JPS6155782B2 - - Google Patents

Info

Publication number
JPS6155782B2
JPS6155782B2 JP55056650A JP5665080A JPS6155782B2 JP S6155782 B2 JPS6155782 B2 JP S6155782B2 JP 55056650 A JP55056650 A JP 55056650A JP 5665080 A JP5665080 A JP 5665080A JP S6155782 B2 JPS6155782 B2 JP S6155782B2
Authority
JP
Japan
Prior art keywords
film
layer
conductive layer
oxide film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55056650A
Other languages
Japanese (ja)
Other versions
JPS56152262A (en
Inventor
Tadashi Hirao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5665080A priority Critical patent/JPS56152262A/en
Publication of JPS56152262A publication Critical patent/JPS56152262A/en
Publication of JPS6155782B2 publication Critical patent/JPS6155782B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は半導体集積回路装置の製造方法に関
するものである。 従来の半導体集積回路装置としてインテグレー
テツド・インジエクシヨン・ロジツク
(Integrated Injection Logic)回路装置(以下、
IIL・ICと略称する)を例にして、その製造工程
を第1図Aから第1図Fに示す。すなわち、この
IIL・ICはバイポーラICで一般的に行なわれてい
るように、まず、第1図Aのとおり、p形シリコ
ン半導体基板1上にn形高濃度埋込み層2を形成
したのち、n形低濃度エピタキシヤル層3を成長
させる。ついで、第1図Bのように、酸化膜10
1と耐酸化膜である窒化膜201を順次に形成し
て所定形状にパターニングし、かつこれをマスク
にして前記エピタキシヤル層3を所定深さだけ除
去してからイオン注入法により、チヤンネルカツ
ト防止層4を形成する。また前記窒化膜201を
マスクとして選択酸化を行ない、分離酸化膜10
3を形成すると共に、一部の薄い酸化膜104を
通しレジストマスクでB+イオン注入を行なつ
て、第1図Cのように、n形低濃度エピタキシヤ
ル層3に選択的にp形低濃度層6を形成する。こ
のとき、前記チヤンネルカツト層4は再拡散され
て層5となる。そして、また、第1図Dにみられ
るとおり、前記と同様に酸化膜104を通してレ
ジストマスクでB+イオン注入を行ない、n形低
濃度エピタキシヤル層3にp形高濃度層7,8を
形成させ、かつこれらの上にCVD法によりリン
ガラス膜105を成長した上で、このリンガラス
膜105とp形低,高濃度層6,7,8とのアニ
ールを同時に行ない、さらに、第1図Eのように
p形低濃度層6に窓開けして、ここにn形高濃度
層9,10,11を隣接エピタキシヤル層3に窓
開けして、ここにn形高濃度層12を各々に形成
する。続いて最後に、前記p形高濃度層7,8に
窓開けして、前記窓開け部と共に各々に電極配線
を行ない、pnpトランジスタのエミツタであるp
形高濃度層7にインジエクタ電極401を、pnp
トランジスタのベースおよび逆方向動作npnトラ
ンジスタのエミツタであるエピタキシヤル層3に
つながる電極取出し用のn形高濃度層12にグラ
ンド電極402を、pnpトランジスタのコレクタ
および逆方向動作npnトランジスタのベースであ
るp形低濃度層6につながる電極取出し用のp形
高濃度層8にインプツト電極403を、さらに逆
方向動作npnトランジスタのコレクタであるn形
高濃度層9,10,11にアウトプツト電極40
4,405,406を各々第1図Fのように接続
したものである。 そして、前記コレクタとしての各電極404,
405,406をベース電極に近い側からC1
C2,C3とすると、逆動作npnトランジスタの電流
増幅率βuは第2図にみられるように、ベース電
極から遠いコレクタほど高電流域で大きく低下す
ることが一般に知られており、これはベース抵抗
