JPS6138816B2 - - Google Patents
Info
- Publication number
- JPS6138816B2 JPS6138816B2 JP169880A JP169880A JPS6138816B2 JP S6138816 B2 JPS6138816 B2 JP S6138816B2 JP 169880 A JP169880 A JP 169880A JP 169880 A JP169880 A JP 169880A JP S6138816 B2 JPS6138816 B2 JP S6138816B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- subcomponent
- converted
- weight
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical group [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 32
- 229910003437 indium oxide Inorganic materials 0.000 claims description 20
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical group [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 20
- 239000004480 active ingredient Substances 0.000 claims description 13
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000007858 starting material Substances 0.000 claims description 8
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 6
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 6
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 5
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 5
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 5
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 5
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 5
- 150000004706 metal oxides Chemical class 0.000 claims description 5
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 5
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 5
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 5
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 5
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 238000010304 firing Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 30
- 238000001514 detection method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Description
〔技術分野〕
この発明は、有効成分中の主成分が酸化インジ
ウムであるガス検知素子の製法に関する。
〔背景技術〕
従来より実用されているガス検知素子の殆ど
は、n型酸化物半導体である酸化スズ(SnO2)や
酸化亜鉛(ZnO)あるいはγ−酸化第二鉄(γ−
Fe2O3)を有効成分とする焼結体からなるもので
あつた。
この発明は、このような現状の中に、同じくn
型酸化物半導体である酸化インジウムを有効成分
中の主成分とする混合粉末を、同様に焼結して、
ガス検知素子を得る方法を提供しようとするもの
である。
酸化インジウムは、前記酸化スズや酸化亜鉛と
同様に、ガス検知素子として、充分な抵抗値変化
を示す、すなわち充分なガス感応特性を有する。
しかし、その単独の焼結体は素子抵抗が非常に小
さいため、これをガス漏れ警報器に用いようとす
