JPS6156848B2 - - Google Patents

Info

Publication number
JPS6156848B2
JPS6156848B2 JP4501279A JP4501279A JPS6156848B2 JP S6156848 B2 JPS6156848 B2 JP S6156848B2 JP 4501279 A JP4501279 A JP 4501279A JP 4501279 A JP4501279 A JP 4501279A JP S6156848 B2 JPS6156848 B2 JP S6156848B2
Authority
JP
Japan
Prior art keywords
heat treatment
insulating layer
diffusion heat
superconducting
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4501279A
Other languages
Japanese (ja)
Other versions
JPS55138209A (en
Inventor
Yasuzo Tanaka
Itaru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4501279A priority Critical patent/JPS55138209A/en
Publication of JPS55138209A publication Critical patent/JPS55138209A/en
Publication of JPS6156848B2 publication Critical patent/JPS6156848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2819Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 本発明は超電導マグネツトの改良に係り、特に
未反応超電導複合線の外周に設けた絶縁性物質に
よる絶縁層に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in superconducting magnets, and particularly to an insulating layer made of an insulating material provided around the outer periphery of an unreacted superconducting composite wire.

従来超電導マグネツトを形成するための絶縁被
覆を施した反応超電導複合線1は例えば第1図に
示す如くCuSn合金マトリツクスからなるキヤリ
アー金属2の中に複数本のニオブからなるフイラ
メント3を埋込んだ未反応超電導複合線の外周に
ガラスロービングの如き絶縁性物質を巻付け絶縁
層4を設けているものである。
Conventionally, a reactive superconducting composite wire 1 coated with an insulating coating for forming a superconducting magnet is, for example, a composite wire 1 in which a plurality of filaments 3 made of niobium are embedded in a carrier metal 2 made of a CuSn alloy matrix, as shown in FIG. An insulating layer 4 is provided by wrapping an insulating material such as glass roving around the outer periphery of the reactive superconducting composite wire.

而してこの複合線1を巻枠に巻線した後、拡散
熱処理を行うことによつて、第2図に示す如く前
記のキヤリアー金属2とフイラメント3との界面
に化合物超電導体5を形成して化合物超電導マグ
ネツトをうるものである。
After winding this composite wire 1 around a winding frame, a diffusion heat treatment is performed to form a compound superconductor 5 at the interface between the carrier metal 2 and the filament 3, as shown in FIG. A compound superconducting magnet can be obtained using this method.

然しながらこの拡散熱処理温度は通常600〜900
℃にて行われるため前記の絶縁層即ちガラス繊維
は容易に軟化し、この軟化したガラスが溶融して
流れ出し、第2図に示す如く接触せる絶縁層相互
ははみ出し除去されるような構造となり巻線はキ
ヤリアー金属2のみにて接触するようになる。従
つて電気的に短絡を生じ、超電導マグネツトを形
成することが出来ないものであつた。
However, this diffusion heat treatment temperature is usually 600 to 900
℃, the insulating layer, that is, the glass fiber, is easily softened, and this softened glass melts and flows out, resulting in a structure in which the insulating layers that are in contact with each other are extruded and removed, as shown in Figure 2, and the winding is completed. The wires come into contact only at the carrier metal 2. Therefore, an electrical short circuit occurs and a superconducting magnet cannot be formed.

又前記とは逆に複合線の絶縁層として拡散熱処
理温度にては全く軟化しない高融点の絶縁性物質
にて形成した場合には、複合線相互が全く融着し
ないため拡散熱処理を行つた後の巻線が何等かの
原因によつて移動を生じ、ぐずぐずとなり不安定
な超電導マグネツトとなり大きな問題となつてい
るものである。
Contrary to the above, if the insulating layer of the composite wire is made of an insulating material with a high melting point that does not soften at all at the diffusion heat treatment temperature, the composite wires will not be fused to each other at all, so after the diffusion heat treatment This is a major problem as the windings of the magnet move for some reason, causing the superconducting magnet to become sluggish and unstable.

