合も勿論この
発明の範囲に入るのであり、このような場合を除
く趣旨ではない。 この発明にかかる可燃性ガス検知素子の形態と
しては、良好なガス感度が容易に得られる、経時
安定性が良い等の理由から、一般的には焼結体に
構成する形態が選ばれるが、これに限定されるも
のでなく、たとえば薄膜や厚膜に形成されてもよ
いのであつて、その形態は自由である。また、そ
の製造原料、製造方法等も、原料の入手の容易
さ、コストやその使用目的等を勘案して適宜に選
ばれる。製造用出発原料としては、素子となつた
ときに酸化インジウムであり、また前掲の特別に
選ばれた酸化物でありさえすれば種類は問わず
(目的の酸化物そのものであつてもよい)、また必
要により加えられる中間処理の区別も問わない。 この発明は上記のように構成されているため、
適当な素子抵抗値を有しかつ充分なるガス感度お
よび濃度依存性を有する、酸化インジウムを有効
成分中の主成分とする可燃性ガス検知素子を提供
することができる。 つぎに、実施例について比較例と併せて説明す
る。 主成分である酸化インジウム用原料として山中
化学工業所(株)製の高純度In2O3粉末(純度99.99
%)を用い、副成分である酸化物用原料としてや
はり高純度(99〜99.99%)の酸化物粉末を用い
た。これらの原料を、素子組成が後掲の表記載の
とおりとなる割合で配合し、石川式擂潰機で充分
混合したのち、混合粉末(比較例1〜3では酸化
インジウム単独粉末)を一定量(20mg)秤量し
て、白金線電極が埋設された直径2mmφ、長さ約
2mmで円柱状の素子形状に圧縮成形し、焼成温度
600℃、800℃または1000℃、焼成時間3時間、空
気中という焼成条件で焼成することによつてガス
感応体をつくつた。 上記で得られた各ガス感応体のまわりに、コイ
ル状ヒータを付設し、さらにステンレススチール
製の金網キヤツプで被覆したものをガス検知部と
した。 各素子のガス感応特性について調べた結果は下
表のとおりであり、実施例はいずれも比較例より
すぐれていた。 なお、ガス感応特性は、上記コイル状ヒータに
一定電圧を付加して素子の温度を450℃一定に保
持しつつ、イソブタン濃度0.1容量%および0.3容
量%のイソブタン含有空気を接触させてガス感応
体の電気抵抗値を測定し、その変化を求めるとい
う方法によつて調べた。
The present invention relates to a combustible gas detection element containing indium oxide as a main active ingredient. Most of the combustible gas detection elements that have been put into practical use are made using n-type oxide semiconductors such as tin oxide (SnO 2 ), zinc oxide (ZnO), or γ-ferric oxide (γ-Fe 2 O 3 ). It consisted of a sintered body as an active ingredient. This invention also provides n
The present invention aims to provide a novel and practical combustible gas detection element whose main active ingredient is indium oxide, which is a type oxide semiconductor. Indium oxide shows a change in resistance value sufficient to be used as an element when it comes into contact with flammable gas.
That is, it has sufficient gas sensitivity characteristics. but,
The sintered body has a very low element resistance value, so
If this is attempted to be used in a gas leak alarm, problems such as difficulty in circuit design will occur, which poses practical difficulties. Therefore, in order to increase the element resistance value to a practical range without reducing the excellent properties of indium oxide, the inventors considered the use of additives suitable for this, and detailed various additives. investigated. In the process, special oxides selected from among alkaline earth oxides, aluminum group oxides, transition metal oxides, carbon group oxides, platinum group oxides and rare earth oxides are formed. was found to be excellent as such an additive. Furthermore, in general, oxide semiconductors for gas detection are
When the combustible gas concentration increases to a certain extent, the rate of resistance change with respect to gas concentration change does not increase in proportion to the concentration and tends to reach saturation.
Indium oxide is no exception to this; moreover, in the case of indium oxide, saturation is already reached when the combustible gas is at a relatively low concentration, and the relationship between the change in element resistance and the concentration in the practical concentration range is poor. There is also the problem that it is not linear, that is, the concentration dependence of the element resistance (concentration separability) is somewhat small, but if the above-mentioned specially selected oxide is added as a subcomponent, this problem can also be solved. I understand that it will be resolved immediately. This invention was completed based on the above knowledge, and will be described in detail as follows. The combustible gas detection element according to the present invention is composed of indium oxide as its active ingredient, that is, the ingredient exhibiting gas detection ability. Indium oxide can be considered to normally exist in the element in the oxidized form of In 2 O 3 , but it can also exist in other oxidized forms, and the distinction between the oxidized forms does not matter. In this combustible gas detection element, the main components include alkaline earth oxides, aluminum group oxides, transition metal oxides, carbon group oxides, platinum group oxides, and rare earth metal oxides. The specially selected oxides below (in addition,
As described later, metallic platinum can also be a subcomponent, although it is not an oxide, so in this specification, metallic platinum is also included in this specially selected oxide). The above substances are added as subcomponents, and this is intended to solve the problem of the element resistance of indium oxide being too low and the problem of low concentration dependence (concentration separability). There is. In this invention, the following are specially selected subcomponents among the active ingredients. That is, magnesium oxide (MgO), calcium oxide (CaO), strontium oxide (SrO), and barium oxide (BaO) are selected as alkaline earth oxides, and aluminum oxide (Al 2 O 3 ) is selected as the aluminum group oxide. and gallium oxide are selected. Among these, gallium oxide can be considered to exist in devices in the oxidized form of Ga 2 O 3 , but it is also free to exist in other oxidized forms, and the distinction between the oxidized forms is not a problem. . Next, as the transition metal oxide, vanadium oxide, chromium oxide, iron oxide, manganese oxide, nickel oxide, hafnium oxide (HfO 2 ), and tungsten oxide are selected. Among these, vanadium oxide is usually in the oxidized form of V 2 O 5 , and chromium oxide is usually in the oxidized form of Cr 2 O 3 .
