JPS6156317B2 - - Google Patents

Info

Publication number
JPS6156317B2
JPS6156317B2 JP16063877A JP16063877A JPS6156317B2 JP S6156317 B2 JPS6156317 B2 JP S6156317B2 JP 16063877 A JP16063877 A JP 16063877A JP 16063877 A JP16063877 A JP 16063877A JP S6156317 B2 JPS6156317 B2 JP S6156317B2
Authority
JP
Japan
Prior art keywords
thickness
resin
image
substrate
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16063877A
Other languages
Japanese (ja)
Other versions
JPS5492527A (en
Inventor
Nobuyuki Kishi
Akira Kaneki
Norihiko Tsukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP16063877A priority Critical patent/JPS5492527A/en
Publication of JPS5492527A publication Critical patent/JPS5492527A/en
Publication of JPS6156317B2 publication Critical patent/JPS6156317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微細な開口部を有する金属箔を精度よ
く製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for accurately manufacturing metal foil having minute openings.

〔従来の技術〕[Conventional technology]

エレクトロニクス分野において、例えば撮像管
のフイールドメツシユ、レーザーのアパーチヤー
(絞り)などに精密な開口部を有する金属箔が使
用されているが、これらは通常フエトエレクトロ
フオーミング法によつて作られている。
In the electronics field, metal foils with precise openings are used, for example, in the field mesh of image pickup tubes and the apertures of lasers, but these are usually made by the FET electroforming method. There is.

金属箔の厚さは強度を持たせる必要上、数μm
乃至20μm程度が使われている。一般的なフオト
エレクトロフオーミング法では第1図に示すよう
に、導電性基板1の上にフオトレジストを塗布
し、紫外光で露光、現像処理してレジスト画像2
を作つたのち、電鋳法により金属箔3を形成し、
この金属箔を基板から剥離して使用する。
The thickness of the metal foil is several μm as it is necessary to have strength.
A thickness of about 20 μm is used. In the general photoelectroforming method, as shown in FIG.
After that, a metal foil 3 is formed by electroforming,
This metal foil is peeled off from the substrate and used.

フオトレジストの厚さは画像の寸法精度、エツ
ジの形状などから0.5μm〜3μm位であるが、
金属箔は強度の点で3μm以上の厚さをもつこと
が必要であり、第1図Cに示すように電鋳された
金属はフオトレジストの上に盛り上がつた形にな
る。このため開口部の寸法はフオトレジスト画像
の寸法より小さくなる。これを利用して、ごく小
径(1μ程度)のピンホールを作ることが行なわ
れているが、開口部の断面形状は第1図Cに示す
ように複雑な形状になり、寸法を正確に制御する
ことが困難であり、更に3〜5μm程度の微小な
四角形の開口部を形成することは全く不可能であ
つた。またフオトレジストを3〜5μm程度に厚
く塗布して、電鋳のときフオトレジストの上に盛
り上げない方法があるが、この場合フオトレジス
トの画像精度が悪くなり、1μm程度の開口部を
形成することができなくなる。
The thickness of the photoresist is approximately 0.5 μm to 3 μm depending on the dimensional accuracy of the image, the shape of the edges, etc.
The metal foil needs to have a thickness of 3 .mu.m or more in terms of strength, and as shown in FIG. 1C, the electroformed metal has a raised shape on the photoresist. Therefore, the dimensions of the opening are smaller than the dimensions of the photoresist image. This has been used to create pinholes with a very small diameter (about 1μ), but the cross-sectional shape of the opening becomes complex as shown in Figure 1C, and the dimensions can be precisely controlled. Further, it was completely impossible to form a minute rectangular opening of about 3 to 5 μm. Another method is to apply a thick layer of photoresist to about 3 to 5 μm so that it does not build up on top of the photoresist during electroforming, but in this case, the image accuracy of the photoresist deteriorates and openings of about 1 μm are formed. become unable to do so.

