JPS6156852B2 - - Google Patents

Info

Publication number
JPS6156852B2
JPS6156852B2 JP54104078A JP10407879A JPS6156852B2 JP S6156852 B2 JPS6156852 B2 JP S6156852B2 JP 54104078 A JP54104078 A JP 54104078A JP 10407879 A JP10407879 A JP 10407879A JP S6156852 B2 JPS6156852 B2 JP S6156852B2
Authority
JP
Japan
Prior art keywords
superconducting
inner coil
magnet device
coil
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54104078A
Other languages
Japanese (ja)
Other versions
JPS5629309A (en
Inventor
Kotaro Hamashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP10407879A priority Critical patent/JPS5629309A/en
Publication of JPS5629309A publication Critical patent/JPS5629309A/en
Publication of JPS6156852B2 publication Critical patent/JPS6156852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 本発明は超電導マグネツト装置に関する。[Detailed description of the invention] The present invention relates to superconducting magnet devices.

超電導マグネツト装置は超電導線を銅などの抵
抗の低い安定化材に埋設する超電導導体を巻回し
たコイルを液体ヘリウムなどの極低温冷媒に浸漬
して極低温に冷却し、超電導線を超電導状態にし
ていた。マグネツトの安定な運転を確保するため
には、超電導導体の超電導線の超電導状態が何ら
かの外乱により常電導状態に転移した時に電流を
安定化材中にバイパスさせて、発熱を減少させ極
低温冷媒で冷却することにより超電導状態に復帰
させている。しかし安定化材は磁気抵抗効果のた
め高磁界下では抵抗が高くなり発熱が多くなるた
め、超電導導体の冷却面積および断面積を大きく
する必要があり、超電導マグネツト装置の寸法、
重量とも大きくしていた。また熱伝達係数を大き
くするために強制冷却を用いると熱伝達係数は流
速の関数のため流速を増加させると大きくなる
が、極低温冷媒の圧力損失は増大し、極低温冷媒
の温度上昇および冷凍機の負荷能力が増大するな
どの欠点があつた。
A superconducting magnet device embeds a superconducting wire in a low-resistance stabilizing material such as copper. A coil wound with a superconducting conductor is immersed in a cryogenic coolant such as liquid helium and cooled to an extremely low temperature, making the superconducting wire into a superconducting state. was. In order to ensure stable operation of the magnet, when the superconducting state of the superconducting wire of the superconducting conductor transitions to the normal conducting state due to some disturbance, the current is bypassed through the stabilizing material to reduce heat generation and use a cryogenic refrigerant. The superconducting state is restored by cooling. However, due to the magnetoresistive effect of the stabilizing material, the resistance increases under high magnetic fields and generates more heat, so it is necessary to increase the cooling area and cross-sectional area of the superconducting conductor, which reduces the size of the superconducting magnet device.
It was also heavier. In addition, if forced cooling is used to increase the heat transfer coefficient, the heat transfer coefficient is a function of the flow rate, so increasing the flow rate will increase the heat transfer coefficient, but the pressure loss of the cryogenic refrigerant will increase, causing the temperature of the cryogenic refrigerant to rise and freezing. There were drawbacks such as an increase in the load capacity of the machine.

本発明は低磁界下で浸漬冷却し、高磁界下で強
制冷却を併用して、安定運転を確保し、小形化
し、冷凍負荷を軽減した超電導マグネツト装置を
提供することを目的とする。
The object of the present invention is to provide a superconducting magnet device that uses immersion cooling under a low magnetic field and forced cooling under a high magnetic field to ensure stable operation, is downsized, and has a reduced refrigeration load.