Iron oxide is usually in the oxidized form α-Fe 2 O 3 , manganese oxide is usually in the oxidized form MnO 2 , nickel oxide is usually in the oxidized form NiO, and tungsten oxide is usually in the oxidized form WO 3 .
Although each may be considered to exist in the element, it is free to exist in oxidized forms other than these, and the distinction between the oxidized forms does not matter. Silicon oxide and germanium oxide are selected as carbon group oxides. Silicon oxide is usually in the oxidized form SiO2 , and germanium oxide is commonly
Although it can be considered that each oxidized form of GeO 2 exists in the element, it can also exist in other oxidized forms, and the distinction between the oxidized forms does not matter. Rare earth oxides include yttrium oxide (Y 2 O 3 ), scandium oxide (Sc 2 O 3 ), lanthanum oxide (La 2 O 3 ), cerium oxide, praseodymium oxide, samarium oxide (Sm 2 O 3 ), and gadolinium oxide. (Gd 2 O 3 ) is selected. Cerium oxide usually exists in the oxidized form of CeO 2 and praseodymium oxide usually exists in the oxidized form of Pr 2 O 3 in the element, but they can also exist in other oxidized forms, The distinction between the oxidation forms does not matter. However, in this invention, just because the oxidation forms of commonly selected oxides are shown in the formulas above, it does not mean that these oxides have strictly stoichiometric compositions as shown in these formulas. It's not limited to things. That is, these oxides may also include those with non-stoichiometric compositions. Note that when producing a gas detection element, a component that functions as a binder or a component that functions simply as an extender may be added to the component that exhibits the ability to detect gas (gas detection ability). Even in such a case, the invention falls within the scope of the present invention as long as the component exhibiting gas detection ability consists of indium oxide and the above-mentioned specially selected oxide. In this specification, the combustible gas detection element according to the present invention is one in which the main active ingredient is indium oxide, and the subcomponent is one or more selected from the group consisting of the above-mentioned oxides. The reason why it is made up of the following is precisely the result of taking into consideration that, as mentioned above, when actually producing a gas detection element, components other than those exhibiting gas detection ability are often added. However, even though this has been stated, cases where the combustible gas detection element is composed only of the above-mentioned active ingredients are of course within the scope of the present invention, and are not intended to exclude such cases. . As the form of the combustible gas detection element according to the present invention, a form constituted by a sintered body is generally selected because good gas sensitivity can be easily obtained and stability over time is good. It is not limited to this, and may be formed into a thin film or a thick film, for example, and its form is free. In addition, the manufacturing raw materials, manufacturing methods, etc. are appropriately selected in consideration of the ease of obtaining the raw materials, cost, purpose of use, etc. The starting material for manufacturing is indium oxide when it is made into an element, and any type is not restricted as long as it is the above-mentioned specially selected oxide (the desired oxide itself may also be used). Further, it does not matter whether intermediate processing is added as necessary. Since this invention is configured as described above,
It is possible to provide a combustible gas detection element containing indium oxide as the main active ingredient, which has an appropriate element resistance value and sufficient gas sensitivity and concentration dependence. Next, examples will be described together with comparative examples. High purity In 2 O 3 powder (purity 99.99) manufactured by Yamanaka Chemical Industry Co., Ltd. is used as a raw material for indium oxide, the main component.
%), and oxide powder of high purity (99 to 99.99%) was used as the raw material for the oxide, which is a subcomponent. These raw materials were blended in proportions such that the element composition was as shown in the table below, and after thoroughly mixing with an Ishikawa-type crusher, a fixed amount of mixed powder (indium oxide single powder in Comparative Examples 1 to 3) was added. (20mg) was weighed and compression molded into a cylindrical element shape with a diameter of 2mmφ and a length of about 2mm with a platinum wire electrode embedded, and the firing temperature was
Gas sensitive bodies were produced by firing under the following firing conditions: 600°C, 800°C or 1000°C for 3 hours in air. A coiled heater was attached around each of the gas sensitive bodies obtained above, and the cap was further covered with a stainless steel wire mesh cap to serve as a gas detection section. The results of investigating the gas sensitivity characteristics of each element are shown in the table below, and all of the examples were superior to the comparative examples. The gas-sensitive characteristics were determined by applying a constant voltage to the coiled heater to maintain the temperature of the element at a constant 450°C, and then contacting the gas-sensitive element with air containing isobutane at concentrations of 0.1% and 0.3% by volume. The investigation was conducted by measuring the electrical resistance value of the material and determining its change.