一般に密着焼付によつてマスクのパターンをフ
オトレジストに転写する場合、パターンの寸法が
1μmあるいはそれ以下になると、焼付に使用さ
れる紫外線の波長(0.4μm前後)に近くなり、
回折現象によつて画像のボケあるいは変形を起こ
す。この現象はマスクのパターン面とフオトレジ
ストの距離が離れるに従つて顕著になり、完全に
密着した状態でも厚く塗布したフオトレジストの
中では紫外線がフオトレジストの表面から深部に
到達する間に画像の精度が低下してしまう。ま
た、紫外線のフオトレジスト中での透過率が低い
ため、フオトレジストの表面付近と深部では露光
量が大きく異なり、画像精度を低下させる原因に
なつている。更にフオトエレクトロフオーミング
法のように導体金属の表面にフオトレジストを塗
布し、露光すると、金属表面で反射して戻つてく
る紫外線によるハレーシヨン、入射光と反射光の
干渉によるスタンデイングウエーブなどの現象が
起こり、フオトレジスト画像のエツジに階段状の
しわができ、形状および寸法の精度が低下するこ
とが知られている。以上の理由により、1μmあ
るいはそれ以下の寸法のパターンを3〜5μm程
度の厚さのフオトレジストに転写することは非常
に困難である。
Generally, when a mask pattern is transferred to a photoresist by contact baking, if the pattern size is 1 μm or less, it will be close to the wavelength of the ultraviolet light used for baking (around 0.4 μm).
Diffraction phenomena cause blurring or deformation of images. This phenomenon becomes more noticeable as the distance between the patterned surface of the mask and the photoresist increases. Accuracy will decrease. Furthermore, since the transmittance of ultraviolet rays in the photoresist is low, the amount of exposure differs greatly between near the surface and the deep part of the photoresist, which causes a reduction in image accuracy. Furthermore, when a photoresist is applied to the surface of a conductive metal and exposed to light as in the photoelectroforming method, phenomena such as halation due to ultraviolet rays reflected back from the metal surface and standing waves due to interference between incident light and reflected light occur. This is known to cause step-like wrinkles at the edges of photoresist images, reducing shape and dimensional accuracy. For the above reasons, it is extremely difficult to transfer a pattern with dimensions of 1 μm or less onto a photoresist with a thickness of about 3 to 5 μm.

また、フオトレジストを充分薄く塗布して画像
の精度を上げ、薄くメツキする方法があるが、薄
い箔は破壊しやすく、製造が困難である。
There is also a method of applying a sufficiently thin layer of photoresist to increase the precision of the image and plating it thinly, but thin foils are easily destroyed and difficult to manufacture.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明が解決しようとする問題点は自己
支持するのに強度的に十分な厚さをもち、かつ1
μ程度またはそれ以下の寸法の撮像管のフイール
ドメツシユ、レーザーのアパーチヤ(絞り)など
に用いられる高精度の開口部を有する金属箔の製
造方法を提供することにある。
Therefore, the problem to be solved by the present invention is to have sufficient thickness for self-supporting and one
It is an object of the present invention to provide a method for manufacturing a metal foil having a highly accurate opening used for a field mesh of an image pickup tube, a laser aperture, etc. having a size of approximately μ or less.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記問題点を解決すべく研究の結
果基板上に、遠紫外線等の波長3000Å以下の電磁
波に感光するポリメチルメタアクリレート樹脂層
を形成した後、前記電磁波を用いてパターンを焼
付け、次いで現像処理することにより、前記樹脂
層を厚さ数μm乃至10μm程度と厚く形成して
も、厚み方向に深部におよんでも精密に形成され
たほぼ垂直なエツジを有する樹脂画像を得ること
ができることを見い出し、かかる知見にもとづい
て本発明を完成したものである。
The inventors of the present invention conducted research to solve the above problems. After forming a polymethyl methacrylate resin layer on a substrate that is sensitive to electromagnetic waves with a wavelength of 3000 Å or less, such as far ultraviolet rays, a pattern is printed using the electromagnetic waves. Then, by carrying out a development process, even if the resin layer is formed to have a thickness of several μm to about 10 μm, a resin image having precisely formed almost vertical edges can be obtained even if the resin layer extends deep in the thickness direction. The present invention was completed based on this knowledge.

