JPS6157572B2 - - Google Patents
Info
- Publication number
- JPS6157572B2 JPS6157572B2 JP12491179A JP12491179A JPS6157572B2 JP S6157572 B2 JPS6157572 B2 JP S6157572B2 JP 12491179 A JP12491179 A JP 12491179A JP 12491179 A JP12491179 A JP 12491179A JP S6157572 B2 JPS6157572 B2 JP S6157572B2
- Authority
- JP
- Japan
- Prior art keywords
- iron oxide
- oxide
- indium oxide
- gas
- resistance value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical group [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 47
- 229910003437 indium oxide Inorganic materials 0.000 claims description 24
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical group [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 19
- 239000004480 active ingredient Substances 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 12
- 239000002994 raw material Substances 0.000 description 8
- 230000035945 sensitivity Effects 0.000 description 7
- 239000001282 iso-butane Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 229910021617 Indium monochloride Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
この発明は酸化インジウムを有効成分中の主成
分とし、基本的素子性能において優れているばか
りでなく湿度特性にも優れた可燃性ガス検知素子
に関する。
従来より実用されている可燃性ガス検知素子の
殆どは、n型酸化物半導体である酸化スズ
(SnO2)や酸化亜鉛(ZnO)あるいはγ−酸化第
二鉄(γ−Fe2O3)を有効成分とする焼結体から
なるものであつた。
この発明は、このような現状の中に、同じくn
型酸化物半導体である酸化インジウムを有効成分
中の主成分とする新規な実用性ある可燃性ガス検
知素子を提供しようとするものである。
酸化インジウムは、可燃性ガスに接触したとき
素子として使用するに充分な抵抗値変化を示す、
すなわち充分なガス感応特性を有する。しかし、
その焼結体は、素子抵抗値が非常に小さいため、
これをガス漏れ警報器に用いようとすると、回路
設計が困難になる等の問題が発生し、実用上難点
がある。
そこで、この発明者らは、酸化インジウムのす
ぐれた特性を滅却させることなく素子抵抗値を実
用性ある領域にまで高めるため、これに適した添
加物の使用を考え、種々のものについて詳細に検
討した。その過程で、酸化鉄がこのような添加物
としてすぐれていることを見出した。
さらに、一般に、ガス検知用酸化物半導体は、
可燃性ガス濃度がある程度高くなると、ガス濃度
変化に対する抵抗値変化の割合が濃度に比例して
は増加せず飽和に達する傾向が見られるところ、
酸化インジウムもこの例にもれず、しかも、酸化
インジウムの場合、これ単独では可燃性ガスが比
較的低濃度である段階においてすでに飽和に達
し、実用濃度域での素子抵抗値変化の濃度に対す
る関係が直線型とならない、すなわち素子抵抗の
濃度依存性(濃度分離性)がやや小さいという問
題もあるのであるが、これに酸化鉄を副成分とし
て添加するとこのような問題も直ちに解決される
ことが分つた。
ところで、この種のガス検知素子においては、
使用現場の環境条件を考えると、湿度の影響をで
きるだけ受けないようにすることが望まれる。そ
こで、酸化鉄を副成分に用いることによつて、素
子低抗値、濃度依存性という基本的素子性能を向
上させるだけで満足すべきではなく、さらに湿度
特性の向上も望まれる。
この発明は、以上の知見に基づいて完成された
ものであつて、焼結体と、この焼結体の電気抵抗
が検知されることによつて可燃性ガスの存在を検
知するようにした可燃性ガス検知素子であつて、
焼結体の有効成分中の主成分が酸化インジウム、
副成分が酸化鉄からなり、有効成分中に占める酸
化鉄の割合(ただし、その算出に当たつては酸化
インジウムはIn2O3に、また、酸化鉄はFe2O3に
それぞれ換算される)が5〜60重量%であること
を特徴とする可燃性ガス検知素子をその要旨とす
る。
つぎに、この発明をさらに詳しく説明する。上
に述べたように、この発明にかかる可燃性ガス検
知素子は、そのガスを検知する能力(ガス検知
能)を示す成分すなわち有効成分中の主成分が酸
化インジウムによつて構成され、副成分が酸化鉄
によつて構成されるようになつている。すなわ
ち、この発明では、酸化鉄を上に述べた添加物と
して用いているのであり、これによつて、酸化イ
ンジウムの素子抵抗値が低すぎるという問題およ
び濃度依存性が小さいという問題を解決するよう
に図つている。
この発明にかかる素子において、酸化インジウ
ムは普通In2O3という酸化形態で素子中に存在す
ると考えてよいのであるが、これ以外の酸化形態
で存在する場合も勿論この発明の範囲に入る。酸
化鉄ももつとも多くはα−Fe2O3という酸化形態
で素子中に存在すると考えてよいが、やはり、こ
れ以外の酸化形態で存在する場合も勿論この発明
の範囲に入る。
ところで、ガス漏れ警報器を構成するための素
子として実用されるためには、その素子抵抗値に
も一定の範囲があり、かつ、抵抗値変化率も一定
の程度以上に保持されなければならないことは当
然である。そこで、この発明を完成するに先立
ち、この発明者らは素子抵抗値や抵抗値変化率に
影響を及ぼす因子につき検討を加えた。その結
果、副成分の添加量が最も重要な因子であること
を見出した。そして、さらに実験、研究を進めた
結果、つぎのような知見を得た。すなわち、酸化
鉄の添加量が有効成分中で60重量%(ただし、こ
の割合を算出するに当たつては、酸化インジウム
はIn2O3に、また、酸化鉄はFe2O3にそれぞれ換
算されている。以下同じ)を超えるようになると
素子の性能が低下する傾向が見受けられ、他方、
この添加量が5重量%を下まわると素子低抗値を
増大させるという効果があまり期待できず、ガス
感度や濃度分離性等の面でも添加効果が小さい。
さらに、ガス検知素子において、素子低抗値、ガ
ス感度、濃度分離性といつた基本的素子性能につ
いで重要な性能たる湿度特性の向上が見られな
い。このようなことから、この発明においては、
酸化鉄の有効成分中に占める割合は、5〜60重量
%が適当であり、したがつて、酸化インジウムは
その残りすなわち40〜95重量%を占めるとされて
いるのである。
なお、ガス検知素子をつくるに当たつては、ガ
ス検知能を示す成分にバインダーとして機能する
成分や単なる増量剤として働く成分等が加えられ
ることもある。このようなときにおいても、ガス
検知能を示す成分が酸化インジウムと酸化鉄から
なるものでありさえすれば、この発明の範囲に入
る。この明細書において、この発明にかかる可燃