ると、回路設計が困難になる等の問題が発生し、
実用上難点がある。しかも、酸化インジウムの場
合、これ単独ではガスが比較的低濃度である段階
においてすでに飽和に達し、実用濃度域での素子
抵抗値変化の濃度に対する関係が直線型とならな
い、すなわち素子抵抗の濃度依存性(濃度分離
性)がやや小さく検知レベルの設定が困難である
という問題もある。さらに、酸化インジウムは誤
報の原因となる湿度の影響を受けやすいという欠
点もあつた。
〔発明の目的〕
以上の問題点に鑑み、この発明は、酸化インジ
ウムを有効成分中の主成分とし、しかも、酸化イ
ンジウムのもつすぐれた特性を滅却させることな
く素子抵抗値を実用性ある領域にまで高め、か
つ、濃度分離性を大きくし湿度の影響を受けにく
くしたガス検知素子を製造する方法を提供するこ
とを目的としている。
〔発明の開示〕
以上の目的を達成するため、発明者らは、添加
物の使用を考え、種々のものについて詳細に検討
した。その過程で、酸化鉄がこのような添加物と
してすぐれていることを見出した。すなわち、酸
化インジウムを有効成分中の主成分とし、酸化鉄
を副成分としてこれに添加することによつて、湿
度の影響を受けにくくすることに成功した。ま
た、素子抵抗値を高め、かつ、濃度分離性をある
程度大きくすることにも成功したのである。しか
し、素子抵抗値と濃度分離性については、いまだ
充分に満足できるものではなかつたので、さら
に、第2の副成分の添加を考えた。その結果完成
されたのが、この発明である。
すなわち、この発明は、金属酸化物となる出発
原料を焼成して、有効成分中の主成分が酸化イン
ジウム、副成分が酸化鉄であるガス検知素子を得
るにあたり、第2の副成分として酸化ニツケル、
酸化バナジウム、酸化クロム、酸化コバルト、酸
化ハフニウム、酸化タングステン、酸化ニオブお
よび酸化マンガンよりなる群から選ばれた少なく
とも1種のものをも配合することとし、前記有効
成分中に占める主成分、第1の副成分(酸化鉄)
および第2の副成分の割合(ただし、その算出に
当たつては、酸化インジウムは、In2O3に、酸化
鉄はFe2O3に、酸化ニツケルはNiOに、酸化バナ
ジウムはV2O5に、酸化クロムはCr2O3に、酸化コ
バルトはCo3O4に、酸化ハフニウムはHfO2に、
酸化タングステンはWO3に、酸化ニオブはNb2O5
に、そして、酸化マンガンはMnO2にそれぞれ換
算される)が主成分85〜25重量%、第1の副成分
5〜40重量%、第2の副成分10〜35重量%となる
ように前記各金属酸化物の出発原料の配合量を調
整することを特徴とするガス検知素子の製法をそ
の要旨とする。
つぎに、この発明をさらに詳しく説明する。上
に述べたように、この発明にかかるガス検出素子
の製法では、得られた素子中の有効成分、すなわ
ち、ガスを検知する能力(ガス検知能)を示す成
分中の主成分が酸化インジウムで構成され、第1
の副成分が酸化鉄で構成されるように出発原料を
調整する。そして、これにさらに、第2の副成分
として、上述の酸化ニツケルなど8種の酸化物の
中から選ばれた1種または2種以上のものとなる
出発原料が添加される構成になつているのであ
る。
有効成分を構成する各金属酸化物は、原子価が
異なることに起因して種々の酸化形態をとりうる
ことがある。その種類は問わない。また、複数種
類の酸化形態が存在する酸化物については、いず
れかの酸化形態のものが単独で素子中に存在する
場合のほか、複数種類の酸化形態のものが併せて
素子中に存在する場合もある。なお、ここにいう
酸化形態には格子欠陥などに起因して非化学量論
的組成物をもつものを含まれている。
もつとも、普通、主成分たる酸化インジウムは
In2O3、第1の副成分たる酸化鉄はFe2O3(結晶
型は問わないと言つてよいが通常はα−Fe2O3で
ある)という酸化形態であり、第2の副成分たる
酸化ニツケルはNiO、酸化バナジウムはV2O5、
酸化クロムはCr2O3、酸化コバルトはCo3O4、酸
化ハフニウムはHfO2、酸化タングステンは
WO3、酸化ニオブはNb2O5、酸化マンガンは
MnO2という酸化形態である。したがつて、この
明細書において、素子を構成する成分の割合を考
えるに当つては、各酸化物はすべて上に表わされ
ている酸化形態のものに換算されることとしてい
る。
この発明にかかるガス検知素子の製法において
は、主成分と第1の副成分と第2の副成分相互の
割合が下記の範囲になるように、その出発原料を
選ぶことが重要である。すなわち、焼結されたガ
ス検地素子中の有効成分全体に占める第1の副成
分の割合が5〜40重量%、第2の副成分の割合が
10〜35重量%であり、主成分がその残部すなわち
85〜25重量%であることが重要である。第1の副
成分または第2の副生成の割合が上記の範囲を下
限においてそれぞれ外れたときは添加効果が小さ
く、他方、上限においてそれぞれ外れたときは逆
に悪影響がでてくるからである。
なお、この発明では、以上の有効成分以外に
