JP2635165B2 - Forced cooling superconducting coil device - Google Patents

Forced cooling superconducting coil device

Info

Publication number
JP2635165B2
JP2635165B2 JP1107661A JP10766189A JP2635165B2 JP 2635165 B2 JP2635165 B2 JP 2635165B2 JP 1107661 A JP1107661 A JP 1107661A JP 10766189 A JP10766189 A JP 10766189A JP 2635165 B2 JP2635165 B2 JP 2635165B2
Authority
JP
Japan
Prior art keywords
superconducting coil
pipe
cooling
storage tank
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1107661A
Other languages
Japanese (ja)
Other versions
JPH02288207A (en
Inventor
好寿 堀田
直文 多田
文雄 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1107661A priority Critical patent/JP2635165B2/en
Publication of JPH02288207A publication Critical patent/JPH02288207A/en
Application granted granted Critical
Publication of JP2635165B2 publication Critical patent/JP2635165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンジツトの内部に超電導線が埋込まれ、コ
ンジツト内部に冷媒を流す強制冷却方式の超電導コイル
に係り、特に、超電導コイルの冷却装置に関する。
Description: TECHNICAL FIELD The present invention relates to a superconducting coil of a forced cooling type in which a superconducting wire is embedded in a conduit and a refrigerant flows in the conduit, and particularly to a cooling device for a superconducting coil. About.

〔従来の技術〕[Conventional technology]

超電導コイルを冷却する方法には大きくわけてコイル
を直接冷媒中に浸漬して冷却する浸漬冷却法と金属製コ
ンジツトの内部に超電導線が挿入された超電導導体を巻
回してコイルをつくり、コンジツトの内部の超電導線と
間隙に冷媒を強制的に循環して冷却する強制冷却方式が
ある。浸漬冷却の場合には冷媒中にコイルが浸漬されて
いるため、コイルの一部分が常電導状態になつても、周
囲の冷媒によつて冷却され、通電電流を下げると超電導
特性が回復し、安定性は大きいが、超電導コイル及び冷
媒を収納するクライオスタツトが必要である。又、超電
導コイルの電気絶縁は超電導線の外表面に接触してお
り、特に、大型超電導コイルでは間欠的な絶縁スペーサ
で裸の超電導導体間を接触させており高耐電圧のものが
得られない欠点がある。これに対して強制冷却コイルの
場合には、超電導導体自身が冷媒流路となるため、冷媒
を貯めるクライオスタツトは不要で、周囲には単に真空
容器があれば良く、又、絶縁も導体表面全面にわたつて
容易にすることができるので絶縁材の選定によつて耐電
圧を高めることが可能であり、冷媒がコンジツト内部の
超電導線の周囲を強制的に流れるため、冷却特性が向上
するなどの利点がある。そのため、核融合炉用ポロイダ
ルコイルのような大型で複雑な形状をもち、しかも、交
流損失や高電圧を発生する超電導コイルに最適であり、
各方面から注目され開発がなされている。従来の強制冷
却の一例を第3図及び第4図を参照して説明する。第3
図は強制冷却超電導導体の断面図であり、超電導導体1
はステンレス製の角形パイプ(コンジツト)2の内側の
冷媒通路4内にこの通路にそつて超電導線3を配したも
ので、冷却通路4にヘリウムを流して超電導線3が超電
導状態を呈するまで冷却する。
The method of cooling a superconducting coil is roughly divided into a immersion cooling method in which the coil is directly immersed in a cooling medium and a cooling method, and a coil formed by winding a superconducting conductor with a superconducting wire inserted inside a metal conduit. There is a forced cooling system in which a coolant is forcibly circulated through an internal superconducting wire and a gap for cooling. In the case of immersion cooling, since the coil is immersed in the refrigerant, even if a part of the coil is in the normal conduction state, it is cooled by the surrounding refrigerant, and when the conduction current is reduced, the superconducting characteristics are restored and the coil becomes stable. Although it has high performance, a cryostat for containing a superconducting coil and a refrigerant is required. In addition, the electrical insulation of the superconducting coil is in contact with the outer surface of the superconducting wire, and especially in the case of a large superconducting coil, an intermittent insulating spacer makes contact between bare superconducting conductors, and a high withstand voltage cannot be obtained. There are drawbacks. On the other hand, in the case of the forced cooling coil, since the superconducting conductor itself serves as a coolant flow path, there is no need for a cryostat for storing the coolant. It is possible to increase the withstand voltage by selecting an insulating material, and the cooling characteristics are improved because the refrigerant is forced to flow around the superconducting wires inside the conduit. There are advantages. Therefore, it has a large and complicated shape like a poloidal coil for a fusion reactor, and is most suitable for a superconducting coil that generates AC loss and high voltage.
Attention has been drawn from various fields and development has been made. An example of conventional forced cooling will be described with reference to FIGS. 3 and 4. FIG. Third
The figure is a cross-sectional view of the forced cooling superconductor,
The superconducting wire 3 is disposed inside a coolant passage 4 inside a stainless steel square pipe (conduit) 2 along this passage, and helium is flowed through the cooling passage 4 to cool the superconducting wire 3 until the superconducting wire 3 exhibits a superconducting state. I do.