【表】【table】

【表】【table】

【表】 ここで、 ガス感度は式Rair−R/Rair×100によ
り、また、濃度 分離性は式R/Rにより、 それぞれ求められた。なお、式中、 Rair;素子の空気(露点13℃)中での抵抗値 R0.1;イソブタン濃度1000ppmのイソブタン含有
空気(露点13℃)中での素子の抵抗値 R0.3;イソブタン濃度3000ppmのイソブタン含有
空気(露点13℃)中での素子の抵抗値 をそれぞれ表わす。 上表に示されている結果を見ても明らかなよう
に、酸化インジウムに特別に選ばれた酸化物を添
加することによつて、素子の抵抗値が確実に高く
なつている。しかも、添加物の種類もしくはその
組合せによつては、濃度依存性が向上するほかガ
ス感度も向上する。高圧ガス保安協会の「一般消
費者等用液化石油ガスもれ警報器検定規定」では
ガス濃度1000〜3000ppmで警報が発せられるこ
とと定められているが、この発明にかかる素子は
この規定の定めに合格する性能を充分持つている
と言える。
[Table] Here, the gas sensitivity is expressed by the formula R air −R 0 . 1 /R air ×100, and the concentration separation is expressed by the formula R 0 . 1 /R 0 . 3 , respectively. In the formula, R air is the resistance value of the element in air (dew point 13°C) R 0.1 ; the resistance value of the element in air containing isobutane (dew point 13°C) with an isobutane concentration of 1000 ppm R 0.3 ; Each represents the resistance value of the element in isobutane-containing air with an isobutane concentration of 3000 ppm (dew point 13°C). As is clear from the results shown in the table above, by adding a specially selected oxide to indium oxide, the resistance value of the device is reliably increased. Furthermore, depending on the type of additives or their combination, not only the concentration dependence but also the gas sensitivity can be improved. The High Pressure Gas Safety Association's "Liquefied Petroleum Gas Leak Alarm Certification Regulations for General Consumers, etc." stipulates that an alarm should be issued at a gas concentration of 1000 to 3000 ppm. It can be said that the performance is sufficient to pass the test.