本発明の製造方法は基板上に、遠紫外線等の波
長3000Å以下の電磁波に感光するポリメチルメタ
アクリレート樹脂層を数μ乃至10μmの厚さに形
成した後、前記電磁波を用いてパターンを焼付
け、次いで現像処理して樹脂画像を形成し、次い
で前記パターン化により露出した基板上に、前記
パターン化した樹脂層の厚さと同等もしくはそれ
以下の厚さでかつ自己保持するのに充分な強度を
持つ金属層を成長させ、しかる後前記樹脂画像を
除去し、さらに前記金属層を前記基板より剥離す
るかあるいは前記基板の少なくとも一部をエツチ
ングにより除去することよりなる。
The manufacturing method of the present invention involves forming on a substrate a polymethyl methacrylate resin layer with a thickness of several μm to 10 μm that is sensitive to electromagnetic waves with a wavelength of 3000 Å or less, such as deep ultraviolet rays, and then printing a pattern using the electromagnetic waves. Next, a resin image is formed by a development process, and then a resin image is placed on the substrate exposed by the patterning, and the layer has a thickness equal to or less than the thickness of the patterned resin layer and has sufficient strength to self-hold. The method comprises growing a metal layer, then removing the resin image, and then peeling the metal layer from the substrate or removing at least a portion of the substrate by etching.

最近、超LSI、磁気バルブ素子等の微細加工技
術として、電子ビーム、軟X線などを照射源と
し、高精度のマスクを使つたリソグラフイー技術
の開発が進められている。これに用いられる投影
用マスクは、1μ程度またはそれ以下の寸法形状
の開口部、阻止部、支持用メツシユを有する金属
等の箔によつて作ることが試みられているが、従
来のフオトエレクトロフオーミング法では製造が
困難であり、本発明による方法で製造が可能にな
る。
Recently, as a microfabrication technology for ultra-LSIs, magnetic valve elements, etc., lithography technology is being developed that uses electron beams, soft X-rays, and other irradiation sources and uses high-precision masks. Attempts have been made to make the projection mask used for this from a metal foil having openings, blocking portions, and supporting meshes with dimensions of approximately 1 μm or less, but conventional photoelectrophotography Production is difficult using the mining method, but production is possible using the method of the present invention.

本発明による方法を以下、図面を用いて説明す
る。第2図において、まず導電性の基板4の上に
波長3000Å以下の遠紫外線等の電磁波に感光する
ポリメチルメタアクリレート樹脂を、適当な溶剤
に溶解し、コーテイングする。樹脂層の厚さは必
要とする金属箔の厚さによつて数μm乃至10μm
程度とする。次に波長3000Å以下の遠紫外線等の
電磁波を使用してパターンを焼付けたのち、適当
な貧溶媒、たとえばメチルイソブチルケトン、キ
シレン、酢酸イソアミル等によつて現像処理し、
露光部の基板表面を露出させる。得られた樹脂画
像5はシヤープなエツジをもつており、1μmあ
るいはそれ以下の寸法で、高精度、高解像性をも
つている。次にメツキ法等により、樹脂画像の厚
さと同等またはそれ以内の厚さの金属箔層6を形
成する。その後適当な良溶媒、たとえば酢酸エチ
ル、トルエン、トリクロルエチレン等によつて樹
脂画像を溶解除去し、基板から剥離して金属箔を
得る(第2図C)。得られた金属箔の開口部は、
寸法がその厚さ以内の微小なパターンについても
寸法精度が良好であり、エツジの断面形状は垂直
に近いシヤープな開口部形状をもつている。この
ようにして得られる金属箔をたとえばマスクとし
て使用するには、適当な接着剤を介して支持枠に
接着することが行なわれる。
The method according to the invention will be explained below using the drawings. In FIG. 2, a conductive substrate 4 is first coated with a polymethyl methacrylate resin that is sensitive to electromagnetic waves such as deep ultraviolet rays having a wavelength of 3000 Å or less, which is dissolved in a suitable solvent. The thickness of the resin layer varies from several μm to 10 μm depending on the thickness of the metal foil required.
degree. Next, a pattern is printed using electromagnetic waves such as deep ultraviolet rays with a wavelength of 3000 Å or less, and then developed with a suitable poor solvent such as methyl isobutyl ketone, xylene, isoamyl acetate, etc.
Expose the surface of the substrate in the exposed area. The obtained resin image 5 has sharp edges, has a size of 1 μm or less, and has high precision and high resolution. Next, a metal foil layer 6 having a thickness equal to or less than the thickness of the resin image is formed by a plating method or the like. Thereafter, the resin image is dissolved and removed using a suitable good solvent such as ethyl acetate, toluene, trichloroethylene, etc., and then peeled off from the substrate to obtain a metal foil (FIG. 2C). The opening of the obtained metal foil is
The dimensional accuracy is good even for minute patterns whose dimensions are within the thickness, and the cross-sectional shape of the edge has a sharp opening shape close to vertical. In order to use the metal foil obtained in this way, for example as a mask, it is adhered to a support frame using a suitable adhesive.