性ガス検知素子は有効成分中の主成分が酸化イン
ジウム、副成分が酸化鉄からなると述べたのは、
正に、上記のように、実際にガス検知素子をつく
るに当たつてはガス検知能を示す成分以外の成分
がしばしば添加されることを考慮した結果であ
る。もつとも、このように述べたからと言つて、
上記のような有効成分のみで可燃性ガス検知素子
が構成されている場合も勿論この発明の範囲に入
るのであり、このような場合を除く趣旨ではな
い。
この発明にかかる可燃性ガス検知素子の形態と
しては、良好なガス感度が容易に得られる、経時
安定性が良い等の理由から、一般的には焼結体に
構成する形態が選ばれるが、これに限定されるも
のでなく、たとえば薄膜や厚膜に形成されてもよ
いのであつて、その形態は自由である。また、そ
の製造原料、製造方法等も、原料の入手の容易
さ、コストやその使用目的等を勘案して適宜に選
ばれる。製造用出発原料としては、素子となつた
ときに酸化インジウムであり酸化鉄でありさえす
れば種類は問わず(目的の酸化物そのものであつ
てもよい)、また必要により出発原料に加えられ
る中間処理の区別も問わない。しかし、参考のた
めに例示すると、酸化インジウム用出発原料とし
てはIn2O3、InCl3.xH2O、In(NO3)3など、ま
た、酸化鉄用出発原料としてはFe3O4、γ−
Fe2O3、α−Fe2O3などがある。
この発明は上記のように構成されているため、
適当な素子低抗値を有しかつ充分なるガス感度お
よび濃度依存性(濃度分離性)を有するとともに
湿度特性の優れた、酸化インジウムを有効成分中
の主成分とする可燃性ガス検知素子を提供するこ
とができる。
つぎに、実施例について比較例と併せて説明す
る。
主成分であり酸化インジウム用原料としては
In2O3を、また、副成分である酸化鉄用原料とし
てはFe3O4を用いた。これらの原料を、素子組成
が後掲の表記載のとおりとなる割合で配合し、石
川式擂潰機で充分混合したのち、混合粉末(比較
例1、2では酸化インジウム単独粉末、比較例3
では酸化鉄単独粉末)を一定量(20mg)秤量し
て、白金線電極が埋設された直径2mmφ、長さ約
2mmで円柱状の素子形状に圧縮成形し、焼成温度
600℃または800℃で、焼成時間3時間、空気中と
いう焼成条件で焼成することによつてガス感応体
(焼結体)をつくつた。実施例のガス感応体はX
線回折による分析の結果、原料のFe3O4は焼成後
α−Fe2O3になつていることが確認された。
上記で得られた各ガス感応体のまわりに、コイ
ル状ヒータを付設し、さらにステンレススチール
製の金網キヤツプで被覆したものをガス検知部と
した。
各素子のガス感応特性について調べた結果は下
表のとおりであり、実施例はいずれも比較例より
すぐれていた。
なお、ガス感応特性は、上記コイル状ヒータに
一定電圧を付加して素子の温度を450℃一定に保
持しつつ、イソブタン濃度0.1容量%および0.3容
量%のイソブタン含有空気を接触させてガス感応
体の電気抵抗値を測定し、その変化を求めるとい
う方法によつて調べた。
The present invention relates to a combustible gas sensing element which contains indium oxide as the main active ingredient and which not only has excellent basic element performance but also excellent humidity characteristics. Most of the combustible gas detection elements that have been put into practical use are made using n-type oxide semiconductors such as tin oxide (SnO 2 ), zinc oxide (ZnO), or γ-ferric oxide (γ-Fe 2 O 3 ). It consisted of a sintered body as an active ingredient. This invention also provides n
The present invention aims to provide a novel and practical combustible gas detection element whose main active ingredient is indium oxide, which is a type oxide semiconductor. Indium oxide shows a change in resistance value sufficient to be used as an element when it comes into contact with flammable gas.
That is, it has sufficient gas sensitivity characteristics. but,
The sintered body has a very low element resistance value, so
If this is attempted to be used in a gas leak alarm, problems such as difficulty in circuit design will occur, which poses practical difficulties. Therefore, in order to increase the element resistance to a practical level without destroying the excellent properties of indium oxide, the inventors considered the use of suitable additives and conducted detailed studies on various additives. did. In the process, they discovered that iron oxide is an excellent additive. Furthermore, in general, oxide semiconductors for gas detection are
When the combustible gas concentration increases to a certain degree, the rate of resistance change with respect to gas concentration change does not increase in proportion to the concentration and tends to reach saturation.
Indium oxide is no exception to this; moreover, in the case of indium oxide, saturation is already reached when the combustible gas is at a relatively low concentration, and the relationship between the change in element resistance and the concentration in the practical concentration range is poor. There is also the problem that it is not linear, that is, the concentration dependence (concentration separability) of the element resistance is somewhat small, but it has been found that this problem can be immediately solved by adding iron oxide as a subcomponent. Ivy. By the way, in this type of gas detection element,