がベース電極から遠いコレクタほど大きくなるか
らであると考えられている。また、IILのゲート
伝播遅延時間tpdと消費電力pdとの間には、第3
図に示される電力遅延特性のあることが知られて
いる(例えば、半導体トランジスタ研究会、信学
技報SSD76−89,P37:High Speed IIL With
Self―Aligned Double Diffusion Injector
〔S2L〕)。 ここで同一ベース面積、同一pnpトランジスタ
特性であれば(tpd∝βu1/2)が成立するの
で、第3図に示すようにベース電極から遠いコレ
クタほど(tpd)が大きくなる。よつてこのよう
に従来の製造方法によるIILのゲートICの性能に
は、アウトプツト端子間で特性で差を生じ、ベー
ス電極に最も遠いアウトプツトの遅い(tpd)で
制限されるという不都合があつた。 さらに同一ベース面積(SB)、同一pnpトラン
ジスタ特性、同一電流増幅率(βu)であれば、
(tpd∝SB)が成り立つので、その性能改善には
第4図のに示すように、コレクタ面積(Sc
を小さくしてベース面積(SB)を低減させるこ
とが行なわれているが、第5図のに示すよう
に、これではSc/SBも低下し、(βu∝SU/S
B)であるので第6図ののように(βu)の大
幅な低下を生ずることになる。従つて、第7図の
に示すように、最小(tpd)、すなわち、
(tpdmin)は、(Sc)を小さくしてゆくと、(S
B)の減少の効果で速くなるが、ある値以上に
(Sc)を小さくすると、(SB)の効果以上に(β
u)の増加の効果から急激に遅くなつてくる。つ
まり、従来の製造方法によるIILのゲートICの性
能は、所定の設計基準のもとで、比較的大きなコ
レクタ面積(最小パターン寸法の約4倍)のとき
に最適となり、集積密度を上げるために、この最
適面積よりゲート面積を小さくすれば、その性能
は急激に悪化するという大きな欠点があつた。 したがつて、本発明の目的は各コレクタ間で同
一の大きな(βu)が得られ、しかも、小さなコ
レクタ面積(Sc)でも(Sc/SB)が大きく
(βu)の低下を防止でき、集積密度の向上を図
ることができる半導体集積回路装置の製造方法を
提供するものである。 このような目的を達成するため、この発明は第
2導電層内に選択的に第1導電層を形成した半導
体基板表面に、酸化膜および耐酸化性膜からなる
2層絶縁膜を形成する工程と、この耐酸化性膜表
面を酸化し、耐酸化性膜の一部を酸化膜に変換す
る工程と、この3層絶縁膜を選択的に除去して前
記第1導電層に複数の窓開けを行なう工程と、こ
の窓開け部を覆うように第2導電形不純物を導入
したポリシリコン膜を形成する工程と、このポリ
シリコン膜を拡散源として前記第1導電層内に第
2導電層を拡散形成したのち、ポリシリコン膜を
パターニングする工程と、前記3層絶縁膜の表層
露出部分を除去する工程と、前記パターニングさ
れたポリシリコン膜の表面に酸化膜を形成する工
程と、前記3層絶縁膜の窒化膜露出部分および内
層酸化膜露出部分を順次に除去する工程と、前記
拡散形成された各第2導電層間に、各々第1導電
層を拡散形成する工程と、この拡散形成された各
第1導電層上に低抵抗金属による電極を共通配線
する工程とを含むものであり、以下実施例を用い
て詳細に説明する。 第8図A〜第8図Hはこの発明に係る半導体集
積回路装置の製造方法の一実施例を示す製造工程
を順次に示す断面図である。 まず、第8図Aのとおり、p形シリコン半導体
基板1上にn形高濃度埋込み層2を形成したの
ち、n形低濃度エピタキシヤル層3を成長させ
る。ついで、第8図Bに示すように、酸化膜10
1と耐酸化膜である窒化膜201を順次に形成し
て所定形状にパターニングし、かつこれらをマス
クにして前記エピタキシヤル層3を所定深さだけ
除去してから、イオン注入法によりチヤンネルカ
ツト防止層4を形成する。また、前記窒化膜20
1をマスクとして選択酸化を行ない、分離酸化膜
103を形成すると共に、一部の薄い酸化膜10
4を通しレジストマスクでB+イオン注入を行な
つて、第8図Cに示すように、n形低濃度エピタ
キシヤル層3に選択的にp形低濃度層6を形成す
る。このとき、前記チヤンネルカツト層4は再拡
散されて層5となる。そして、第8図Dに示すよ
うに、p形低濃度層6上に耐酸化性膜として窒化
膜202をデポジシヨンする。次いで、窒化膜2
02の表面を酸化し、酸化膜115を形成する。
そして、この酸化膜115、窒化膜202および
酸化膜104を通して、前記p形低濃度層6およ
びn形低濃度エピタキシヤル層3に対し、第8図
Eに示すように前記第1図E相当の窓開けを行な
い、これらの各窓開け部を含む上層にポリシリコ
