JPS6138818B2 - - Google Patents

Info

Publication number
JPS6138818B2
JPS6138818B2 JP1832280A JP1832280A JPS6138818B2 JP S6138818 B2 JPS6138818 B2 JP S6138818B2 JP 1832280 A JP1832280 A JP 1832280A JP 1832280 A JP1832280 A JP 1832280A JP S6138818 B2 JPS6138818 B2 JP S6138818B2
Authority
JP
Japan
Prior art keywords
oxide
subcomponent
platinum
palladium
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1832280A
Other languages
Japanese (ja)
Other versions
JPS56114753A (en
Inventor
Shigeo Akyama
Shigekazu Kusanagi
Tooru Nobetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1832280A priority Critical patent/JPS56114753A/en
Publication of JPS56114753A publication Critical patent/JPS56114753A/en
Publication of JPS6138818B2 publication Critical patent/JPS6138818B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 この発明は、有効成分中の主成分が酸化インジ
ウムであるガス検知素子の製法に関する。 〔背景技術〕 従来より実用されているガス検知素子の殆ど
は、n型酸化物半導体ある酸化スズ(SnO2)や酸
化亜鉛(ZnO)あるいはγ−酸化第二鉄(γ−
Fe2O3)を有効成分とする焼結体からなるもので
あつた。 この発明は、このような現状の中に、同じくn
型酸化物半導体である酸化インジウムを有効成分
中の主成分とする混合粉末を、同様に焼結して、
ガス検知素子を得る方法を提供しようとするもの
である。 酸化インジウムは、前記酸化スズや酸化亜鉛と
同様に、ガス検知素子として、充分な抵抗知変化
を示す、すなわち充分なガス感応特性を有する。
しかし、その単独の焼結体は素子抵抗が非常に小
さいため、これをガス漏れ警報器に用いようとす
ると、回路設計が困難になる等の問題が発生し、
実用上難点がある。しかも、酸化インジウムの場
合、これ単造ではガスが比較的低濃度である段階
においてすべに飽和に達し、実用濃度域での素子
抵抗値変化の濃度に対する関係が直線型とならな
い、すなわち素子抵抗の濃度依存性(濃度分離
性)がやや小さく検知レベルの設定が困難である
という問題もある。さらに、酸化インジウムは誤
報の原因となる湿度の影響を受けやすいという欠
点もあつた。 〔発明の目的〕 以上の問題に鑑み、この発明は、酸化インジウ
ムを有効成分中の主成分とし、しかも、酸化イン
ジウムのもつすぐれた特性を滅却させることなく
素子抵抗値を実用性ある領域にまで高め、かつ、
濃度分離性を大きくし湿度の影響を受けにくくし
たガス検知素子を製造する方法を提供することを
目的としている。 〔発明の開示〕 以上の目的を達成するため、発明者らは、添加
物の使用を考え、種々のものについて詳細に検討
した。その過程で、酸化鉄がこのような添加物と
してすぐれていることを見出した。すなわち、酸
化インジウムを有効成分中の主成分とし、酸化鉄
を副成分としてこれに添加することによつて、湿
度の影響を受けにくくするとともに経時安定性を
高めることに成功した。また、素子抵抗値を高
め、かつ、濃度分離性を大きくすることにも成功
したのである。しかし、このものは濃度分離性に
ついては、いまだ充分に満足できるものではなか
つたので、さらに、第2の副成分の添加を考え
た。そして、白金、酸化白金、パラジウム、酸化
パラジウムが第2の副成分として有効であること
を見出した。その結果完成されたのが、この発明
である。 すなわち、この発明は、金属酸化物となる出発
原料を焼成して、有効成分中の主成分が酸化イン
ジウム、副成分が酸化鉄であるガス検知素子を得
るにあたり、第2の副成分として白金、酸化白
金、パラジウムおよび酸化パラジウムよりなる群
から選ばれた少なくとも1種のものをも配合する
こととし、前記有効成分中に占める主成分、第1
の副成分(酸化鉄)および第2の副成分の割合
(ただし、その算出に当たつては、酸化インジウ
ムはIn2O3に、酸化鉄はFe2O3に、白金および酸
化白金はPtOに、そして、パラジウムおよび酸化
パラジウムはPdOにそれぞれ換算される)が、有
効成分全体の1〜10重量%が第2の副成分、その
残部の95〜50重量%が主成分、前記残部の5〜50
重量%が第1の副成分となるように前記各金属酸
化物の出発原料を配合量を調整することを特徴と
するガス検知素子の製法をその要旨とする。 つぎに、この発明をさらに詳しく説明する。上
に述べたように、この発明にかかるガス検知素子
の製法では、得られた素子中の有効成分、すなわ
ち、ガスを検知する能力(ガス検知能)を示す成
分中の主成分が酸化インジウムで構成され、第1
の副成分が酸化鉄で構成されるように出発原料を
調整する。そして、これにさらに、第2の副成分
として、白金、酸化白金、パラジウムおよび酸化
パラジウムよりなる群から選ばれた1種または2
種以上のものとなる出発原料が添加される構成に
なつているのである。 有効成分を構成する各金属および金属酸化物
は、原子価が異なることに起因して種々の酸化形
態をとりうることがあるが、その種類は問わな
い。また、複数種類の酸化形態が存在する酸化物
については、いずれかの酸化形態のものが単独で
素子中に存在する場合のほか、複数種類の酸化形
態のものが併せて素子中に存在する場合もある。
なお、ここにいう酸化形態には格子欠陥などに起
因して非化学量論的組成にもつものも含まれてい
る。 もつとも、普通、主成分たる酸化インジウムは
In2O3、第1の副成分たる酸化鉄はFe2O3(結晶
型は問わないと言つてよいが通常はα−Fe2O3
ある)という酸化形態であり、第2の副成分たる
酸化白金はPtO、酸化パラジウムはPdOという酸
化形態である。したがつて、この明細書におい
て、素子を構成する成分の割合を考えるに当たつ
ては、各酸化物はすべて上に表されている酸化形
態のものに換算されることとしている。なお、白
金やパラジウムの割合を考えるにあたつてもこれ
らはPtOまたはPdOに換算されることとしてい
る。 この発明にかかるガス検知素子の製法において
は、主成分と第1の副成分と第2の副成分相互の
割合が下記の範囲になるように、その出発原料を
選ぶことが重要である。すなわち、まず、第2の
副成分が有効成分全体の1〜10重量%を占めるこ
とである。残部すなわち有効成分全体の90〜99重
量%は主成分と第1の副成分で構成されるが、こ
の残部の5〜50重量%を第1の副成分が占め、そ
の残り全部すなわちこの残部の95〜50重量%を主
成分が占めることである。第1の副成分たる酸化
鉄の添加量が上記の範囲を下限において外れると
周囲湿度の影響を受けにくくすることが困難であ
り、上限において外れると第2の副成分の添加効
果があらわれなくなる。第2の副成分の添加量が
上記の範囲を下限において外れるとガスに対する
感度が充分に向上せず、逆に上限において外れる
と第1の副成分の添加効果があらわれなくなる。 なお、この発明では、以上の有効成分以外に
も、バインダーとして機能する成分や単なる増量
剤として働く成分等が加えられることもある。こ
のようなときにおいても、ガス検知能を示す以上
の有効成分が主成分たる酸化インジウムと、第1
の副成分たる酸化鉄と、前記4種のもののなかか
ら第2の副成分として選び出されたものとからな
るものでありさえすれば、この発明の範囲に入
る。この明細書において、この発明にかかるガス
検知素子の製法では、有効成分中の主成分が酸化
インジウム、第1の副成分が酸化鉄、第2の副成
分が前記4種のものよりなる群から選ばれた少な
くとも1種のものからなると述べたのは、正に、
上記のように、実際にガス検知素子をつくるに当
たつてはガス検知能を示す成分以外の成分がしば
しば添加されることを考慮した結果である。もつ
とも、このように述べたからと言つて、上記のよ
うな有効成分のみを焼結してガス検知素子を製造
する場合も勿論この発明の範囲に入るのであり、
このような場合を除く趣旨ではない。 製造用の出発原料としては、素子となつたとき
に酸化インジウムであり酸化鉄であり、また、前
記した4種のものの中から選ばれたものでありさ
えすれば種類を問わず(目的の酸化物や白金、パ
ラジウムそのものであつてもよい)、また、必要
により出発原料に加えられる中間処理の区別も問
わない。 つぎに、実施例について比較例と併せて説明す
る。 原料粉末を、素子組成が後掲の表記載のとおり
となる割合で配合し、擂漬機で充分混合したの
ち、混合粉末(比較例3は酸化インジウム単独粉
末)を一定量(20mg)秤量して、白金線電極(直
径0.2mmφ、長さ15mm)が埋設された直径2mm
φ、長さ約2mmで円柱状の素子形状に圧縮成形
し、焼成温度600℃または800℃、焼成時間3時
間、空気中という焼成条件で焼成することによつ
てガス感応体(焼結体)をつくつた。 上記で得られた各ガス感応体のまわりに、コイ
ル状ヒータを付設し、さらにステンレススチール
製の金網キヤツプで被覆したものをガス検知部と
した。 各素子のガス感応特性について調べた結果は下
表のとおりであり、ガス感応諸特性を総合して判
定すれば、実施例はいずれも比較例よりすぐれて
いた。 なお、ガス感応特性は、上記コイル状ヒータに
一定電圧を付加して素子の温度を450℃一定に保
持しつつ、精製空気、イソブタン濃度0.1容量%
のイソブタン含有空気およびメタン濃度0.1容量
%のメタン含有空気をそれぞれ接触させてガス感
応体の電気抵抗値を測定し、その変化を求めると
いう方法によつて調べた。
[Technical Field] The present invention relates to a method for manufacturing a gas sensing element whose main active ingredient is indium oxide. [Background Art] Most gas detection elements that have been put into practical use are made of n-type oxide semiconductors such as tin oxide (SnO 2 ), zinc oxide (ZnO), or γ-ferric oxide (γ-ferric oxide).
It consisted of a sintered body containing Fe 2 O 3 ) as an active ingredient. This invention also provides n