第4図はこのような超電導導体1を用いた強制冷却コ
イルの一般的な冷却装置を示す。主な構成機器は循環圧
縮機5,液体窒素槽6,液体ヘリウム槽7、及び、向流型熱
交換器8等を収納する収納容器9,超電導コイル10を収納
する真空容器11、及び、それを結ぶ冷媒移送管12a,12b
から成つており、次のような方法で冷却が行なわれる。
すなわち、冷媒となるヘリウムガスは循環圧縮機5によ
り圧縮されて熱交換器収納容器9の内部に導かれ、液体
窒素槽6で約80゜Kに冷却され熱を熱交換器群8で戻り
ガスと熱交換して液体ヘリウム槽7に入り、そこで5Kに
冷却されて超臨界圧ヘリウムとなり、ヘリウム移送管12
aを介して真空容器11に入り、ターミナルボツクス13で
励磁電源15からくる電流リード線14と合流し、超電導コ
イル10を冷却し、戻りガスは戻りヘリウム移送管12bを
介して、再び、熱交換器収納容器9に入つて、ジユール
トムソン弁16でJ−T膨張して液体となり液体ヘリウム
槽7に貯る。ここで蒸発したガス、及び、液化しなかつ
たガスは入つてくるガスと熱交換しながら戻り配管を介
して循環圧縮機5に戻り、これをくり返しながら冷却す
る。
FIG. 4 shows a general cooling device of a forced cooling coil using such a superconducting conductor 1. The main components are a circulating compressor 5, a liquid nitrogen tank 6, a liquid helium tank 7, a storage container 9 for storing a counter-current heat exchanger 8, etc., a vacuum container 11 for storing a superconducting coil 10, and the like. Transfer pipes 12a, 12b
The cooling is performed in the following manner.
That is, the helium gas serving as the refrigerant is compressed by the circulating compressor 5 and guided to the inside of the heat exchanger storage container 9, cooled to about 80 ° K in the liquid nitrogen tank 6, and returned to the heat exchanger group 8 by the heat exchanger group 8. Exchanges heat with the liquid helium tank 7, where it is cooled to 5K to become supercritical helium, and the helium transfer pipe 12
a, enters the vacuum vessel 11 via the terminal box 13, joins the current lead 14 coming from the excitation power supply 15 at the terminal box 13, cools the superconducting coil 10, and returns the heat gas again through the return helium transfer pipe 12b. After entering into the container housing 9, it is JT-expanded by the Jew-Thomson valve 16 to become a liquid and stored in the liquid helium tank 7. The gas evaporated here and the gas that has not been liquefied return to the circulating compressor 5 through the return pipe while exchanging heat with the incoming gas, and cool it while repeating it.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は、冷媒発生装置の収納容器9と超電導
コイルが収納された真空容器11の距離が長いため、ヒー
トリークにより冷媒温度が上昇すること、電流リード14
a,14bからの熱侵入による熱損失が大きく、ターミナル
ボツクス13による熱損失が大きく、ターミナルボツクス
13で合流する冷媒温度を上昇させる。又、従来の装置で
超電導コイルを使用する場合、冷媒が狭隘なコンジツト
内の間隙を流れるため、流れ抵抗が著しく高くなること
で、特に、常温から冷却する初期冷却時には圧力損失が
大きく冷媒をほとんど流すことができず冷却に長時間を
要する欠点があつた。
In the above prior art, since the distance between the storage container 9 of the refrigerant generator and the vacuum container 11 storing the superconducting coil is long, the refrigerant temperature rises due to heat leak,
Large heat loss due to heat penetration from a, 14b, large heat loss due to terminal box 13,
At 13, the temperature of the refrigerant to be joined is increased. In addition, when a superconducting coil is used in a conventional apparatus, since the refrigerant flows through a gap in a narrow conduit, the flow resistance becomes extremely high. There was a drawback that it could not flow and required a long time for cooling.