ン膜をデポジシヨンしてn形高濃度不純物を拡散
するか、またはそのドープドポリシリコン膜をデ
ポジシヨンするかした上で、この高濃度にドープ
されたポリシリコン膜を拡散源として、各コレク
タとしてのn形高濃度層9,10,11および電
極取出し用のn形高濃度層12を形成させ、かつ
このポリシリコン膜をパターニングして各膜30
1と304,305,306および302とを得
る。 ここで、これら第8図Dおよび第8図Eの工程
において、前記酸化膜104はベース電極取出し
領域のウオツシユアウトのために、また窒化膜2
02も歪みの関係から各々に500〜1000Å程度に
薄くし、かつ酸化膜115は50〜100Åと薄くし
ておき、レジストをマスクとするポリシリコン膜
のガス(CF4+O2)プラズマエツチングによるパ
ターニングのストツパにも使用し、さらに実質的
に各膜304,305,306および302は各
層9,10,11および12の拡散源となるが、
膜301はpnpトランジスタのベース層を残すた
めのマスクとして利用するのである。ここで、窒
化膜202を酸化して非常に薄い酸化膜115を
形成するのはポリシリコン膜と窒化膜との間の酸
化膜が厚いと第12図に示すように、ポリシリコ
ン膜を選択酸化膜した時、ポリシリコン膜のエツ
ヂの部分がもり上がり、電極配線の断線の原因と
なるなど悪影響があり、従来法のリンガラス膜1
05をCVDで形成すると、薄くするにしても
高々1000Å程度が限度で、上記断線の心配がある
からである。そして、窒化膜はもともと耐酸化性
膜として使用するぐらいで、その酸化速度は非常
に遅く、薄い酸化膜を形成するのに非常に適して
いる。つまり、950℃wet酸化3時間で70Å程度
で酸化膜に変換する。また、上記ポリシリコン膜
のパターニング時のストツパとしては極端なオー
バエツチをしないかぎり、上記薄い酸化膜でも十
分役割をはたしている。 次に、第8図Fに示すように、膜301と30
4,305,306および302上に層間絶縁膜
としての各酸化膜106ないし110を各々5000
Å〜6000Å程度に厚く形成させ、さらに、第8図
Gに示すように、前記窒化膜202の露出部分を
エツチング除去し、かつ、酸化膜104の露出部
分をウオツシユアウトした上で、前記と同様に、
p形高濃度層7と各n形高濃度層9,10,11
間にベース電極取出し用のp形高濃度層8を拡散
形成させ、最後に、第8図Hに示すように、p形
高濃度層7にインジエクタ電極401を、各p形
高濃度層8間に跨つて共通にベース電極403
を、各々にアルミニウムのような低抵抗金属によ
つて形成したものであり、前記各ポリシリコン膜
は対応する各電極となる。 ここで、この実施例構成での効果を述べるため
に、従来方法とこの実施例方法とによるIILイン
バータゲート(フアンアウト3)のパターンを第
9図ないし第11図に同一設計基準で作成して示
した。これらの図において、基準寸法aは2μm
である。 第9図は従来方法での最適性能が得られる場合
であつて、この場合の寸法データはゲート面積=
56μm×16μm=896μm2,(Sc)=6μm×6μ
m=36μm2,(SB)=46μm×16μm(図面上)
45μm×13μm=585μm2,(Sc/SB)=
0.0615である。第10図は従来方法と同一のコレ
クタ面積(Sc)でこの実施例方法で設計した場
合であつて、同様に、ゲート面積=51μm×12μ
m=612μm2,(Sc)=6μm×6μm=36μm2
(SB)=42μm×12μm(図面上)41μm×9
μm=369μm2,(Sc/SB)=0.0976であり、ゲ
ート面積が約2/3に縮少される。第11図は従
来方法と(Sc/SB)がほぼ同じになるようにこ
の実施例方法を設計した場合であつて、同様に、
ゲート面積=45μm×10μm=450μm2,(Sc)=
4μm×4μm=16μm2,(SB)=35μm×10μ
m(図面上)34μm×7μm=238μm2,(S
c/SB)=0.0672であり、このときの性能比較を
次表に示す。
The present invention relates to a method of manufacturing a semiconductor integrated circuit device. Integrated injection logic circuit devices (hereinafter referred to as “integrated injection logic” circuit devices) are conventional semiconductor integrated circuit devices.