第3図に示されているのは本発明による別の方
式を示したもので、金属箔9の形成にスパツタリ
ング法を用い、開口部の樹脂画像8の上に付着し
た金属9aは樹脂画像8を溶解除去したときに同
時に除かれる(第3図C)。次に金属箔の必要部
分の基板をエツチングにより除去し、残りの基板
を支持枠として使用することができる(第3図
d)。
FIG. 3 shows another method according to the present invention, in which the sputtering method is used to form the metal foil 9, and the metal 9a attached to the resin image 8 in the opening is removed from the resin image 8. It is removed at the same time when it is dissolved and removed (Fig. 3C). The required portions of the metal foil can then be etched away from the substrate, and the remaining substrate can be used as a support frame (FIG. 3d).

〔作用〕[Effect]

遠紫外線等の波長3000Å以下の電磁波に感光す
るポリメチルメタアクリレート樹脂に、前記電磁
波を用いて、マスク上のパターンを転写する方法
によれば回折現象による画像のぼけ、変形が少な
くなり、シヤープなエツジを持つたレジスト画像
が形成できる。ポリメチルメタアクリレート樹脂
は従来用いられている紫外線(波長3000Å〜4500
Å)に感光しないため、クセノン水銀ランプなど
の遠紫外線源から同時に放出される波長の長い紫
外線による画像精度の低下を起こすことなく、選
択的に遠紫外光を吸収して分解し、シヤープな画
像を形成しうる。また、アクリル樹脂の感度のピ
ーク波長(2200Å)における遠紫外光の透過率
は、一般のフオトレジストの感度のピーク波長に
おける紫外光のそれよりずつと高く、深部まで露
光することができる。また遠紫外域では金属の表
面反射率が紫外域よりずつと低いために、ハレー
シヨン、スタンデイングウエーブなどの影響が現
われにくいことも、深部まで高解像性をもつのに
寄与していると考えられる。
By using the method of transferring the pattern on the mask using electromagnetic waves to a polymethyl methacrylate resin that is sensitive to electromagnetic waves with a wavelength of 3000 Å or less, such as far ultraviolet rays, blurring and deformation of the image due to diffraction phenomenon is reduced, and sharpness is reduced. A resist image with edges can be formed. Polymethyl methacrylate resin can be used with conventional ultraviolet rays (wavelengths of 3000 Å to 4500 Å).
Å), it selectively absorbs and decomposes far-UV light to produce sharp images without reducing image accuracy due to long-wavelength ultraviolet light simultaneously emitted from far-UV sources such as xenon mercury lamps. can be formed. Furthermore, the transmittance of deep ultraviolet light at the peak sensitivity wavelength (2200 Å) of acrylic resin is much higher than that of ultraviolet light at the peak sensitivity wavelength of general photoresists, allowing deep exposure. Furthermore, since the surface reflectance of metals is lower in the far ultraviolet region than in the ultraviolet region, effects such as halation and standing waves are less likely to appear, which is thought to contribute to the high resolution deep down. .