も、バインダーとして機能する成分や単なる増量
剤として働く成分等が加えられることもある。こ
のようなときにおいても、ガス検知能を示す以上
の有効成分が主成分たる酸化インジウムと、第1
の副成分たる酸化鉄と、前記8種のもののなかか
ら第2の副成分として選び出されたものとからな
るものでありさえすれば、この発明の範囲に入
る。この明細書において、この発明にかかるガス
検知素子の製法では、有効成分中の主成分が酸化
インジウム、第1の副成分が酸化鉄、第2の副成
分が前記8種のものよりなる群から選ばれた少な
くとも1種のものからなると述べたのは、正に、
上記のように、実際にガス検知素子をつくるに当
たつてはガス検知能を示す成分以外の成分がしば
しば添加されることを考慮した結果である。もつ
とも、このように述べたからと言つて、上記のよ
うな有効成分のみを焼結してガス検知素子を製造
する場合も勿論この発明の範囲に入るのであり、
このような場合を除く趣旨ではない。
製造用の出発原料としては、素子となつたとき
に酸化インジウムであり酸化鉄であり、また、前
記した8種のものの中から選ばれたものでありさ
えすれば種類は問わず(目的の酸化物そのもので
あつてもよい)、また、必要により出発原料に加
えられる中間処理の区別も問わない。
つぎに、実施例について比較例と併せて説明す
る。
主成分である酸化インジウム用原料として高純
度In2O3粉末を用い、第1の副成分である酸化鉄
および第2の副成分である後掲の表記載の酸化物
用原料としてそれぞれの酸化物の高純度粉末を用
いた。これらの原料を、素子組成が後掲の表記載
のとおりとなる割合で配合し、擂潰機で充分混合
したのち、混合粉末(比較例10は酸化インジウム
単独粉末)を一定量(20mg)秤量して、白金線電
極が埋設された直径2mmφ、長さ約2mmで円柱状
の素子形状に圧縮成形し、焼成時間3時間、空気
中という焼成条件で焼成することによつてガス感
応体(焼結体)をつくつた。
上記で得られた各ガス感応体のまわりに、コイ
ル状ヒータを付設し、さらにステンレスチール製
の金網キヤツプで被覆したものをガス検知部とし
た。
各素子のガス感応特性について調べた結果は下
表のとおりであり、ガス感応諸特性を総合して判
定すれば、実施例はいずれも比較例よりすぐれて
いた。
なお、ガス感応特性は、上記コイル状ヒータに
一定電圧を付加して素子の温度を450℃一定に保
持しつつ、精製空気、イソブタン濃度0.1容量%
および0.3容量%のイソブタン含有空気をそれぞ
れ接触させてガス感応体の電気抵抗値を測定し、
その変化を求めるという方法によつて調べた。
[Technical Field] The present invention relates to a method for manufacturing a gas sensing element whose main active ingredient is indium oxide. [Background Art] Most gas detection elements that have been put into practical use are made of n-type oxide semiconductors such as tin oxide (SnO 2 ), zinc oxide (ZnO), or γ-ferric oxide (γ-ferric oxide).
It consisted of a sintered body containing Fe 2 O 3 ) as an active ingredient. This invention also provides n
A mixed powder containing indium oxide, which is a type oxide semiconductor, as the main active ingredient is sintered in the same way,
The present invention aims to provide a method for obtaining a gas sensing element. Like the tin oxide and zinc oxide, indium oxide exhibits a sufficient change in resistance as a gas detection element, that is, has sufficient gas sensitivity characteristics.
However, the individual sintered body has a very low element resistance, so if you try to use it for a gas leak alarm, problems such as circuit design will occur.