Taking IIL/IC as an example, its manufacturing process is shown in FIGS. 1A to 1F. That is, this
As is generally done in bipolar ICs, IIL-IC first forms an n-type high concentration buried layer 2 on a p-type silicon semiconductor substrate 1, and then forms an n-type low concentration buried layer 2 as shown in FIG. 1A. Grow epitaxial layer 3. Then, as shown in FIG. 1B, an oxide film 10 is formed.
1 and a nitride film 201, which is an oxidation-resistant film, are sequentially formed and patterned into a predetermined shape, and using this as a mask, the epitaxial layer 3 is removed to a predetermined depth, and then ion implantation is performed to prevent channel cuts. Form layer 4. Further, selective oxidation is performed using the nitride film 201 as a mask, and the isolation oxide film 10 is
At the same time, B + ions are implanted through a part of the thin oxide film 104 using a resist mask, and as shown in FIG. A concentration layer 6 is formed. At this time, the channel cut layer 4 is re-diffused to form a layer 5. Then, as shown in FIG. 1D, B + ions are implanted through the oxide film 104 using a resist mask in the same manner as described above, and p-type high concentration layers 7 and 8 are formed in the n-type low concentration epitaxial layer 3. After growing a phosphorus glass film 105 on these by CVD method, this phosphorus glass film 105 and p-type low and high concentration layers 6, 7, and 8 are annealed at the same time, and further, as shown in FIG. As shown in E, a window is opened in the p-type low concentration layer 6, and a window is opened in the n-type high concentration layer 9, 10, 11 in the adjacent epitaxial layer 3, and an n-type high concentration layer 12 is formed here. to form. Finally, windows are opened in the p-type heavily doped layers 7 and 8, and electrode wiring is provided for each of the p-type high concentration layers 7 and 8, together with the window openings, to form a p-type emitter, which is the emitter of the pnp transistor.
The injector electrode 401 is placed on the high concentration layer 7, and the pnp
A ground electrode 402 is connected to the n-type high concentration layer 12 for taking out the electrode connected to the epitaxial layer 3 which is the base of the transistor and the emitter of the reverse direction npn transistor, and the ground electrode 402 is connected to the p An input electrode 403 is connected to the p-type high-concentration layer 8 for taking out the electrode connected to the low-concentration layer 6, and an output electrode 40 is connected to the n-type high-concentration layer 9, 10, 11, which is the collector of the reverse operation npn transistor.
4, 405, and 406 are connected as shown in FIG. 1F. And each electrode 404 as the collector,
405 and 406 from the side closer to the base electrode C 1 ,
Assuming C 2 and C 3 , it is generally known that the current amplification factor βu of a reverse operation npn transistor decreases more greatly in the high current range as the collector is farther away from the base electrode, as shown in Figure 2. It is thought that this is because the base resistance increases as the collector is farther away from the base electrode. Also, there is a third difference between the IIL gate propagation delay time tpd and the power consumption pd.
It is known that the power delay characteristic shown in the figure (for example, Semiconductor Transistor Research Group, IEICE Technical Report SSD76-89, P37: High Speed IIL With
Self-Aligned Double Diffusion Injector
[S 2 L]). Here, if the base area is the same and the pnp transistor characteristics are the same, (tpd∝βu 1/2 ) holds true, so as shown in FIG. 3, the farther the collector is from the base electrode, the larger (tpd) becomes. Therefore, the performance of IIL gate ICs manufactured using conventional manufacturing methods has the disadvantage that characteristics differ between the output terminals, and the performance is limited by the slow (tpd) of the output furthest from the base electrode. Furthermore, if the base area (S B ), the pnp transistor characteristics, and the current amplification factor (βu) are the same,
(tpd∝S B ) holds true, so to improve its performance, the collector area (S c ) must be increased as shown in Figure 4.
Although attempts have been made to reduce the base area (S B ) by making the value smaller, as shown in FIG .
B ), this results in a significant decrease in (βu) as shown in FIG. Therefore, as shown in Fig. 7, the minimum (tpd), i.e.,
(tpdmin) becomes ( S
However , if (S c ) is reduced beyond a certain value, (β ) becomes faster than the effect of (S B ).