Claims (1)

【特許請求の範囲】[Claims] 1 焼結体と、この焼結体の電気抵抗が検知され
ることによつて可燃性ガスの存在を検知するよう
にした可燃性ガス検知素子であつて、焼結体の有
効成分中の主成分が酸化インジウムからなり、副
成分が酸化マグネシウム、酸化カルシウム、酸化
ストロンチウム、酸化バリウム、酸化アルミニウ
ム、酸化ガリウム、酸化バナジウム、酸化クロ
ム、酸化鉄、酸化マンガン、酸化ニツケル、酸化
ハフニウム、酸化タングステン、酸化ケイ素、酸
化ゲルマニウム、酸化イツトリウム、酸化スカン
ジウム、酸化ランタン、酸化セリウム、酸化プラ
セオジム、酸化サマリウムおよび酸化ガドリニウ
ムよりなる群から選ばれた1種または2種以上の
ものからなることを特徴とする可燃性ガス検知素
子。
1 A combustible gas detection element that detects the presence of a combustible gas by detecting a sintered body and the electrical resistance of this sintered body, the element comprising a The component is indium oxide, and the subcomponents are magnesium oxide, calcium oxide, strontium oxide, barium oxide, aluminum oxide, gallium oxide, vanadium oxide, chromium oxide, iron oxide, manganese oxide, nickel oxide, hafnium oxide, tungsten oxide, oxide. A flammable gas comprising one or more selected from the group consisting of silicon, germanium oxide, yttrium oxide, scandium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, samarium oxide, and gadolinium oxide. Sensing element.
JP11476579A 1979-09-06 1979-09-06 Combustible gas detection element Granted JPS5639453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11476579A JPS5639453A (en) 1979-09-06 1979-09-06 Combustible gas detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11476579A JPS5639453A (en) 1979-09-06 1979-09-06 Combustible gas detection element

Publications (2)

Publication Number Publication Date
JPS5639453A JPS5639453A (en) 1981-04-15
JPS6157571B2 true JPS6157571B2 (en) 1986-12-08

Family

ID=14646116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11476579A Granted JPS5639453A (en) 1979-09-06 1979-09-06 Combustible gas detection element

Country Status (1)

Country Link
JP (1) JPS5639453A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156994U (en) * 1982-04-16 1983-10-20 株式会社ニチベイ roll blind
JPS60168900U (en) * 1984-04-20 1985-11-09 関東電機株式会社 Lifting device for stage equipment
JP3901594B2 (en) * 2002-06-26 2007-04-04 新コスモス電機株式会社 Semiconductor hydrogen gas detector
CN106546637B (en) * 2016-11-08 2018-12-21 吉林大学 A kind of ethyl acetate gas sensor and preparation method thereof

Also Published As

Publication number Publication date
JPS5639453A (en) 1981-04-15

Similar Documents

Publication Publication Date Title
US4044601A (en) Smoke and gas sensor element
US4045764A (en) Gas-sensing material
JPS6054259B2 (en) Moisture sensitive ceramic
JPS5853862B2 (en) Flammable gas detection element
US3952567A (en) Gas sensor
JPH0562697B2 (en)
JPS6157571B2 (en)
EP0149681B1 (en) Oxide semiconductor for thermistor
Ishihara et al. Capacitive-type gas sensor for the selective detection of carbon dioxide
JPS5938541B2 (en) Flammable gas detection element
JPS6158776B2 (en)
JPS6116931B2 (en)
JPH0345559A (en) Ceramic composition having resistive element non-linear to electric voltage
JPS6138817B2 (en)
JPH06283310A (en) Temperature sensor
JPS6138815B2 (en)
JPS6157572B2 (en)
JPS60107802A (en) Voltage nonlinear resistance element
JPS6116932B2 (en)
JP2985562B2 (en) Temperature sensor
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JPH03223660A (en) Metal-oxide-based semiconductor element for gas sensor
JPS5847665B2 (en) gas sensing element
JPS58198751A (en) Gas detecting element
JPS5928861B2 (en) gas detection element