A mixed powder containing indium oxide, which is a type oxide semiconductor, as the main active ingredient is sintered in the same way,
The present invention aims to provide a method for obtaining a gas sensing element. Like the tin oxide and zinc oxide, indium oxide exhibits a sufficient resistance change, that is, has sufficient gas sensitivity characteristics as a gas sensing element.
However, the individual sintered body has a very low element resistance, so if you try to use it for a gas leak alarm, problems such as circuit design will occur.
There are practical difficulties. Furthermore, in the case of indium oxide, saturation is reached when the gas is at a relatively low concentration when used alone, and the relationship between the change in element resistance and the concentration in the practical concentration range is not linear; that is, the element resistance Another problem is that the concentration dependence (concentration separability) is rather small, making it difficult to set the detection level. Another disadvantage of indium oxide is that it is susceptible to humidity, which can cause false alarms. [Purpose of the Invention] In view of the above problems, the present invention uses indium oxide as the main active ingredient, and increases the element resistance value to a practical range without destroying the excellent properties of indium oxide. High and
The object of the present invention is to provide a method for manufacturing a gas sensing element that has high concentration separation and is less susceptible to humidity. [Disclosure of the Invention] In order to achieve the above object, the inventors considered the use of additives and conducted detailed studies on various additives. In the process, they discovered that iron oxide is an excellent additive. That is, by using indium oxide as the main active ingredient and adding iron oxide as a subcomponent, they succeeded in making the product less susceptible to humidity and increasing its stability over time. They also succeeded in increasing the element resistance and concentration separation. However, since this product was not yet fully satisfactory in terms of concentration separation, the addition of a second subcomponent was considered. It has also been found that platinum, platinum oxide, palladium, and palladium oxide are effective as the second subcomponent. This invention was completed as a result. That is, in the present invention, when a starting material to be a metal oxide is fired to obtain a gas sensing element whose main active ingredient is indium oxide and whose subcomponent is iron oxide, the second subcomponent is platinum, At least one selected from the group consisting of platinum oxide, palladium, and palladium oxide is also blended, and the main component in the active ingredients, the first
(iron oxide) and the ratio of the second subcomponent (however, when calculating the ratio, indium oxide is converted to In 2 O 3 , iron oxide is converted to Fe 2 O 3 , platinum and platinum oxide are converted to PtO (and palladium and palladium oxide are each converted to PdO), 1 to 10% by weight of the total active ingredient is the second subcomponent, the remaining 95 to 50% by weight is the main component, and the remaining 5% by weight is the secondary component. ~50
The gist of the present invention is a method for manufacturing a gas sensing element, which is characterized in that the blending amount of the starting materials for each of the metal oxides is adjusted so that the weight percent becomes the first subcomponent. Next, this invention will be explained in more detail. As described above, in the method for producing a gas detection element according to the present invention, the active ingredient in the obtained element, that is, the main ingredient in the ingredient showing the ability to detect gas (gas detection ability) is indium oxide. consists of the first
The starting material is adjusted so that the subcomponent of is composed of iron oxide. Further, as a second subcomponent, one or two selected from the group consisting of platinum, platinum oxide, palladium, and palladium oxide.
The structure is such that a starting material that is more than a seed is added. The metals and metal oxides constituting the active ingredient may take various oxidation forms due to their different valences, but the types do not matter. Regarding oxides that exist in multiple oxidation forms, in addition to cases in which one of the oxidation forms exists alone in the element, cases in which multiple types of oxidation forms exist in the element together. There is also.
Note that the oxidation forms mentioned here include those with non-stoichiometric compositions due to lattice defects and the like. However, the main component is usually indium oxide.