Due to the effect of the increase in u), the speed suddenly slows down. In other words, the performance of IIL gate ICs manufactured using conventional manufacturing methods is optimal when the collector area is relatively large (approximately 4 times the minimum pattern size) under given design criteria; However, if the gate area is made smaller than this optimum area, the performance deteriorates rapidly, which is a major drawback. Therefore, the purpose of the present invention is to obtain the same large value (βu) between each collector, and also to have a structure in which (S c /S B ) is large even with a small collector area (S c ), and a decrease in (βu) can be prevented. The present invention provides a method of manufacturing a semiconductor integrated circuit device that can improve the integration density. In order to achieve such an object, the present invention provides a step of forming a two-layer insulating film consisting of an oxide film and an oxidation-resistant film on the surface of a semiconductor substrate in which a first conductive layer is selectively formed within a second conductive layer. , a step of oxidizing the surface of this oxidation-resistant film and converting a part of the oxidation-resistant film into an oxide film, and selectively removing this three-layer insulating film to open a plurality of windows in the first conductive layer. a step of forming a polysilicon film doped with a second conductivity type impurity so as to cover the window opening, and a step of forming a second conductive layer within the first conductive layer using the polysilicon film as a diffusion source. After the diffusion formation, a step of patterning the polysilicon film, a step of removing the surface exposed portion of the three-layer insulating film, a step of forming an oxide film on the surface of the patterned polysilicon film, and a step of patterning the three-layer insulating film. a step of sequentially removing an exposed nitride film portion and an exposed inner layer oxide portion of the insulating film; a step of diffusing and forming a first conductive layer between each of the diffusion-formed second conductive layers; This method includes a step of commonly wiring an electrode made of a low-resistance metal on each first conductive layer, and will be described in detail below using examples. FIGS. 8A to 8H are cross-sectional views sequentially illustrating manufacturing steps illustrating an embodiment of the method for manufacturing a semiconductor integrated circuit device according to the present invention. First, as shown in FIG. 8A, an n-type heavily doped buried layer 2 is formed on a p-type silicon semiconductor substrate 1, and then an n-type lightly doped epitaxial layer 3 is grown. Then, as shown in FIG. 8B, the oxide film 10 is
1 and a nitride film 201, which is an oxidation-resistant film, are sequentially formed and patterned into a predetermined shape. Using these as a mask, the epitaxial layer 3 is removed to a predetermined depth, and then ion implantation is performed to prevent channel cuts. Form layer 4. Further, the nitride film 20
1 as a mask, selective oxidation is performed to form an isolation oxide film 103 and a part of the thin oxide film 10.
B + ions are implanted using a resist mask through 4 to selectively form a p-type lightly doped layer 6 in the n-type lightly doped epitaxial layer 3, as shown in FIG. 8C. At this time, the channel cut layer 4 is re-diffused to form a layer 5. Then, as shown in FIG. 8D, a nitride film 202 is deposited on the p-type low concentration layer 6 as an oxidation-resistant film. Next, nitride film 2
The surface of 02 is oxidized to form an oxide film 115.
Then, as shown in FIG. 8E, a layer corresponding to FIG. After opening windows, depositing a polysilicon film on the upper layer including each of these window openings and diffusing n-type high concentration impurities, or depositing the doped polysilicon film, Using a polysilicon film doped as a diffusion source, the n-type high concentration layers 9, 10, 11 as collectors and the n-type high concentration layer 12 for taking out the electrodes are formed, and this polysilicon film is patterned. Each membrane 30
1, 304, 305, 306 and 302 are obtained. In the steps shown in FIGS. 8D and 8E, the oxide film 104 is used for washing out the base electrode extraction region, and the nitride film 104 is
02 are each made thinner to about 500 to 1000 Å due to distortion, and the oxide film 115 is made thinner to 50 to 100 Å, and the polysilicon film is patterned by gas (CF 4 + O 2 ) plasma etching using the resist as a mask. Furthermore, each film 304, 305, 306 and 302 substantially serves as a diffusion source for each layer 9, 10, 11 and 12.
The film 301 is used as a mask to leave the base layer of the pnp transistor. Here, the reason why the nitride film 202 is oxidized to form a very thin oxide film 115 is that if the oxide film between the polysilicon film and the nitride film is thick, the polysilicon film is selectively oxidized as shown in FIG. When the polysilicon film is deposited, the edges of the polysilicon film swell up, causing disconnection of the electrode wiring.
This is because if 05 is formed by CVD, the thickness is limited to about 1000 Å at most, and there is a risk of the above-mentioned wire breakage. Nitride films are originally used as oxidation-resistant films, and their oxidation rate is very slow, making them very suitable for forming thin oxide films. In other words, it converts into an oxide film with a thickness of about 70 Å in 3 hours of wet oxidation at 950°C. Furthermore, as a stopper during patterning of the polysilicon film, the thin oxide film can sufficiently serve as a stopper as long as extreme overetching is not performed. Next, as shown in FIG. 8F, the membranes 301 and 30
4, 305, 306 and 302, each oxide film 106 to 110 as an interlayer insulating film is formed at a thickness of 5,000 yen each.