以下本発明を図面に示す一実施例について説明
する。第1図および第2図において、1は超電導
導体を巻回した内側コイルであつて超電導導体に
設けた軸方向の孔に極低温冷媒を通している。2
は超電導導体を巻回し内側コイル1の外側に直列
に接続した外側コイルである。3は内側コイル1
および外側コイル2を収納する容器、3aは容器
3内を内側コイル1と外側コイル2との間を区切
りして2室にした仕切板、4は容器3内の極低温
冷媒である。
An embodiment of the present invention shown in the drawings will be described below. In FIGS. 1 and 2, reference numeral 1 denotes an inner coil around which a superconducting conductor is wound, and a cryogenic coolant is passed through an axial hole provided in the superconducting conductor. 2
is an outer coil in which a superconducting conductor is wound and connected in series to the outside of the inner coil 1. 3 is inner coil 1
and a container for storing the outer coil 2; 3a is a partition plate that divides the interior of the container 3 between the inner coil 1 and the outer coil 2 into two chambers; 4 is a cryogenic refrigerant in the container 3;

一般に超電導マグネツト装置の磁界はマグネツ
トの中心側、すなわち内側コイル1の方が高磁界
になつている。本発明は高磁界下の内側コイル1
は超電導導体の軸方向の孔に極低温冷媒を通し真
空中または極低温冷媒に浸漬して強制冷却して安
定化に必要な熱除去を行ない、低磁界下の外側コ
イル2は浸漬冷却を行なつて、超電導状態にした
ものである。従つて内側コイル1のみを強制冷却
するので、極低温冷媒の圧力損失は少なくてす
み、冷凍機の負荷能力は小さくてよい。強制冷却
は内側コイル1の超電導導体内の軸方向の孔例え
ば埋設する冷却管を通つてから噴出させて超電導
導体の外側を冷却するようにしてもよく、また強
制冷却した極低温冷媒は続いて外側コイル2の浸
漬冷却の一部として使用してもよい。このように
強制冷却と浸漬冷却とを併用することによつて超
電導マグネツト装置は重量が低減し、小形化し、
冷凍負荷を軽減することができる。また仕切板3
aは高磁界による強大な電磁力に対する補強材と
して用いることができる。なお仕切板3aをなく
し第3図のように内側コイル1および外側コイル
2の外側を浸漬冷却してもよいことは勿論であ
る。
Generally, the magnetic field of a superconducting magnet device is higher on the center side of the magnet, that is, on the inner coil 1. The present invention provides an inner coil 1 under a high magnetic field.
In this case, a cryogenic refrigerant is passed through the axial hole of the superconducting conductor in a vacuum or immersed in the cryogenic refrigerant for forced cooling to remove the heat necessary for stabilization, and the outer coil 2 under a low magnetic field is immersed in cooling. This results in a superconducting state. Therefore, since only the inner coil 1 is forcedly cooled, the pressure loss of the cryogenic refrigerant can be small, and the load capacity of the refrigerator can be small. For forced cooling, the outside of the superconducting conductor may be cooled by ejecting it through an axial hole in the superconducting conductor of the inner coil 1, for example, through a buried cooling pipe, and the forced cooling cryogenic refrigerant may be It may also be used as part of the immersion cooling of the outer coil 2. By using both forced cooling and immersion cooling in this way, the weight of the superconducting magnet device can be reduced, making it more compact.
Refrigeration load can be reduced. Also, partition plate 3
a can be used as a reinforcing material against strong electromagnetic force caused by a high magnetic field. Of course, the partition plate 3a may be omitted and the outside of the inner coil 1 and outer coil 2 may be cooled by immersion as shown in FIG.

以上のように本発明によれば超電導マグネツト
装置において、内側コイルの強制冷却と外側コイ
ルの浸漬冷却とを併用するようにしたので、内側
コイルは高磁界であつても熱伝達がよいので安定
な運転を確保し、小形化でき、冷凍負荷を軽減す
ることができるなどのすぐれた効果がある。
As described above, in a superconducting magnet device according to the present invention, forced cooling of the inner coil and immersion cooling of the outer coil are used together, so that the inner coil has good heat transfer even in a high magnetic field and is therefore stable. It has excellent effects such as ensuring operation, being able to be made smaller, and reducing the refrigeration load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導マグネツト装置の一実
施例を示す縦断面図、第2図は第1図のA−A線
に沿う横断面図、第3図は他の実施例を示す縦断
面図である。 1……内側コイル、2……外側コイル、3……
容器、3a……仕切板、4……極低温冷媒。
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the superconducting magnet device of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. 3 is a longitudinal cross-sectional view showing another embodiment. It is a diagram. 1...Inner coil, 2...Outer coil, 3...
Container, 3a... Partition plate, 4... Cryogenic refrigerant.