There are practical difficulties. Furthermore, in the case of indium oxide, saturation is already reached when the gas is at a relatively low concentration when used alone, and the relationship between the change in element resistance and the concentration in the practical concentration range is not linear; that is, the element resistance depends on the concentration. Another problem is that the sensitivity (concentration separation) is rather low, making it difficult to set the detection level. Another disadvantage of indium oxide is that it is susceptible to humidity, which can cause false alarms. [Purpose of the Invention] In view of the above problems, the present invention uses indium oxide as the main active ingredient, and also brings the element resistance to a practical range without destroying the excellent properties of indium oxide. It is an object of the present invention to provide a method for manufacturing a gas sensing element that has a high concentration separation property and is less susceptible to the influence of humidity. [Disclosure of the Invention] In order to achieve the above object, the inventors considered the use of additives and conducted detailed studies on various additives. In the process, they discovered that iron oxide is an excellent additive. That is, by using indium oxide as the main active ingredient and adding iron oxide as a subcomponent, they succeeded in making the product less susceptible to humidity. They also succeeded in increasing the element resistance value and increasing the concentration separation to some extent. However, since the element resistance value and concentration separability were still not fully satisfactory, the addition of a second subcomponent was considered. This invention was completed as a result. That is, in the present invention, when a starting material to be a metal oxide is fired to obtain a gas sensing element whose main active ingredient is indium oxide and whose subcomponent is iron oxide, nickel oxide is added as a second subcomponent. ,
At least one selected from the group consisting of vanadium oxide, chromium oxide, cobalt oxide, hafnium oxide, tungsten oxide, niobium oxide and manganese oxide is also blended, and the main component in the active ingredients, the first Subcomponent (iron oxide)
and the ratio of the second subcomponent (however, when calculating the ratio, indium oxide is converted to In 2 O 3 , iron oxide is converted to Fe 2 O 3 , nickel oxide is converted to NiO, vanadium oxide is converted to V 2 O 5 , chromium oxide becomes Cr 2 O 3 , cobalt oxide becomes Co 3 O 4 , hafnium oxide becomes HfO 2 ,
Tungsten oxide to WO3 , niobium oxide to Nb2O5
and manganese oxide (respectively converted to MnO 2 ) is 85 to 25% by weight of the main component, 5 to 40% by weight of the first subcomponent, and 10 to 35% by weight of the second subcomponent. The gist of this invention is a method for manufacturing a gas sensing element, which is characterized by adjusting the blending amount of starting materials for each metal oxide. Next, this invention will be explained in more detail. As described above, in the method for producing a gas detection element according to the present invention, the active ingredient in the obtained element, that is, the main ingredient in the ingredient showing the ability to detect gas (gas detection ability) is indium oxide. consists of the first
The starting material is adjusted so that the subcomponent of is composed of iron oxide. Further, as a second subcomponent, a starting material which is one or more selected from among the eight types of oxides such as the above-mentioned nickel oxide is added. It is. Each metal oxide constituting the active ingredient may take various oxidation forms due to different valences. The type does not matter. Regarding oxides that exist in multiple oxidation forms, in addition to cases in which one of the oxidation forms exists alone in the element, cases in which multiple types of oxidation forms exist in the element together. There is also. Note that the oxidation form referred to herein includes those having non-stoichiometric compositions due to lattice defects and the like. However, the main component is usually indium oxide.
In In 2 O 3 , the first subcomponent, iron oxide, is in the oxidized form of Fe 2 O 3 (the crystal type does not matter, but it is usually α-Fe 2 O 3 ), and the second subcomponent is Fe 2 O 3 . The component nickel oxide is NiO, vanadium oxide is V 2 O 5 ,
Chromium oxide is Cr 2 O 3 , cobalt oxide is Co 3 O 4 , hafnium oxide is HfO 2 , tungsten oxide is
WO 3 , niobium oxide is Nb 2 O 5 , manganese oxide is
It is in the oxidized form MnO2 . Therefore, in this specification, when considering the proportions of components constituting an element, all oxides are converted into the oxidized form shown above. In the method for manufacturing a gas sensing element according to the present invention, it is important to select starting materials such that the proportions of the main component, first subcomponent, and second subcomponent fall within the following range. That is, the ratio of the first subcomponent to the total effective components in the sintered gas detection element is 5 to 40% by weight, and the ratio of the second subcomponent is 5% to 40% by weight.
10 to 35% by weight, with the main component being the remainder i.e.