The exposed portion of the nitride film 202 is etched away, and the exposed portion of the oxide film 104 is washed out, as shown in FIG. 8G. Similarly,
P-type high concentration layer 7 and each n-type high concentration layer 9, 10, 11
A p-type high concentration layer 8 for taking out the base electrode is formed by diffusion in between, and finally, as shown in FIG. A common base electrode 403
are each made of a low-resistance metal such as aluminum, and each of the polysilicon films serves as a corresponding electrode. Here, in order to describe the effects of this embodiment configuration, IIL inverter gate (fanout 3) patterns according to the conventional method and this embodiment method are created using the same design standards as shown in FIGS. 9 to 11. Indicated. In these figures, the standard dimension a is 2 μm
It is. Figure 9 shows the case where optimal performance is obtained using the conventional method, and the dimensional data in this case is gate area =
56μm×16μm=896μm 2 , (S c )=6μm×6μ
m = 36μm 2 , (S B ) = 46μm x 16μm (on the drawing)
45μm×13μm=585μm 2 , (S c /S B )=
It is 0.0615. Figure 10 shows the case of designing with this embodiment method with the same collector area (S c ) as the conventional method, and similarly, gate area = 51 μm × 12 μm.
m=612μm 2 , (S c )=6μm×6μm=36μm 2 ,
(S B ) = 42μm x 12μm (on the drawing) 41μm x 9
μm=369 μm 2 , (S c /S B )=0.0976, and the gate area is reduced to about 2/3. FIG. 11 shows a case where this embodiment method is designed so that (S c /S B ) is almost the same as the conventional method, and similarly,
Gate area = 45μm x 10μm = 450μm 2 , (S c ) =
4μm×4μm=16μm 2 , (S B )=35μm×10μ
m (on the drawing) 34 μm x 7 μm = 238 μm 2 , (S
c / S B ) = 0.0672, and the performance comparison at this time is shown in the following table.

【表】 また、この実施例方法では、従来方法のように
ベース抵抗の低減のために、前記第9図に示すp
形高濃度層Aを必要とせず、ベース面積(SB
が前記第4図のに示すように、従来の半分以下
となり、したがつて、同様に(Sc/SB)も前記
第5図のに示すように従来の約2倍に改善さ
れ、かつ(βu)も前記第6図のに示すように
大幅に増加する。さらにベース抵抗(r′BB)が
(C1)と(C3)とでほぼ同値をとり、かつ従来に比
較して(C1)で1/2以下、(C3)で1/10以下と
非常に小さくなる。そして(βu)値が(C1),
(C3)でほぼ同じ値をもち、従来に比較して
(C3)では約1.5倍になり、かつベース面積の縮少
と(βu)の増大とによつて、(tpd min)は従
来に比較して(C1)で52%、(C3)で45%も速くな
つて、(C1),(C3)で同じ(tpd min)が第7図の
ように得られる。さらにまたこの実施例の場合、
コレクタ面積(Sc)をより小さく最小パターン
寸法にしたときも、(βu)が10以上得られて従
来のように性能の急激な低下がない。 なお、この発明はIILインバータトランジスタ
をSIT(Static Induction Transister)におきか
えたSITLにも適用できることはもちろんであ
る。 以上、詳細に説明したように、この発明に係る
半導体集積回路装置の製造方法によれば、各コレ
クタ間でベース電極をとり、かつ低抵抗金属によ
る電極配線とすることによつて、各コレクタ間で
同一の大きさ(βu)が得られ、また、p形高濃
度層の除去により、小さなコレクタ面積(Sc
でも(Sc/SB)が大きく(βu)の低下を防止
でき、アウトプツト端子間で性能に差がなく、か
つ大幅な向上を期待できると共に、性能の低下な
しに集積密度の向上を図ることができるなどの効
果がある。
[Table] In addition, in this embodiment method, unlike the conventional method, in order to reduce the base resistance, the p
No need for high concentration layer A, base area (S B )
As shown in Fig. 4, it is less than half of the conventional value, and therefore (S c /S B ) is also improved to about twice that of the conventional value, as shown in Fig. 5. (βu) also increases significantly, as shown in FIG. Furthermore, the base resistance (r' BB ) is almost the same for (C 1 ) and (C 3 ), and is less than 1/2 for (C 1 ) and less than 1/10 for (C 3 ) compared to the conventional one. becomes very small. And the (βu) value is (C 1 ),