Considering the environmental conditions at the site of use, it is desirable to minimize the influence of humidity. Therefore, by using iron oxide as a subcomponent, it is not enough to be satisfied with merely improving the basic device performance of low resistance value and concentration dependence, but it is also desired to improve humidity characteristics. The present invention was completed based on the above findings, and includes a sintered body and a combustible material that detects the presence of combustible gas by detecting the electrical resistance of the sintered body. A gas detection element,
The main component of the active ingredients of the sintered body is indium oxide,
The subcomponent is iron oxide, and the proportion of iron oxide in the active ingredient (however, when calculating this, indium oxide is converted to In 2 O 3 , and iron oxide is converted to Fe 2 O 3 ). ) is 5 to 60% by weight. Next, this invention will be explained in more detail. As described above, in the combustible gas detection element according to the present invention, the component showing the ability to detect gas (gas detection ability), that is, the main component in the active component is composed of indium oxide, and the subcomponent is is now composed of iron oxide. That is, in this invention, iron oxide is used as the above-mentioned additive, which solves the problem that the element resistance value of indium oxide is too low and the problem that the concentration dependence is small. I am planning to do so. In the device according to the present invention, it can be considered that indium oxide normally exists in the oxidized form of In 2 O 3 in the device, but the presence of indium oxide in other oxidized forms is also within the scope of the present invention. It may be considered that iron oxide is present in the element in the oxidized form of α-Fe 2 O 3 in most cases, but of course cases where iron oxide exists in other oxidized forms also fall within the scope of the present invention. By the way, in order to be put to practical use as an element for configuring a gas leak alarm, the resistance value of the element must fall within a certain range, and the rate of change in resistance value must also be maintained above a certain level. Of course. Therefore, prior to completing this invention, the inventors investigated factors that affect the element resistance value and the rate of change in resistance value. As a result, it was found that the amount of subcomponents added was the most important factor. As a result of further experiments and research, the following findings were obtained. In other words, the amount of iron oxide added is 60% by weight in the active ingredients (however, when calculating this percentage, indium oxide is converted to In 2 O 3 , and iron oxide is converted to Fe 2 O 3 ). (hereinafter the same applies), there is a tendency for the performance of the device to deteriorate; on the other hand,
If the amount added is less than 5% by weight, the effect of increasing the low resistance value of the element cannot be expected to be very high, and the effect of addition is also small in terms of gas sensitivity, concentration separation, etc.