It is important that it is between 85 and 25% by weight. This is because when the ratio of the first subcomponent or the second byproduct is outside the above range at the lower limit, the effect of addition is small, whereas when it is outside the upper limit, adverse effects occur. In addition, in this invention, in addition to the above-mentioned active ingredients, components that function as a binder or components that function as a mere filler may be added. Even in such cases, the active ingredients that are more than capable of gas detection are indium oxide, which is the main component, and primary
It falls within the scope of the present invention as long as it consists of iron oxide as a subcomponent and a second subcomponent selected from among the eight types mentioned above. In this specification, in the method for producing a gas sensing element according to the present invention, the main component in the active ingredient is indium oxide, the first subcomponent is iron oxide, and the second subcomponent is selected from the group consisting of the above eight types. The statement that it consists of at least one selected thing is precisely because
As mentioned above, this is a result of taking into consideration that components other than those exhibiting gas detection ability are often added when actually producing a gas detection element. However, even though this is stated above, it goes without saying that the scope of the present invention also falls within the scope of the present invention when a gas sensing element is manufactured by sintering only the above-mentioned effective ingredients.
It is not intended to exclude such cases. The starting materials for manufacturing can be indium oxide or iron oxide when used as a device, and any type can be used as long as it is selected from the eight types mentioned above (the desired oxidation (It may be the product itself) or may be an intermediate treatment added to the starting material if necessary. Next, examples will be described together with comparative examples. High-purity In 2 O 3 powder is used as the raw material for indium oxide, which is the main component, and each oxide is used as the raw material for iron oxide, the first subcomponent, and the oxides listed in the table below, which are the second subcomponent. High purity powder was used. These raw materials were blended in proportions such that the element composition was as shown in the table below, and after thoroughly mixing with a crusher, a fixed amount (20 mg) of mixed powder (Comparative Example 10 was indium oxide single powder) was weighed out. The gas sensitive body (sintered) was then compression molded into a cylindrical element shape with a diameter of 2 mmφ and a length of about 2 mm with platinum wire electrodes embedded therein, and fired in air for 3 hours. formed a body). A coiled heater was attached around each gas sensitive body obtained above, and the body was further covered with a wire mesh cap made of stainless steel to serve as a gas detection section. The results of investigating the gas-sensitive characteristics of each element are shown in the table below, and when the various gas-sensitive characteristics were judged comprehensively, all of the Examples were superior to the Comparative Examples. The gas sensitivity characteristics were determined by applying a constant voltage to the coiled heater to maintain the temperature of the element at a constant 450°C, while using purified air with an isobutane concentration of 0.1% by volume.
and 0.3% by volume of isobutane-containing air, respectively, and measure the electrical resistance value of the gas sensitive member.
The investigation was conducted by determining the change.
【表】【table】
この発明は、上記のように構成されているた
め、これにより得られたガス検知素子は、酸化イ
ンジウムのもつすぐれた特性を保有し、メタン、
プロパン、ブタン、一酸化炭素などの被検ガスに
接触したときに充分な抵抗値変化を示す。しか
も、適当な素子抵抗値を有しかつ充分なるガス感
度および濃度依存性(濃度分離性)を有するとと
もに湿度の影響を受けにくいものとなつている。
Since the present invention is configured as described above, the gas sensing element obtained thereby possesses the excellent characteristics of indium oxide, and methane,
Shows a sufficient change in resistance value when in contact with test gases such as propane, butane, and carbon monoxide. Moreover, it has an appropriate element resistance value, sufficient gas sensitivity and concentration dependence (concentration separability), and is not easily affected by humidity.