In In 2 O 3 , iron oxide, which is the first subcomponent, is in the oxidized form Fe 2 O 3 (although it can be said that the crystal type does not matter, it is usually α-Fe 2 O 3 ), and the second subcomponent is Fe 2 O 3 . The two components, platinum oxide, are in the oxidized form PtO and palladium oxide is PdO. Therefore, in this specification, when considering the proportions of components constituting an element, all oxides are converted into the oxidized form shown above. Furthermore, when considering the proportions of platinum and palladium, these are also converted into PtO or PdO. In the method for manufacturing a gas sensing element according to the present invention, it is important to select starting materials such that the proportions of the main component, first subcomponent, and second subcomponent fall within the following range. That is, first, the second subcomponent accounts for 1 to 10% by weight of the total active ingredient. The balance, that is, 90 to 99% by weight of the total active ingredient is composed of the main component and the first subcomponent, but the first subcomponent accounts for 5 to 50% by weight of this balance, and the entire remainder, that is, this remainder. The main component accounts for 95 to 50% by weight. If the amount of iron oxide, which is the first subcomponent, is outside the above range at the lower limit, it is difficult to make it less susceptible to the influence of ambient humidity, and if it is outside the upper limit, the effect of adding the second subcomponent will not be apparent. If the amount of the second subcomponent added exceeds the above range at the lower limit, the sensitivity to gas will not be sufficiently improved, and conversely, if it deviates from the upper limit, the effect of the addition of the first subcomponent will not appear. In addition, in this invention, in addition to the above-mentioned active ingredients, components that function as a binder or components that function as a mere filler may be added. Even in such a case, the active ingredient that shows gas detection ability is indium oxide, which is the main ingredient, and the first
It falls within the scope of the present invention as long as it consists of iron oxide as a subcomponent and a second subcomponent selected from the above four types. In this specification, in the method for manufacturing a gas sensing element according to the present invention, the main component in the active ingredient is indium oxide, the first subcomponent is iron oxide, and the second subcomponent is selected from the group consisting of the above four types. The statement that it is made up of at least one kind of material is precisely because
As mentioned above, this is a result of taking into consideration that components other than those exhibiting gas detection ability are often added when actually producing a gas detection element. However, even though this is stated above, it goes without saying that the scope of the present invention also falls within the scope of the present invention when a gas sensing element is manufactured by sintering only the above-mentioned effective ingredients.
It is not intended to exclude such cases. As a starting material for manufacturing, it can be indium oxide or iron oxide when it is made into a device, and any type can be used as long as it is selected from the four types mentioned above (the desired oxidation It may be platinum, palladium itself), or intermediate treatment added to the starting material if necessary. Next, examples will be described together with comparative examples. The raw material powders were blended in a proportion such that the element composition was as shown in the table below, and after thoroughly mixing with a pickler, a fixed amount (20 mg) of the mixed powder (comparative example 3 was an indium oxide single powder) was weighed out. 2mm in diameter with embedded platinum wire electrode (0.2mmφ in diameter, 15mm in length)
A gas-sensitive body (sintered body) is formed by compression molding into a cylindrical element shape with a diameter of approximately 2 mm and firing under the following conditions: firing temperature: 600°C or 800°C, firing time: 3 hours, in air. I made it. A coiled heater was attached around each of the gas sensitive bodies obtained above, and the cap was further covered with a stainless steel wire mesh cap to serve as a gas detection section. The results of investigating the gas-sensitive characteristics of each element are shown in the table below, and when the various gas-sensitive characteristics were judged comprehensively, all of the Examples were superior to the Comparative Examples. The gas sensitivity characteristics were determined by applying a constant voltage to the coiled heater and maintaining the temperature of the element at a constant 450°C, while using purified air with an isobutane concentration of 0.1% by volume.
The electrical resistance of the gas sensitive member was measured by contacting it with isobutane-containing air and methane-containing air with a methane concentration of 0.1% by volume, and the changes in the electrical resistance were determined.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