(C 3 ) has almost the same value, and (C 3 ) has approximately 1.5 times the conventional value, and due to the reduction in the base area and the increase in (βu), (tpd min) is lower than the conventional value. Compared to (C 1 ), the speed is 52% faster and (C 3 ) is 45% faster, and the same (tpd min) is obtained for (C 1 ) and (C 3 ) as shown in FIG. Furthermore, in this example,
Even when the collector area (S c ) is made smaller to the minimum pattern size, (βu) is obtained at 10 or more, and there is no sudden drop in performance as in the conventional case. It goes without saying that the present invention can also be applied to SITL in which the IIL inverter transistor is replaced with an SIT (Static Induction Transistor). As described above in detail, according to the method of manufacturing a semiconductor integrated circuit device according to the present invention, a base electrode is provided between each collector, and electrode wiring is made of a low resistance metal, thereby making it possible to The same size (βu) can be obtained with
However, (S c /S B ) is large, it is possible to prevent a decrease in (βu), there is no difference in performance between output terminals, and a significant improvement can be expected, and the integration density can be improved without deteriorating performance. There are effects such as being able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜第1図Fは従来の半導体集積回路装
置の製造方法の製造工程を順次に示す断面図、第
2図〜第7図は従来方法とこの発明の一実施例方
法とを比較して示す各特性図、第8図A〜第8図
Hはこの発明に係る半導体集積回路装置の製造方
法の一実施例を示す製造工程を順次に示す断面
図、第9図〜第11図は従来方法とこの発明の一
実施例方法とを比較して示す各パターン図、第1
2図は第8図A〜第8図Hにおけるポリシリコン
膜と窒化膜との間の酸化膜が厚い場合を説明する
ための図である。 1……p形半導体基板、2……n形高濃度埋込
み層、3……n形低濃度エピタキシヤル層、4…
…チヤンネルカツト防止層、5……再拡散された
層、6……p形低濃度層、7および8……p形高
濃度層、9,10,11および12……n形高濃
度層、101……酸化膜、103……分離酸化
膜、104……薄い酸化膜、105……リンガラ
ス膜、106〜110……酸化膜、115……酸
化膜、201……窒化膜、301,302,30
4,305および306……ポリシリコン膜、4
01……インジエクタ電極、403……ベース電
極、404,405および406……アウトプツ
ト電極。なお、図中、同一要素には同一番号を付
す。
FIGS. 1A to 1F are cross-sectional views sequentially showing the manufacturing steps of a conventional method for manufacturing a semiconductor integrated circuit device, and FIGS. 2 to 7 compare the conventional method and the method of an embodiment of the present invention. 8A to 8H are cross-sectional views sequentially showing the manufacturing steps of an embodiment of the method for manufacturing a semiconductor integrated circuit device according to the present invention, and FIGS. 9 to 11. are each pattern diagram showing a comparison between the conventional method and the method according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining the case where the oxide film between the polysilicon film and the nitride film in FIGS. 8A to 8H is thick. DESCRIPTION OF SYMBOLS 1...p-type semiconductor substrate, 2...n-type high concentration buried layer, 3...n-type low concentration epitaxial layer, 4...
... channel cut prevention layer, 5 ... rediffused layer, 6 ... p-type low concentration layer, 7 and 8 ... p-type high concentration layer, 9, 10, 11 and 12 ... n-type high concentration layer, 101... Oxide film, 103... Isolation oxide film, 104... Thin oxide film, 105... Phosphorous glass film, 106-110... Oxide film, 115... Oxide film, 201... Nitride film, 301, 302 ,30
4, 305 and 306...polysilicon film, 4
01... Injector electrode, 403... Base electrode, 404, 405 and 406... Output electrode. Note that in the figures, the same elements are given the same numbers.