本発明はかかる欠点を改善せんとして鋭意研究
を行つた結果、未反応超電導複合線の外周に設け
る絶縁層を、拡散熱処理を行うも軟化流出するこ
とのない絶縁性物質にて形成せる超電導マグネツ
トを見出したものである。即ち本発明は超電導化
合物の構成元素の内融点の低い方の金属元素(A)を
含有するキヤリアー金属中に、上記超電導化合物
の構成元素の内融点の高い方の金属元素(B)のフイ
ラメントを複数本埋込んだ未反応超電導複合線の
外周に絶縁層を設けた絶縁層付未反応超電導複合
線を巻線後、拡散熱処理を行い該フイラメントと
キヤリアー金属との界面に化合物超電導体を形成
せしめる超電導マグネツトにおいて、該絶縁層を
拡散熱処理温度以上の軟化温度を有する絶縁性物
質を10〜90体積%含有せるガラス繊維層にて形成
するか又はガラス繊維層と拡散熱処理温度以上の
軟化点を有する絶縁性物質層とを交互に設けて形
成したものである。
As a result of intensive research aimed at improving these drawbacks, the present invention has developed a superconducting magnet in which the insulating layer provided around the outer periphery of the unreacted superconducting composite wire is formed of an insulating material that does not soften or flow out even when subjected to diffusion heat treatment. This is what I found. That is, the present invention includes a carrier metal containing a metal element (A) having a lower internal melting point among the constituent elements of the superconducting compound, and a filament of a metal element (B) having a higher internal melting point among the constituent elements of the superconducting compound. After winding an unreacted superconducting composite wire with an insulating layer provided with an insulating layer on the outer periphery of a plurality of embedded unreacted superconducting composite wires, diffusion heat treatment is performed to form a compound superconductor at the interface between the filament and the carrier metal. In the superconducting magnet, the insulating layer is formed of a glass fiber layer containing 10 to 90% by volume of an insulating material having a softening temperature higher than the diffusion heat treatment temperature, or a glass fiber layer having a softening point higher than the diffusion heat treatment temperature. It is formed by alternately providing layers of insulating material.

本発明の1例を図面にもとづき詳細に説明す
る。第3図に示す如くCuSn合金マトリツクスか
らなるキヤリアー金属2の中に複数本のニオブか
らなるフイラメント3を埋込んだ未反応超電導複
合線の外周にガラス繊維50体積%の石英を混紡し
た絶縁性テープ6を巻付けて絶縁層付非超電導複
合線7を得た。この複合線7を巻枠に巻線し約
700℃において拡散熱処理を行つたところ第4図
に示す如く、上記テープ6中のガラスのみが拡散
熱処理中に軟化し溶融して巻線の空隙部に浸入す
るが、石英は拡散熱処理温度にては軟化せず、熱
処理前の形態を維持するため優れた絶縁性を有す
るものである。
An example of the present invention will be explained in detail based on the drawings. As shown in Fig. 3, an insulating tape made by blending quartz with 50% by volume of glass fibers around the outer periphery of an unreacted superconducting composite wire in which a plurality of filaments 3 made of niobium are embedded in a carrier metal 2 made of a CuSn alloy matrix. 6 was wound to obtain a non-superconducting composite wire 7 with an insulating layer. This composite wire 7 is wound around a winding frame and approximately
When diffusion heat treatment was performed at 700°C, as shown in Fig. 4, only the glass in the tape 6 softened and melted during the diffusion heat treatment and penetrated into the voids of the winding, but quartz did not melt at the diffusion heat treatment temperature. does not soften and maintains its shape before heat treatment, so it has excellent insulation properties.

而して本発明において拡散熱処理温度以上の軟
化点を有する物質としては、上記石英の外にアル
ミナ、酸化ボロンなどが適用出来る。
In addition to the above-mentioned quartz, alumina, boron oxide, etc. can be used as the substance having a softening point higher than the diffusion heat treatment temperature in the present invention.

又ガラス繊維に対し上記高融点絶縁物質の配合
量10〜90体積%に限定した理由は、10%の未満の
場合には燃処理後の低温領域においてキヤリアー
金属2と拡散熱処理温度で軟化しない物質とを融
着することが出来ず、ガラス繊維のみと同様の作
用を有し軟化、流出するおそれがある。又90%を
越した場合にはガラス量が極めて少量のためガラ
スの軟化による融着量が少くなり巻線の移動或は
ゆるみをおこす可能性があるためである。
The reason for limiting the amount of the high melting point insulating material to the glass fiber is from 10 to 90% by volume.If it is less than 10%, it may be a material that does not soften at the carrier metal 2 and diffusion heat treatment temperature in the low temperature region after combustion treatment. It has the same effect as glass fiber alone, and there is a risk of it softening and flowing out. Moreover, if it exceeds 90%, the amount of glass is extremely small, so the amount of fusion due to softening of the glass decreases, which may cause movement or loosening of the winding wire.

又本発明における絶縁層としてガラス繊維層例
えばガラス繊維テープを纒巻しこの外側に拡散熱
処理温度以上の軟化点を有する絶縁性物質例えば
石英繊維テープとを纒巻する等これら両者を交互
に設けて形成してもよい。なおこの場合ガラステ
ープと石英テープとの厚みについては特に限定す
るものではないが、望ましくはガラステープ厚み
と石英テープ厚みの比を90:10〜10:90にするこ
とが好ましい。
Further, as an insulating layer in the present invention, a glass fiber layer such as a glass fiber tape is wound around the outside of the glass fiber layer, and an insulating material having a softening point higher than the diffusion heat treatment temperature, such as a quartz fiber tape, is wound around the outer side of the glass fiber layer, and both of these layers are alternately provided. may be formed. In this case, the thickness of the glass tape and the quartz tape is not particularly limited, but it is preferable that the ratio of the glass tape thickness to the quartz tape thickness be 90:10 to 10:90.