このような欠点を補う方法として真空容器内に冷媒貯
槽を設け、外部からの熱の侵入を軽減する方法として特
開昭59−117281号公報が開示されているが、この方法で
は、電流リード、及び、コイル本体冷却用の冷媒は冷却
することができるが、常温からの予冷却ができないた
め、コイル本体冷却に長時間を要する問題は解決されな
かつた。
As a method of compensating for such a drawback, a method of providing a refrigerant storage tank in a vacuum vessel and reducing the intrusion of heat from the outside is disclosed in JP-A-59-117281. In addition, although the cooling medium for cooling the coil body can be cooled, the problem that it takes a long time to cool the coil body has not been solved because precooling from room temperature cannot be performed.

本発明の目的は、電流リード及び、超電導コイル本体
冷却用配管を冷却し、外部からの熱の侵入による冷媒の
温度上昇を防ぐと共に、超電導コイルに接して予冷却す
る配管をも冷却し、初期冷却における冷却時間を短縮す
る強制冷却超電導装置を提供することにある。
An object of the present invention is to cool a current lead and a superconducting coil main body cooling pipe to prevent a rise in the temperature of the refrigerant due to the intrusion of heat from the outside, and also to cool a pipe that comes into contact with the superconducting coil and pre-cools the pipe. An object of the present invention is to provide a forced cooling superconducting device that shortens a cooling time in cooling.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、電流リード、及び、超電導コイル本体を
冷却するために真空容器内に設置した冷媒貯槽、及び、
超電導コイル本体に接し、超電導コイルを予冷却する配
管の両者に外部冷媒貯槽より分岐して供給することによ
り達成される。
The object is to provide a current lead, and a refrigerant storage tank installed in a vacuum vessel to cool the superconducting coil body, and
This is achieved by branching and supplying from an external refrigerant storage tank both pipes that are in contact with the superconducting coil main body and precool the superconducting coil.

〔作用〕[Action]

強制冷却コイル用超電導導体の圧力損失が大きいため
冷媒の流れが悪く、予冷時間が長くなる問題を解決する
ため、超電導コイルに接して冷媒配管を設置し、コイル
を外部から冷却することにより超電導導体内の超臨界圧
ヘリウムの流れを流れやすくし、常温からの冷却時間を
短縮することができる。
In order to solve the problem that the refrigerant flow is poor due to the large pressure loss of the superconducting conductor for the forced cooling coil and the pre-cooling time is prolonged, a refrigerant pipe is installed in contact with the superconducting coil, and the coil is cooled from the outside so that the superconducting conductor is cooled. The flow of supercritical helium in the inside can be made easier to flow, and the cooling time from room temperature can be shortened.

又、電流リード、及び、冷却配管からの侵入熱を軽減
するためには、電流リード、及び、冷却配管を冷却する
冷媒貯槽に外部より効率よく冷媒を供給する配管を設け
ることにより達成できる。又、この操作は、上記冷媒貯
槽に入る上流側、及び、コイルに接して予冷却する配管
の超電導コイル上流側にそれぞれ流量調節弁を設けて調
節することにより、効果的に冷却することができる。
In addition, in order to reduce heat intrusion from the current lead and the cooling pipe, it can be achieved by providing a pipe for efficiently supplying a refrigerant from the outside to the current lead and a refrigerant storage tank for cooling the cooling pipe. In addition, this operation can be effectively cooled by providing and adjusting the flow rate control valves on the upstream side of the refrigerant storage tank and on the upstream side of the superconducting coil of the pipe that pre-cools in contact with the coil. .