Furthermore, in gas sensing elements, there has been no improvement in humidity characteristics, which is an important performance next to basic element performances such as low element resistance, gas sensitivity, and concentration separation. For this reason, in this invention,
The appropriate proportion of iron oxide in the active ingredient is 5 to 60% by weight, and therefore indium oxide is said to account for the remainder, 40 to 95% by weight. Note that when producing a gas detection element, a component that functions as a binder or a component that functions simply as an extender may be added to the component that exhibits gas detection ability. Even in such a case, it falls within the scope of the present invention as long as the component exhibiting gas detection ability consists of indium oxide and iron oxide. In this specification, the combustible gas detection element according to the present invention has been stated that the main active ingredient is indium oxide and the sub-component is iron oxide.
Indeed, as mentioned above, this is the result of taking into consideration that components other than those exhibiting gas detection ability are often added when actually producing gas detection elements. However, even though I have said this,
Of course, the scope of the present invention also falls within the scope of the present invention if the combustible gas detection element is composed of only the above-mentioned active ingredients, and the present invention is not intended to exclude such cases. As the form of the combustible gas detection element according to the present invention, a form constituted by a sintered body is generally selected because good gas sensitivity can be easily obtained and stability over time is good. It is not limited to this, and may be formed into a thin film or a thick film, for example, and its form is free. In addition, the manufacturing raw materials, manufacturing methods, etc. are appropriately selected in consideration of the ease of obtaining the raw materials, cost, purpose of use, etc. The starting raw material for manufacturing can be of any type as long as it is indium oxide or iron oxide when it becomes an element (the desired oxide itself may be used), and intermediates added to the starting raw material as necessary can be used. It does not matter whether the processing is different or not. However, to give examples for reference, starting materials for indium oxide include In 2 O 3 , InCl 3 .xH 2 O, In(NO 3 ) 3 , etc., and starting materials for iron oxide include Fe 3 O 4 , γ-
Examples include Fe 2 O 3 and α-Fe 2 O 3 . Since this invention is configured as described above,
Provides a combustible gas detection element containing indium oxide as the main active ingredient, which has an appropriate low resistance value, sufficient gas sensitivity and concentration dependence (concentration separability), and excellent humidity characteristics. can do. Next, examples will be described together with comparative examples. The main component and raw material for indium oxide is
In 2 O 3 was used, and Fe 3 O 4 was used as a raw material for iron oxide, which is a subcomponent. These raw materials were blended in proportions such that the element composition was as shown in the table below, and mixed thoroughly using an Ishikawa-type crusher.
Weighed out a certain amount (20mg) of iron oxide powder, compressed it into a cylindrical element shape with a diameter of 2mmφ and a length of about 2mm, in which a platinum wire electrode was embedded.
A gas sensitive body (sintered body) was produced by firing at 600°C or 800°C for 3 hours in air. The gas sensitive body of the example is
As a result of analysis by line diffraction, it was confirmed that the raw material Fe 3 O 4 was converted to α-Fe 2 O 3 after firing. A coiled heater was attached around each of the gas sensitive bodies obtained above, and the cap was further covered with a stainless steel wire mesh cap to serve as a gas detection section. The results of investigating the gas sensitivity characteristics of each element are shown in the table below, and all of the examples were superior to the comparative examples. The gas-sensitive characteristics were measured by applying a constant voltage to the coiled heater to maintain the temperature of the element at a constant 450°C, and then contacting the gas-sensitive element with isobutane-containing air with an isobutane concentration of 0.1% by volume and 0.3% by volume. The investigation was conducted by measuring the electrical resistance value of the material and determining its change.