Claims (1)

【特許請求の範囲】[Claims] 1 第2導電層内に選択的に第1導電層を形成し
た半導体基板表面に、酸化膜および耐酸化性膜か
らなる2層絶縁膜を形成する工程と、この耐酸化
性膜表面を酸化し、耐酸化性膜の一部を酸化膜に
変換する工程と、この3層絶縁膜を選択的に除去
して前記第1導電層に複数の窓開けを行なう工程
と、この窓開け部を覆うように第2導電形不純物
を導入したポリシリコン膜を形成する工程と、こ
のポリシリコン膜を拡散源として前記第1導電層
内に第2導電層を拡散形成したのち、ポリシリコ
ン膜をパターニングする工程と、前記3層絶縁膜
の表層露出部分を除去する工程と、前記パターニ
ングされたポリシリコン膜の表面に酸化膜を形成
する工程と、前記3層絶縁膜の窒化膜露出部分お
よび内層酸化膜露出部分を順次に除去する工程
と、前記拡散形成された各第2導電層間に、各々
第1導電層を拡散形成する工程と、この拡散形成
された各第1導電層上に低抵抗金属による電極を
共通配線する工程とを含むことを特徴とする半導
体集積回路装置の製造方法。
1. A step of forming a two-layer insulating film consisting of an oxide film and an oxidation-resistant film on the surface of a semiconductor substrate on which a first conductive layer is selectively formed within a second conductive layer, and oxidizing the surface of this oxidation-resistant film. , a step of converting a part of the oxidation-resistant film into an oxide film, a step of selectively removing the three-layer insulating film to form a plurality of windows in the first conductive layer, and covering the window openings. forming a polysilicon film into which impurities of a second conductivity type are introduced, and forming a second conductive layer within the first conductive layer using this polysilicon film as a diffusion source, and then patterning the polysilicon film. a step of removing an exposed surface portion of the three-layer insulating film, a step of forming an oxide film on the surface of the patterned polysilicon film, and an exposed portion of the nitride film and an inner layer oxide film of the three-layer insulating film. a step of sequentially removing the exposed portions, a step of diffusing and forming a first conductive layer between each of the second conductive layers formed by diffusion, and a step of forming a first conductive layer with a low resistance metal on each of the first conductive layers formed by diffusion. 1. A method of manufacturing a semiconductor integrated circuit device, comprising the step of common wiring of electrodes.
JP5665080A 1980-04-25 1980-04-25 Manufacture of semiconductor integrated circuit device Granted JPS56152262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5665080A JPS56152262A (en) 1980-04-25 1980-04-25 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5665080A JPS56152262A (en) 1980-04-25 1980-04-25 Manufacture of semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS56152262A JPS56152262A (en) 1981-11-25
JPS6155782B2 true JPS6155782B2 (en) 1986-11-29

Family

ID=13033229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5665080A Granted JPS56152262A (en) 1980-04-25 1980-04-25 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS56152262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128896U (en) * 1988-02-26 1989-09-01
JPH0331990A (en) * 1989-06-28 1991-02-12 Matsushita Refrig Co Ltd Cartridge tank system feed water device for cup automatic vending machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128896U (en) * 1988-02-26 1989-09-01
JPH0331990A (en) * 1989-06-28 1991-02-12 Matsushita Refrig Co Ltd Cartridge tank system feed water device for cup automatic vending machine

Also Published As

Publication number Publication date
JPS56152262A (en) 1981-11-25

Similar Documents

Publication Publication Date Title
JPS6379368A (en) Manufacture of high performance bicmos composition with polycrystalline silicon emitter and silicide base
CA1179786A (en) Lateral transistor structure having self-aligned base and base contact and method of fabrication
US4803174A (en) Bipolar transistor integrated circuit and method of manufacturing the same
US6008524A (en) Integrated injection logic semiconductor device
US4691436A (en) Method for fabricating a bipolar semiconductor device by undercutting and local oxidation
US4407059A (en) Method of producing semiconductor device
JPS63261746A (en) Manufacture of bipolar type semiconductor integrated circuit device
JPS6155782B2 (en)
JPH08274201A (en) Semiconductor integrated circuit device and its manufacture
JPS6158981B2 (en)
JPH0136710B2 (en)
JP2538077B2 (en) Method for manufacturing semiconductor device
JPS60207375A (en) Manufacture of semiconductor device
JPS6089969A (en) Semiconductor device and manufacture thereof
JPH0420263B2 (en)
JP2794571B2 (en) Manufacturing method of bipolar transistor
JPS61218169A (en) Semiconductor device and manufacture thereof
JPS6286753A (en) Manufacture of semiconductor device
JP2633411B2 (en) Method for manufacturing semiconductor device
JPH06275633A (en) Bipolar semiconductor device and its manufacture
JPS6018951A (en) Manufacture of semiconductor device
JPS61234564A (en) Manufacture of semiconductor device
JPS6145392B2 (en)
JPS61107772A (en) Manufacture of semiconductor device
JPS63187660A (en) Semiconductor integrated circuit device and manufacture thereof