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。本
装置は、冷媒発生装置17で発生する超臨界圧ヘリウム18
を強制冷却超電導コイル10に移送する配管19a,超電導コ
イルに電流を供給する電源15、及び、電流リード14a,14
b、電流リード及び冷媒配管19a、が貫通している冷媒貯
槽20、さらに、超電導コイル10に接して外部より冷却す
る予冷却用配管27等からなつている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. This device is equipped with supercritical helium 18
19a for transferring the superconducting coil to the forced cooling superconducting coil 10, a power supply 15 for supplying a current to the superconducting coil, and current leads 14a, 14
b, a refrigerant storage tank 20 through which the current lead and the refrigerant pipe 19a penetrate, and a pre-cooling pipe 27 that contacts the superconducting coil 10 and cools from outside.

冷媒貯槽20及び予冷却配管27への液体ヘリウムの供給
は外部液体ヘリウムデユワー21から配管23によつて導び
かれ、真空容器内で分岐し、流量はそれぞれの配管にあ
る流量調節用弁25,26で調節される。
The supply of liquid helium to the refrigerant storage tank 20 and the pre-cooling pipe 27 is guided from the external liquid helium dewar 21 by a pipe 23, branched in a vacuum vessel, and the flow rate is controlled by a flow control valve 25 in each pipe. , Adjusted at 26.

一方、冷媒貯槽20、及び、コイル予冷却後の蒸発ガス
は弁29を介してヘリウム回収装置30に接続されている。
On the other hand, the refrigerant storage tank 20 and the evaporative gas after the coil pre-cooling are connected to a helium recovery device 30 via a valve 29.

次に、本実施例の動作について説明する。冷媒発生装
置17から供給されたヘリウムガスは配管19aを通じター
ミナルボツクス13に入り、その後、超電導コイルを冷却
した後、戻り配管19bを通つて冷媒発生装置17に戻り、
これをくり返す。しかし、常温からの初期冷却にはコイ
ル内の圧力損失等により長時間を要するため、約20Kま
では冷媒貯槽への弁26を閉じ、予冷却用弁25を開いてコ
イル導体を外側から冷却し、超電導コイル内の超臨界圧
ヘリウムを流れやすくして冷却を進める。
Next, the operation of the present embodiment will be described. The helium gas supplied from the refrigerant generator 17 enters the terminal box 13 through the pipe 19a, and after cooling the superconducting coil, returns to the refrigerant generator 17 through the return pipe 19b.
Repeat this. However, initial cooling from room temperature takes a long time due to pressure loss in the coil, etc., so up to about 20K, close the valve 26 to the refrigerant storage tank and open the pre-cooling valve 25 to cool the coil conductor from the outside. Then, the supercritical helium in the superconducting coil is made to flow easily to promote cooling.

超電導コイル温度が20K以下になつたら、マグネツト
予冷却用弁25を閉じ、冷媒貯槽への弁26を開いて貯槽20
に液体ヘリウムを貯め、電流リードよりの侵入熱、及
び、超臨界圧ヘリウムの外部からのヒートリークによる
温度上昇をおさえる。
When the temperature of the superconducting coil drops below 20K, the magnet pre-cooling valve 25 is closed and the valve 26 to the refrigerant storage tank is opened to open the storage tank 20.
Liquid helium is stored in the helium to suppress heat intrusion from the current lead and temperature rise due to heat leak from the outside of the supercritical helium.

コイル温度が超電導状態になつたら、励磁電源15より
通電し励磁を行う。励磁中電流リードの温度上昇は、貯
槽20内の液体ヘリウム、及び、ガスヘリウムによつてお
さえる。
When the coil temperature reaches a superconducting state, excitation is performed by supplying power from the excitation power supply 15. The temperature rise of the current lead during the excitation is suppressed by the liquid helium and gas helium in the storage tank 20.

一辺が7mmの角形ステンレスコンジツトの中に超電導
線をボイド率50%で挿入した流さ34mの超電導導体を内
直径100mmのボビン状に巻回した超電導コイルを製作
し、コイルに超臨界圧へリウムを循環させると共に、外
部液体ヘリウムデユワ21から液体ヘリウムを、内部貯槽
20、及び、超電導コイル10に接する配管27に流して冷却
を行つた。
A superconducting coil with a superconducting wire inserted at a void rate of 50% in a square stainless steel conduit with a side length of 7 mm and wound in a bobbin shape with an inner diameter of 100 mm was manufactured. And circulates liquid helium from the external liquid helium dewar 21 to the internal storage tank.
20 and a pipe 27 in contact with the superconducting coil 10 for cooling.