以上詳述した如く本発明によれば外周に設けた
絶縁層が拡散熱処理によつて溶融することなく且
つ化合物超電導線相互は絶縁層を介して容易に融
着するため化合物超電導線に移動又はゆるみを生
せず長期に亘り安心して使用しうる超電導マグネ
ツトをうる等顕著な効果を有する。
As detailed above, according to the present invention, the insulating layer provided on the outer periphery does not melt due to the diffusion heat treatment, and the compound superconducting wires are easily fused to each other via the insulating layer, so that the compound superconducting wire does not move or loosen. It has remarkable effects such as producing a superconducting magnet that can be used safely for a long period of time without causing any damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁層付未反応超電導複合線の
1例を示す断面図、第2図は従来の超電導マグネ
ツトの1例を示す1部拡大断面図、第3図は本発
明における絶縁層付未反応超電導複合線の1例を
示す断面図、第4図は本発明超電導マグネツトの
1例を示す1部拡大断面図である。 1……絶縁層付未反応超電導複合線、2……キ
ヤリアー金属、3……フイラメント、4……絶縁
層、5……化合物超電導体、6……絶縁層、7…
…絶縁層未反応超電導複合線。
FIG. 1 is a sectional view showing an example of a conventional unreacted superconducting composite wire with an insulating layer, FIG. 2 is a partially enlarged sectional view showing an example of a conventional superconducting magnet, and FIG. 3 is an insulating layer according to the present invention. FIG. 4 is a cross-sectional view showing an example of an unreacted superconducting composite wire, and FIG. 4 is a partially enlarged cross-sectional view showing an example of the superconducting magnet of the present invention. DESCRIPTION OF SYMBOLS 1... Unreacted superconducting composite wire with insulating layer, 2... Carrier metal, 3... Filament, 4... Insulating layer, 5... Compound superconductor, 6... Insulating layer, 7...
...Insulating layer unreacted superconducting composite wire.

Claims (1)

【特許請求の範囲】[Claims] 1 拡散反応によつて少くとも2種類の金属基材
の界面に化合物超電導体を形成すべく複合しかつ
外周に絶縁層を設けた未反応超電導線を巻線後、
該拡散熱処理を行う超電導マグネツトにおいて、
該絶縁層を拡散熱処理温度以上の軟化温度を有す
る絶縁性物質を10〜90体積%含有せるガラス繊維
層にて形成するかまたはガラス繊維層と拡散熱処
理温度以上の軟化点を有する絶縁性物質層とを交
互に設けて形成することを特徴とする超電導マグ
ネツト。
1. After winding an unreacted superconducting wire that is composited and provided with an insulating layer on the outer periphery in order to form a compound superconductor at the interface of at least two types of metal substrates by a diffusion reaction,
In the superconducting magnet subjected to the diffusion heat treatment,
The insulating layer is formed of a glass fiber layer containing 10 to 90% by volume of an insulating material having a softening temperature higher than the diffusion heat treatment temperature, or a glass fiber layer and an insulating material layer having a softening point higher than the diffusion heat treatment temperature. A superconducting magnet characterized in that it is formed by alternately providing and.
JP4501279A 1979-04-13 1979-04-13 Super-conducting magnet Granted JPS55138209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4501279A JPS55138209A (en) 1979-04-13 1979-04-13 Super-conducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4501279A JPS55138209A (en) 1979-04-13 1979-04-13 Super-conducting magnet

Publications (2)

Publication Number Publication Date
JPS55138209A JPS55138209A (en) 1980-10-28
JPS6156848B2 true JPS6156848B2 (en) 1986-12-04

Family

ID=12707441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4501279A Granted JPS55138209A (en) 1979-04-13 1979-04-13 Super-conducting magnet

Country Status (1)

Country Link
JP (1) JPS55138209A (en)

Also Published As

Publication number Publication date
JPS55138209A (en) 1980-10-28

Similar Documents

Publication Publication Date Title
US4195199A (en) Superconducting composite conductor and method of manufacturing same
JPH0768605B2 (en) Nb (bottom 3) Method for manufacturing Sn-based superconducting wire
US3643001A (en) Composite superconductor
JPS6156848B2 (en)
JPS6137764B2 (en)
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPH03261006A (en) Manufacture of superconductive wire
US3737989A (en) Method of manufacturing composite superconductor
JP4386306B2 (en) Method for producing Nb3Al compound-based superconducting wire
JPS6212606B2 (en)
JPH04106809A (en) Superconductor
JPS602728B2 (en) Method for manufacturing compound composite superconductor
JP3061630B2 (en) Method for producing superconducting wire made of Nb (3) Sn compound
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JP3879183B2 (en) Superconducting composite material and method of manufacturing superconducting composite material
JPS6381709A (en) Superconductor
JP3070969B2 (en) Superconducting wire manufacturing method
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPH0252365B2 (en)
JPH04301322A (en) Manufacture of niobium-tin superconducting wire
JPH0350368B2 (en)
JPS6028112A (en) Method of producing composite superconductive conductor
JPS6222205B2 (en)
JPH0430123B2 (en)
JPS60241611A (en) Method of producing nb3sn superconductive wire