この発明は、上記のように構成されているた
め、これにより得られたガス検知素子は、酸化イ
ンジウムのもつすぐれた特性を保有し、メタン、
プロパン、ブタン、一酸化炭素などの被検ガスに
接触したときに充分な抵抗値変化を示す。しか
も、適当な素子抵抗値を有しかつ充分なるガス感
度および濃度依存性(濃度分離性)を有するとと
もに湿度の影響を受けにくいものとなつている。
Since the present invention is configured as described above, the gas sensing element obtained thereby possesses the excellent characteristics of indium oxide, and methane,
Shows a sufficient change in resistance value when in contact with test gases such as propane, butane, and carbon monoxide. Moreover, it has an appropriate element resistance value, sufficient gas sensitivity and concentration dependence (concentration separability), and is not easily affected by humidity.

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物となる出発原料を焼成して、有効
成分中の主成分が酸化インジウム、副成分が酸化
鉄であるガス検知素子を得るにあたり、第2の副
成分として白金、酸化白金、パラジウムおよび酸
化パラジウムよりなる群から選ばれた少なくとも
1種のものをも配合することとし、前記有効成分
中に占める主成分、第1の副成分(酸化鉄)およ
び第2の副成分の割合(ただし、その算出に当た
つては、酸化インジウムはIn2O3に、酸化鉄は
Fe2O3に、白金および酸化白金はPtOに、そし
て、パラジウムおよび酸化パラジウムはPdOにそ
れぞれ換算される)が、有効成分全体の1〜10重
量%が第2の副成分、その残部の95〜50重量%が
主成分、前記残部の5〜50重量%が第1の副成分
となるように前記各金属酸化物の出発原料の配合
量を調整することを特徴とするガス検知素子の製
法。
1. In order to obtain a gas sensing element in which the main active ingredient is indium oxide and the subcomponent is iron oxide by calcining the starting material to be a metal oxide, platinum, platinum oxide, palladium and At least one member selected from the group consisting of palladium oxide is also blended, and the proportions of the main component, the first subcomponent (iron oxide), and the second subcomponent in the active ingredients (however, In calculating this, indium oxide is converted to In 2 O 3 , and iron oxide is converted to In 2 O 3.
(converted to Fe 2 O 3 , platinum and platinum oxide to PtO, and palladium and palladium oxide to PdO), but 1 to 10% by weight of the total active ingredient is the second subcomponent, and the balance is 95% by weight. A method for manufacturing a gas sensing element, characterized in that the blending amount of the starting materials for each of the metal oxides is adjusted so that ~50% by weight is the main component and the remaining 5-50% by weight is the first subcomponent. .
JP1832280A 1980-02-15 1980-02-15 Detecting element for combustible gas Granted JPS56114753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1832280A JPS56114753A (en) 1980-02-15 1980-02-15 Detecting element for combustible gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1832280A JPS56114753A (en) 1980-02-15 1980-02-15 Detecting element for combustible gas