その結果、本発明の方法では超電導コイル導体内を流
れるヘリウムガスの流量は、従来の超電導コイルに接す
る配管27がない場合に比べ、約20倍多く流すことがで
き、超電導状態になるまでの冷却時間は上記と同一の条
件で約10%に短縮することができた。
As a result, in the method of the present invention, the flow rate of the helium gas flowing in the superconducting coil conductor can be increased by about 20 times compared to the case where there is no pipe 27 in contact with the conventional superconducting coil, and the cooling until the superconducting state is reached. The time could be reduced to about 10% under the same conditions as above.

又、超電導コイルが超電導性を示す温度になつてから
超電導コイルに、圧力5atm,質量流量3g/sの超臨界圧ヘ
リウムを流しておき、内部液体ヘリウム貯槽に液体ヘリ
ウムを貯めた状態と、貯めていない状態について、直流
安定化電源15より励磁した。その結果、液体ヘリウムを
貯めていない場合には電流リードの温度が上昇すると共
に、冷媒温度も上昇し、コイルに流れる冷媒の質量を5g
/sまで増加させても超電導コイル10は、励磁電流110Aで
常電導転移してしまう。それに対し、液体ヘリウムを貯
めた状態で励磁した場合には、超電導コイルに3g/sの流
量を流している状態で、200Aまで励磁しても電流リード
の温度上昇もなく常電導転移は起こさず安定に励磁する
ことができた。
Also, after the superconducting coil has reached a temperature at which superconductivity is reached, supercritical helium with a pressure of 5 atm and a mass flow rate of 3 g / s is passed through the superconducting coil, and the liquid helium is stored in the internal liquid helium storage tank. In the state where no power was supplied, the DC stabilized power supply 15 was excited. As a result, when liquid helium is not stored, the temperature of the current lead rises and the refrigerant temperature also rises, and the mass of the refrigerant flowing through the coil decreases by 5 g.
Even when the current is increased to / s, the superconducting coil 10 undergoes normal conduction transition at an exciting current of 110A. On the other hand, when excited with liquid helium stored, when the flow rate of 3 g / s was passed through the superconducting coil, even when excited to 200 A, the temperature of the current lead did not rise and the normal conduction transition did not occur. Excitation was stable.

本発明の他の実施例を第2図により説明する。第2図
は要部のみを示すもので、図示されない部分は第1図と
同様である。この実施例では、冷媒貯槽20に入る配管の
上流側に二ケの自動弁31,32を設け、貯槽に近い弁32
は、貯槽内に設置した液面センサ33により液面を検知し
て開閉するもので、本実施例では槽の有効高さの90%で
閉じ、70%で開くようにした。
Another embodiment of the present invention will be described with reference to FIG. FIG. 2 shows only the main parts, and the parts not shown are the same as those in FIG. In this embodiment, two automatic valves 31 and 32 are provided on the upstream side of the pipe entering the refrigerant storage tank 20, and a valve 32 close to the storage tank is provided.
Is opened and closed by detecting the liquid level by a liquid level sensor 33 installed in the storage tank. In this embodiment, the tank is closed at 90% of the effective height of the tank and opened at 70%.

又、貯槽から遠い自動弁31は、本配管と分岐して超電
導コイルを外部より冷却する配管に設置した自動弁34と
共に、超電導コイルに設置した温度センサ35の温度を検
知して開閉するもので、この実施例では、超電導コイル
の温度を20Kに設定し、それより高い時は自動弁34が開,
31は閉,低い時はその逆になるようにした。
In addition, the automatic valve 31 far from the storage tank opens and closes by detecting the temperature of the temperature sensor 35 installed on the superconducting coil, together with the automatic valve 34 installed on the pipe that branches off from the main pipe and cools the superconducting coil from the outside. However, in this embodiment, the temperature of the superconducting coil is set to 20K, and when it is higher than that, the automatic valve 34 is opened,
31 was closed and vice versa when low.

その結果、予冷却の間、及び、励磁中、弁の操作をす
る必要がなく、安定にかつ経済的に運転することができ
た。
As a result, during pre-cooling and during excitation, there was no need to operate the valve, and stable and economical operation was possible.