Claims (1)

【特許請求の範囲】 1 超電導導体を巻回した内側コイルと外側コイ
ルとを容器内に収納した超電導マグネツト装置に
おいて、前記内側コイルは超電導導体に設けた軸
方向の孔に極低温冷媒を通して強制冷却し、前記
外側コイルは極低温冷媒に浸漬冷却したことを特
徴とする超電導マグネツト装置。 2 内側コイルの強制冷却後の極低温冷媒を浸漬
冷却に用いることを特徴とする特許請求の範囲第
1項記載の超電導マグネツト装置。 3 容器は内側コイルと外側コイルとの間に仕切
板を設けたことを特徴とする特許請求の範囲第1
項記載の超電導マグネツト装置。
[Scope of Claims] 1. In a superconducting magnet device in which an inner coil and an outer coil wound with a superconducting conductor are housed in a container, the inner coil is forcedly cooled by passing a cryogenic coolant through an axial hole provided in the superconducting conductor. A superconducting magnet device, wherein the outer coil is cooled by immersion in an extremely low temperature refrigerant. 2. The superconducting magnet device according to claim 1, wherein the cryogenic refrigerant after forced cooling of the inner coil is used for immersion cooling. 3 Claim 1, characterized in that the container is provided with a partition plate between the inner coil and the outer coil.
The superconducting magnet device described in Section 1.
JP10407879A 1979-08-17 1979-08-17 Superconductive magnet device Granted JPS5629309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10407879A JPS5629309A (en) 1979-08-17 1979-08-17 Superconductive magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10407879A JPS5629309A (en) 1979-08-17 1979-08-17 Superconductive magnet device

Publications (2)

Publication Number Publication Date
JPS5629309A JPS5629309A (en) 1981-03-24
JPS6156852B2 true JPS6156852B2 (en) 1986-12-04

Family

ID=14371110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10407879A Granted JPS5629309A (en) 1979-08-17 1979-08-17 Superconductive magnet device

Country Status (1)

Country Link
JP (1) JPS5629309A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758646B2 (en) * 1984-05-25 1995-06-21 株式会社東芝 Method for manufacturing superconducting magnet device
JPS60249306A (en) * 1984-05-25 1985-12-10 Toshiba Corp Superconducting magnet
JP2637238B2 (en) * 1989-06-28 1997-08-06 株式会社東芝 Superconducting magnet device

Also Published As

Publication number Publication date
JPS5629309A (en) 1981-03-24

Similar Documents

Publication Publication Date Title
US5842348A (en) Self-contained cooling apparatus for achieving cyrogenic temperatures
US5093645A (en) Superconductive switch for conduction cooled superconductive magnet
US20130203603A1 (en) Cryocooler system and superconducting magnet apparatus having the same
US3177408A (en) Superconductor solenoid with overheat protective structure and circuitry
US5668515A (en) Superconductive magnet apparatus
JP2001244109A (en) High-temperature superconducting coil device
JPWO2014147698A1 (en) Superconducting magnet cooling method and superconducting magnet
JPS6156852B2 (en)
JP6491828B2 (en) Superconducting magnet system
JPH11248326A (en) Chiller
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
US3518591A (en) Superconducting magnet and method of operation
US3562685A (en) Foil wrapped superconducting magnet
US20150080222A1 (en) Cryogen recondensing system and superconducting magnet apparatus including the same
KR101823379B1 (en) Cooling SystemSuperconducting Electromagnet for Magnetic Levitation Train
CN220306059U (en) Pluggable nitrogen fixation cooling high-temperature superconducting magnet
US3530682A (en) Foil wrapped superconducting magnet
US5057645A (en) Low heat loss lead interface for cryogenic devices
JP2635165B2 (en) Forced cooling superconducting coil device
JP3200198B2 (en) Superconducting magnet
JPH07111212A (en) Superconducting magnet device
JPS61125002A (en) Forcibly cooled superconductive coil device
JP3181345B2 (en) Superconducting current lead
JPH05275755A (en) Cryostat
JPH08195309A (en) Superconducting current lead