〔実施例〕〔Example〕

実施例 1 電子ビーム露光用マスクの製造に用いた例を第
4図を使つて説明する。鏡面研磨されたシリコン
ウエハー10の上にポリメチルメタアクリレート
(米国、デユポン社製、商品名エルバサイト
2041)をエチルセロソルブアセテートに溶解し、
3μmの厚さにコーテイングした。マスクは純粋
な石英ガラス上にパターニングしたものを用い、
クセノン−水銀ランプにて密着露光し、メチルイ
ソブチルケトンにて現像処理し、樹脂画像11を
形成した。この樹脂画像はほぼ垂直なエツジをも
ち、露光除去部線幅0.5μ、残留樹脂線幅0.3μま
でマスクのパターンを再現していた。次にニツケ
ルメツキ浴中で3μの厚さにメツキを施し、ニツ
ケル箔12を形成した。メツキは樹脂画像の上に
盛り上がらないため、開口部の形状は樹脂画像の
精度をそのまま保持していた。次にシリコンウエ
ハー10の中央部をエツチング除去し、樹脂11
を溶解除去して電子ビーム用マスクを作成した。
Example 1 An example used in manufacturing a mask for electron beam exposure will be described with reference to FIG. Polymethyl methacrylate (manufactured by DuPont, USA, trade name: Elbasite) was placed on a mirror-polished silicon wafer 10.
2041) in ethyl cellosolve acetate,
It was coated to a thickness of 3 μm. The mask is patterned on pure quartz glass,
A resin image 11 was formed by contact exposure with a xenon-mercury lamp and development with methyl isobutyl ketone. This resin image had almost vertical edges and reproduced the mask pattern down to the line width of the exposed area of 0.5 μm and the line width of the residual resin of 0.3 μm. Next, plating was applied to a thickness of 3 μm in a nickel plating bath to form a nickel foil 12. Since the plating did not rise above the resin image, the shape of the opening maintained the accuracy of the resin image. Next, the central part of the silicon wafer 10 is removed by etching, and the resin 11 is removed by etching.
An electron beam mask was created by dissolving and removing.

実施例 2 フアインメツシユの製造に応用した例を示す。
ステンレンスチールの平坦な板をバフ研磨して鏡
面にし、ポリメチルメタアクリレートを4μmの
厚さにコーテイングして、以下樹脂画像の形成ま
では実施例1と同様に行なつた。次に重クロム酸
カリウム液に浸してクロメート処理を施し、ニツ
ケルメツキ浴中にて4μの厚さにメツキした。樹
脂画像をトリクロルエチレンで溶解除去し、ニツ
ケルを基板より剥離した。この方法で線幅1μピ
ツチ5μ厚さ4μのニツケルのメツシユが得られ
た。
Example 2 An example of application to the production of fine mesh will be shown.
A flat plate of stainless steel was buffed to a mirror surface, coated with polymethyl methacrylate to a thickness of 4 μm, and the same procedure as in Example 1 was carried out up to the formation of the resin image. Next, it was chromate treated by immersing it in a potassium dichromate solution and plated to a thickness of 4μ in a nickel plating bath. The resin image was dissolved and removed with trichlorethylene, and the nickel was peeled off from the substrate. By this method, a nickel mesh with a line width of 1 .mu.m pitch and a thickness of 5 .mu.m and a thickness of 4 .mu.m was obtained.

実施例 3 同じくフアインメツシユをリフトオフ法を利用
して製造した例を第5図により説明する。鏡面研
磨したガラス基板13の上に低融点金属(スズ)
14を蒸着し、その上にポリメチルメタアクリレ
ートを5μの厚さにコーテイングした。
Example 3 An example in which a fine mesh was similarly manufactured using the lift-off method will be described with reference to FIG. A low melting point metal (tin) is placed on the mirror-polished glass substrate 13.
14 was deposited, and polymethyl methacrylate was coated thereon to a thickness of 5 μm.