なお、本発明はこれらの実施例に制限されることな
く、検知器の設定など各種変形が本発明の範囲を逸脱す
ることなく考えられることは云うまでもない。
It is needless to say that the present invention is not limited to these embodiments, and various modifications such as setting of a detector can be considered without departing from the scope of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明によれば、真空容器内の液体ヘリウムの冷媒貯
槽により超臨界圧ヘリウムの配管および電流リードを介
して真空容器外からの熱侵入を低減し、かつ超電導コイ
ルの予冷却のために液体ヘリウムを使用し超臨界圧ヘリ
ウムを使用しないため、超臨界圧ヘリウムの絶対量と消
費量を低減できるので、超臨界圧ヘリウムの発生装置を
小型化できる。更に、超臨界圧ヘリウムの発生装置の能
力と無関係に超電導導体の予冷却に対して十分な量の液
体ヘリウムを使用することができる。
According to the present invention, a liquid helium refrigerant storage tank in a vacuum vessel reduces heat intrusion from outside the vacuum vessel through supercritical pressure helium piping and current leads, and uses liquid helium for pre-cooling of a superconducting coil. Since supercritical pressure helium is not used and the absolute amount and consumption of supercritical pressure helium can be reduced, the supercritical pressure helium generator can be downsized. In addition, a sufficient amount of liquid helium can be used for pre-cooling the superconductor regardless of the capability of the supercritical pressure helium generator.

又、本発明によれば、予冷却用の冷媒の供給を、液面
センサ及び温度センサと連動させて自動化できるので安
定に、かつ、経済的に運転が可能である。
Further, according to the present invention, the supply of the refrigerant for pre-cooling can be automated in conjunction with the liquid level sensor and the temperature sensor, so that stable and economical operation is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例を示す超電導コイル装置の
系統図、第2図は本発明の他の実施例を示す系統図、第
3図は本発明に使用される典型的な強制冷却超電導導体
の断面図、第4図は従来の強制冷却方式の例を示す系統
図である。 1……強制冷却超電導導体、2……金属性コンジツト、
3……超電導線、4……冷媒流路、5……循環圧縮機、
6……液体窒素槽、7……液体ヘリウム槽、8……熱交
換器。
FIG. 1 is a system diagram of a superconducting coil device showing one embodiment of the present invention, FIG. 2 is a system diagram showing another embodiment of the present invention, and FIG. 3 is a typical forcing used in the present invention. FIG. 4 is a system diagram showing an example of a conventional forced cooling system. 1 ... forced cooling superconducting conductor, 2 ... metallic conduit,
3 ... superconducting wire, 4 ... refrigerant channel, 5 ... circulating compressor,
6 ... liquid nitrogen tank, 7 ... liquid helium tank, 8 ... heat exchanger.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超臨界圧ヘリウムを発生する発生装置と、 真空容器と、 該真空容器内に設けられ強制冷却超電導導体で巻回され
た超電導コイルと、 前記発生装置から前記強制冷却超電導導体へ前記超臨界
圧ヘリウムを供給する配管と、 前記超電導コイルに電流を供給するための電流リード
と、 前記真空容器内に設けられ前記配管と前記電流リードと
を冷却する冷媒貯槽と、 液体ヘリウムを前記冷媒貯槽へ供給する分岐配管を有し
かつ前記超電導コイルと接して液体ヘリウムを用いて前
記超電導コイルを予冷却する予冷配管とを具備すること
を特徴とする強制冷却型超電導コイル装置。
1. A generator for generating supercritical helium, a vacuum vessel, a superconducting coil provided in the vacuum vessel and wound by a forced cooling superconductor, and from the generator to the forced cooling superconductor. A pipe for supplying the supercritical pressure helium; a current lead for supplying a current to the superconducting coil; a refrigerant storage tank provided in the vacuum vessel to cool the pipe and the current lead; A forced cooling type superconducting coil device, comprising: a precooling pipe having a branch pipe for supplying to the refrigerant storage tank and precooling the superconducting coil using liquid helium in contact with the superconducting coil.
【請求項2】請求項1に記載の強制冷却型超電導コイル
装置において、 前記予冷配管の前記分岐配管上に設けた二ケの弁と、前
記予冷配管の前記分岐配管より前記超電導コイル側に設
けた弁とを有し、そのうち前記冷媒貯槽に近い前記分岐
配管上の弁は、前記冷媒貯槽の液面の高さに基づいて開
閉し、前記冷却貯槽から遠い前記分岐配管上の弁および
前記予冷配管の前記分岐配管より前記超電導コイル側に
設けた弁は、前記強制冷却超電導導体の温度に基づいて
開閉することを特徴とする強制冷却型超電導コイル装
置。
2. The forced cooling type superconducting coil device according to claim 1, wherein two valves provided on the branch pipe of the precooling pipe, and a valve provided on the superconducting coil side of the branch pipe of the precooling pipe. A valve on the branch pipe close to the refrigerant storage tank, which opens and closes based on the liquid level of the refrigerant storage tank, and a valve on the branch pipe far from the cooling storage tank and the pre-cooling. A forced cooling type superconducting coil device, wherein a valve provided on the side of the superconducting coil from the branch pipe of the pipe opens and closes based on a temperature of the forced cooling superconducting conductor.
JP1107661A 1989-04-28 1989-04-28 Forced cooling superconducting coil device Expired - Lifetime JP2635165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1107661A JP2635165B2 (en) 1989-04-28 1989-04-28 Forced cooling superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1107661A JP2635165B2 (en) 1989-04-28 1989-04-28 Forced cooling superconducting coil device