Claims (1)
成分中の主成分が酸化インジウム、副成分が酸化
鉄であるガス検知素子を得るにあたり、第2の副
成分として酸化ニツケル、酸化バナジウム、酸化
クロム、酸化コバルト、酸化ハフニウム、酸化タ
ングステン、酸化ニオブおよび酸化マンガンより
なる群から選ばれた少なくとも1種のものをも配
合することとし、前記有効成分中に占める主成
分、第1の副成分(酸化鉄)および第2の副成分
の割合(ただし、その算出に当たつては、酸化イ
ンジウムはIn2O3に、酸化鉄はFe2O3に、酸化ニ
ツケルはNiOに、酸化バナジウムはV2O5に、酸
化クロムはCr2O3に、酸化コバルトはCo3O4に、
酸化ハフニウムはHfO2に、酸化タングステンは
WO3に、酸化ニオブはNb2O5に、そして、酸化マ
ンガンはMnO2にそれぞれ換算される)が主成分
85〜25重量%、第1の副成分5〜40重量%、第2
の副成分10〜35重量%となるように前記各金属酸
化物の出発原料の配合量を調整することを特徴と
するガス検知素子の製法。1. In order to obtain a gas sensing element in which the main active ingredient is indium oxide and the subcomponent is iron oxide by firing the starting raw material that becomes the metal oxide, nickel oxide, vanadium oxide, and iron oxide are added as the second subcomponent. At least one selected from the group consisting of chromium, cobalt oxide, hafnium oxide, tungsten oxide, niobium oxide, and manganese oxide is also blended, and the main component and the first subcomponent ( (iron oxide) and the ratio of the second subcomponent (however, when calculating the ratio, indium oxide is converted to In 2 O 3 , iron oxide is converted to Fe 2 O 3 , nickel oxide is converted to NiO, vanadium oxide is converted to V 2 O 5 , chromium oxide to Cr 2 O 3 , cobalt oxide to Co 3 O 4 ,
Hafnium oxide becomes HfO 2 , tungsten oxide becomes
(converted to WO 3 , niobium oxide to Nb 2 O 5 , and manganese oxide to MnO 2 ) are the main components.
85-25% by weight, 5-40% by weight of the first subcomponent, the second
A method for producing a gas sensing element, comprising adjusting the blending amount of the starting materials for each of the metal oxides so that the amount of the subcomponent is 10 to 35% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP169880A JPS5698646A (en) | 1980-01-09 | 1980-01-09 | Flamable-gas detecting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP169880A JPS5698646A (en) | 1980-01-09 | 1980-01-09 | Flamable-gas detecting element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5698646A JPS5698646A (en) | 1981-08-08 |
JPS6138816B2 true JPS6138816B2 (en) | 1986-09-01 |
Family
ID=11508746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP169880A Granted JPS5698646A (en) | 1980-01-09 | 1980-01-09 | Flamable-gas detecting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5698646A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60227160A (en) * | 1984-04-25 | 1985-11-12 | Shinkosumosu Denki Kk | Carbon monoxide detecting element |
US5708233A (en) * | 1994-02-22 | 1998-01-13 | Kabushiki Kaisha Ohara | Thermoelectric semiconductor material |
WO2024161739A1 (en) * | 2023-01-30 | 2024-08-08 | Tdk株式会社 | Metal oxide semiconductor gas sensor |
-
1980
- 1980-01-09 JP JP169880A patent/JPS5698646A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5698646A (en) | 1981-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4357426A (en) | Humidity sensitive ceramics | |
US4045764A (en) | Gas-sensing material | |
US3952567A (en) | Gas sensor | |
US5047214A (en) | Smell sensing element and smell sensing device | |
US4242302A (en) | Method of making a catalytic combustion type gas detector | |
EP0114310A2 (en) | Carbon monoxide sensing element and process for manufacturing it | |
EP1135336A1 (en) | Materials for solid-state gas sensors | |
JPS6138816B2 (en) | ||
JP2004221519A (en) | Sintered compact for thermistor element and manufacturing method therefor,thermistor element and temperature sensor | |
JPS5938541B2 (en) | Flammable gas detection element | |
JPS6138818B2 (en) | ||
JPS6158776B2 (en) | ||
JPS6157571B2 (en) | ||
JPS6116931B2 (en) | ||
JPS6138815B2 (en) | ||
JPS6138817B2 (en) | ||
US4462930A (en) | Humidity sensor | |
JPS5931006B2 (en) | Flammable gas detection element | |
JPS5931005B2 (en) | Flammable gas detection element | |
JPS6116932B2 (en) | ||
JPS6157572B2 (en) | ||
JPS6327841B2 (en) | ||
JPS5928861B2 (en) | gas detection element | |
JPS5919849A (en) | Manufacture of gas detection element | |
JPS623374B2 (en) |