以下樹脂画像15の形成までは実施例1と同様
に行なつた。次に、低温高速スパツタリング装置
にて厚さ3μmの銅の層16を堆積した。その後
樹脂画像15を溶解すると、樹脂画像の上の銅1
6aは樹脂とともに除かれ、開口部が形成され
る。次に加熱して低融点金属層14を融解し、ガ
ラス基把から銅メツシユ16を剥離した。この方
法により、線幅1μ、ピツチ5μ、厚さ3μの銅
のメツシユが得られた。
Thereafter, the steps up to the formation of the resin image 15 were carried out in the same manner as in Example 1. Next, a 3 μm thick copper layer 16 was deposited using a low temperature, high speed sputtering device. After that, when the resin image 15 is dissolved, the copper 1 on the resin image
6a is removed together with the resin to form an opening. Next, the low melting point metal layer 14 was melted by heating, and the copper mesh 16 was peeled off from the glass substrate. By this method, a copper mesh with a line width of 1 μm, a pitch of 5 μm, and a thickness of 3 μm was obtained.

実施例 4 鏡面研磨したガラス基板上に低融点金属(ス
ズ)を蒸着し、その上にポリメチルメタアクリレ
ートを3μの厚さにコーテイングした。以下、樹
脂画像の形成までは実施例1と同様に行なつた。
Example 4 A low melting point metal (tin) was deposited on a mirror-polished glass substrate, and polymethyl methacrylate was coated thereon to a thickness of 3 μm. Thereafter, the steps up to the formation of the resin image were carried out in the same manner as in Example 1.

次に、銅メツキ浴中で3μの厚さにメツキを施
し、銅箔を形成した。次に、加熱して低融点金属
層を融解し、ガラス基板から銅箔を剥離し、さら
にこれを外径40m/m、内径30m/m、厚さ0.5m/
mの銅のリングにエポキシ系接着剤を介して接着
させて電子ビーム露光用マスクを製造した。
Next, plating was applied to a thickness of 3 μm in a copper plating bath to form a copper foil. Next, heat is applied to melt the low-melting point metal layer, and the copper foil is peeled off from the glass substrate.
A mask for electron beam exposure was manufactured by adhering the mask to a copper ring of 500 mm with an epoxy adhesive.

〔発明の効果〕〔Effect of the invention〕

以上詳記した通り、本発明によれば、自己支持
するのに強度的に十分な厚さ(3μ以上)をも
ち、かつ厚み方向に深部におよんでも開口精度が
低下することのない、ほぼ垂直なエツジを有する
開口部を有する、撮像管のフイールドメツシユ、
レーザーのアパーチヤー(絞り)などに用いられ
る開口部を有する金属箔を製造することができ
る。
As described in detail above, according to the present invention, the nearly vertical opening has sufficient thickness (3μ or more) for self-supporting, and the opening accuracy does not deteriorate even if it extends deep in the thickness direction. a field mesh of an image pickup tube having an opening having a sharp edge;
Metal foils can be manufactured that have openings used for laser apertures and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法による金属箔の製造法、第
2図及び第3図は本発明による金属箔の製造法、
第4図及び第5図は本発明の実施例を説明するた
めの模式切断端面図である。 1,4……導電性基板、2……フオトレジス
ト、3,6,9,12,16……金属箔、5,
8,11,15……ポリメチルメタアクリレート
樹脂、7……基板、10……シリコンウエハー、
13……ガラス基板、14……低融点金属。
FIG. 1 shows a method for manufacturing metal foil using a conventional method, and FIGS. 2 and 3 show a method for manufacturing metal foil according to the present invention.
FIGS. 4 and 5 are schematic cut-away end views for explaining an embodiment of the present invention. 1, 4... Conductive substrate, 2... Photoresist, 3, 6, 9, 12, 16... Metal foil, 5,
8, 11, 15... Polymethyl methacrylate resin, 7... Substrate, 10... Silicon wafer,
13...Glass substrate, 14...Low melting point metal.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に、遠紫外線等の波長3000Å以下の電
磁波に感光するポリメチルメタアクリレート樹脂
層数μ乃至10μmの厚さに形成した後、前記電磁
波を用いてパターンを焼付け、次いで現像処理し
て樹脂画像を形成し、次いで前記パターン化によ
り露出した基板上に、前記樹脂画像の厚さと同等
もしくはそれ以下の厚さでかつ自己支持するのに
充分な強度を持つ金属層を成長させ、しかる後前
記樹脂画像を除去し、さらに前記金属層を上記基
板より剥離するかあるいは前記基板の少なくとも
一部をエツチングにより除去することを特徴とす
る開口部を有する金属箔の製法。
1. After forming a layer of polymethyl methacrylate resin sensitive to electromagnetic waves with a wavelength of 3000 Å or less, such as deep ultraviolet rays, to a thickness of several micrometers to 10 micrometers on a substrate, a pattern is printed using the electromagnetic waves, and then developed to form a resin. forming an image and then growing a metal layer on the substrate exposed by the patterning to a thickness equal to or less than the thickness of the resin image and having sufficient strength to be self-supporting; A method for producing a metal foil having an opening, the method comprising removing the resin image and further peeling off the metal layer from the substrate or removing at least a portion of the substrate by etching.
JP16063877A 1977-12-28 1977-12-28 Manufacture of metal foil having apertures Granted JPS5492527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16063877A JPS5492527A (en) 1977-12-28 1977-12-28 Manufacture of metal foil having apertures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16063877A JPS5492527A (en) 1977-12-28 1977-12-28 Manufacture of metal foil having apertures