Publications (2)

Publication Number Publication Date
JPH02288207A JPH02288207A (en) 1990-11-28
JP2635165B2 true JP2635165B2 (en) 1997-07-30

Family

ID=14464816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1107661A Expired - Lifetime JP2635165B2 (en) 1989-04-28 1989-04-28 Forced cooling superconducting coil device

Country Status (1)

Country Link
JP (1) JP2635165B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601593B1 (en) * 2015-03-11 2016-03-09 한국기계연구원 System and method for superconducting fault current limiter recovery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593001B2 (en) * 1991-01-23 1997-03-19 株式会社東芝 Superconducting coil device
JP2008116171A (en) * 2006-11-07 2008-05-22 Chubu Electric Power Co Inc Gas heat transfer device and superconductive device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100406A (en) * 1983-11-05 1985-06-04 Hitachi Ltd Superconductive device
JPS6123306A (en) * 1984-07-12 1986-01-31 Hitachi Ltd Cooling device of superconductive coil
JPS61179508A (en) * 1985-02-05 1986-08-12 Hitachi Ltd Forced cooling superconductive coil device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100406A (en) * 1983-11-05 1985-06-04 Hitachi Ltd Superconductive device
JPS6123306A (en) * 1984-07-12 1986-01-31 Hitachi Ltd Cooling device of superconductive coil
JPS61179508A (en) * 1985-02-05 1986-08-12 Hitachi Ltd Forced cooling superconductive coil device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601593B1 (en) * 2015-03-11 2016-03-09 한국기계연구원 System and method for superconducting fault current limiter recovery

Also Published As

Publication number Publication date
JPH02288207A (en) 1990-11-28

Similar Documents

Publication Publication Date Title
JPH0571122B2 (en)
US7260941B2 (en) Superconductor device having superconductive magnet and refrigeration unit
JPS607396B2 (en) superconducting device
WO1992022077A1 (en) Method and apparatus for cooling oxide superconductor coil
JP6616717B2 (en) Cryogenic cooling device and cryogenic cooling method
JP2635165B2 (en) Forced cooling superconducting coil device
JP2009243837A (en) Very low temperature cooling device
JPH10335137A (en) Cooling method and conducting method for superconductor
JPH07142234A (en) Apparatus for cooling cryogenic-temperature superconducting coil
JPS6123306A (en) Cooling device of superconductive coil
JPH10275719A (en) Method for cooling superconductor
JPS61179508A (en) Forced cooling superconductive coil device
JPS61125002A (en) Forcibly cooled superconductive coil device
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
US20200076260A1 (en) Machine coil for an electric machine
Oshikiri et al. 21.1 T superconducting magnet with 50 mm clear bore
JP2515813B2 (en) Current lead for superconducting equipment
Hanse et al. Cryogenics for an HTS degaussing system demonstrator
KR101366929B1 (en) Super conducting electric power generation system
KR20010097207A (en) High temperature superconducting magnet system
Sato et al. Stability of superconducting magnet indirectly cooled by He II
JPH08195309A (en) Superconducting current lead
Wake et al. 13.4 T generation by superfluid cooling
JPH0964426A (en) Vacuum vessel
JPH0439909A (en) Superconducting magnet