Publications (2)

Publication Number Publication Date
JPS56114753A JPS56114753A (en) 1981-09-09
JPS6138818B2 true JPS6138818B2 (en) 1986-09-01

Family

ID=11968367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1832280A Granted JPS56114753A (en) 1980-02-15 1980-02-15 Detecting element for combustible gas

Country Status (1)

Country Link
JP (1) JPS56114753A (en)

Also Published As

Publication number Publication date
JPS56114753A (en) 1981-09-09

Similar Documents

Publication Publication Date Title
US4045764A (en) Gas-sensing material
JPS6054259B2 (en) Moisture sensitive ceramic
US5427740A (en) Tin oxide gas sensors
US4816800A (en) Exhaust gas sensor
US3952567A (en) Gas sensor
US4543273A (en) Carbon monoxide sensing element and method of making same
JPS6138818B2 (en)
JPS5938541B2 (en) Flammable gas detection element
JPS6138816B2 (en)
JPS6138817B2 (en)
JPS6116931B2 (en)
JPS5931006B2 (en) Flammable gas detection element
JPS6138815B2 (en)
JPS6158776B2 (en)
JPS6157571B2 (en)
JPS5931005B2 (en) Flammable gas detection element
JPS6157572B2 (en)
JPS6116932B2 (en)
JPS6327841B2 (en)
JPS5919849A (en) Manufacture of gas detection element
JPS58179347A (en) Manufacture of sensor for combustible gas
JPS623374B2 (en)
JPS5950352A (en) Detection element for nox
JPS58198751A (en) Gas detecting element
JPS5928861B2 (en) gas detection element