【表】
ここで、
ガス感度は式Rair−R0.1/Rair×100によ
り、
濃度依存性は式R0.1/R0.3により、また、
湿度影響は式(20℃RH65%での)Rair/(4
0℃RH85%での)Rairにより、
それぞれ求められた。なお、式中、
Rair;素子の空気中での抵抗値
R0.1;イソブタン濃度1000ppmのイソブタン含有
空気中での素子の抵抗値
R0.3;イソブタン濃度3000ppmのイソブタン含有
空気中での素子の抵抗値
をそれぞれ表わす。
上表に示されている結果を見ても明らかなよう
に、酸化インジウム単成分系では素子低抗値が低
く実用領域外であるが、酸化インジウムに酸化鉄
を添加することによつて素子低抗値が高まり実用
濃度域での濃度分離性が向上する。また、同じ焼
成温度のもので比較すると実施例のものは、いず
れも、比較例のものに比べて、湿度の影響を受け
にくい。[Table] Here, the gas sensitivity is expressed by the formula R air −R 0 . 1 /R air ×100, the concentration dependence is expressed by the formula R 0 . 1 /R 0 . 3 , and the humidity effect is expressed by the formula (at 20°C and RH 65%) R air / (4
(at 0°C and RH 85%). In the formula, R air : resistance value of the element in air R 0.1 ; resistance value of the element in air containing isobutane with an isobutane concentration of 1000 ppm R 0.3 ; resistance value of the element in air containing isobutane with an isobutane concentration of 3000 ppm Each represents the resistance value of the element. As is clear from the results shown in the table above, in the single-component indium oxide system, the element resistance value is low and is out of the practical range, but by adding iron oxide to indium oxide, the element resistance value can be reduced. The resistance value increases and concentration separation in the practical concentration range improves. Furthermore, when comparing the samples at the same firing temperature, the samples of the Examples are less affected by humidity than the samples of the Comparative Examples.
Claims (1)
ることによつて可燃性ガスの存在を検知するよう
にした可燃性ガス検知素子であつて、焼結体の有
効成分中の主成分が酸化インジウム、副成分が酸
化鉄からなり、有効成分中に占める酸化鉄の割合
(ただし、その算出に当たつては酸化インジウム
はIn2O3に、また、酸化鉄はFe2O3にそれぞれ換
算される)が5〜60重量%であることを特徴とす
る可燃性ガス検知素子。1 A combustible gas detection element that detects the presence of a combustible gas by detecting a sintered body and the electrical resistance of this sintered body, the element comprising a The component is indium oxide and the subcomponent is iron oxide, and the proportion of iron oxide in the active ingredient (however, when calculating this, indium oxide is converted to In 2 O 3 , and iron oxide is converted to Fe 2 O 3 A combustible gas detection element characterized in that the amount of the combustible gas is 5 to 60% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12491179A JPS5647747A (en) | 1979-09-27 | 1979-09-27 | Combustible gas detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12491179A JPS5647747A (en) | 1979-09-27 | 1979-09-27 | Combustible gas detecting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5647747A JPS5647747A (en) | 1981-04-30 |
JPS6157572B2 true JPS6157572B2 (en) | 1986-12-08 |
Family
ID=14897156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12491179A Granted JPS5647747A (en) | 1979-09-27 | 1979-09-27 | Combustible gas detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5647747A (en) |
-
1979
- 1979-09-27 JP JP12491179A patent/JPS5647747A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5647747A (en) | 1981-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5853862B2 (en) | Flammable gas detection element | |
US4045764A (en) | Gas-sensing material | |
US3952567A (en) | Gas sensor | |
EP0197629B1 (en) | Alcohol selective gas sensor | |
EP0022369B1 (en) | Combustible gas detecting elements | |
JPS6157572B2 (en) | ||
JPS5938541B2 (en) | Flammable gas detection element | |
JPS5931006B2 (en) | Flammable gas detection element | |
JPS6157571B2 (en) | ||
JPS6116931B2 (en) | ||
JPS6138816B2 (en) | ||
Han et al. | Development of SnO 2 based semiconductor gas sensor with Fe 2 O 3 for detection of combustible gas | |
JPS5931005B2 (en) | Flammable gas detection element | |
JPS6138818B2 (en) | ||
JPS6158776B2 (en) | ||
JPS6138815B2 (en) | ||
JPS58168952A (en) | Gas sensitive element | |
JPS6138817B2 (en) | ||
JPS6116932B2 (en) | ||
JPS6224378B2 (en) | ||
JPS5928861B2 (en) | gas detection element | |
JPS6222420B2 (en) | ||
JPH11132980A (en) | Hydrocarbon gas detection element | |
JPS6245495B2 (en) | ||
JPS623374B2 (en) |