Publications (2)

Publication Number Publication Date
JPS5492527A JPS5492527A (en) 1979-07-21
JPS6156317B2 true JPS6156317B2 (en) 1986-12-02

Family

ID=15719249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16063877A Granted JPS5492527A (en) 1977-12-28 1977-12-28 Manufacture of metal foil having apertures

Country Status (1)

Country Link
JP (1) JPS5492527A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124600A (en) * 1984-11-21 1986-06-12 Hitachi Cable Ltd Formation of frame pattern
US5232549A (en) * 1992-04-14 1993-08-03 Micron Technology, Inc. Spacers for field emission display fabricated via self-aligned high energy ablation
JP4708735B2 (en) * 2004-05-31 2011-06-22 キヤノン株式会社 Method for manufacturing mask structure
WO2013057772A1 (en) * 2011-10-17 2013-04-25 株式会社 ベアック Method for producing perforated metal foil

Also Published As

Publication number Publication date
JPS5492527A (en) 1979-07-21

Similar Documents

Publication Publication Date Title
US4211834A (en) Method of using a o-quinone diazide sensitized phenol-formaldehyde resist as a deep ultraviolet light exposure mask
US4165395A (en) Process for forming a high aspect ratio structure by successive exposures with electron beam and actinic radiation
US4174219A (en) Method of making a negative exposure mask
JPS58119640A (en) Method of forming photoresist pattern
JPH0232619B2 (en)
JPS6246523A (en) Manufacture of mask for x-rays deep lithography
US4329410A (en) Production of X-ray lithograph masks
JP2000199968A (en) Multilayered resist structure and manufacture of three- dimensional fine structure using the same
JPS6330990B2 (en)
US4528071A (en) Process for the production of masks having a metal carrier foil
JPS6156317B2 (en)
TW200813640A (en) Method of forming nanopattern and substrate having pattern formed using the method
JPS62142323A (en) Manufacture of mask for x-ray photo-lithography and mask obtained by the manufacture
KR20000047647A (en) Resist pattern, process for the formation of the same, and process for the formation of wiring pattern
US4656107A (en) Photographic printing plate for use in a vacuum printing frame
JPH0442666B2 (en)
JPH10228114A (en) Production of metal mask
US4664996A (en) Method for etching a flat apertured mask for use in a cathode-ray tube
JPH06148861A (en) Photomask and its production
US4588676A (en) Photoexposing a photoresist-coated sheet in a vacuum printing frame
JPS6231491B2 (en)
JP3191383B2 (en) Printing plate manufacturing method
KR20120071794A (en) High definition printing plate of liquid crystal display and method for manufacture using the same
JPH0683067A (en) Production of printing plate
JP2973627B2 (en) Printing plate manufacturing method