JPS6155735B2 - - Google Patents

Info

Publication number
JPS6155735B2
JPS6155735B2 JP54033910A JP3391079A JPS6155735B2 JP S6155735 B2 JPS6155735 B2 JP S6155735B2 JP 54033910 A JP54033910 A JP 54033910A JP 3391079 A JP3391079 A JP 3391079A JP S6155735 B2 JPS6155735 B2 JP S6155735B2
Authority
JP
Japan
Prior art keywords
electron beam
sample
switching
scanning
acceleration voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54033910A
Other languages
Japanese (ja)
Other versions
JPS55126954A (en
Inventor
Setsuo Norioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP3391079A priority Critical patent/JPS55126954A/en
Publication of JPS55126954A publication Critical patent/JPS55126954A/en
Publication of JPS6155735B2 publication Critical patent/JPS6155735B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は走査電子顕微鏡に関するものである。[Detailed description of the invention] FIELD OF THE INVENTION The present invention relates to scanning electron microscopy.

走査電子顕微鏡においては電子ビームを微小な
径を有するプローブとして試料上に照射、走査
し、該照射により生ずる試料からの信号を用いて
試料に関する情報を得ている。この様な装置にお
いては、試料に、高い加速電圧の電子ビームと低
い加速電圧の電子ビームとを照射した場合では、
試料から得られる情報は異なる。つまり低加速電
圧の電子ビームを試料に照射した場合には、より
試料表面近傍の情報が得られ、又高加速電圧の電
子ビームを試料に照射した場合には試料のより深
い部分からの情報が得られる。そこで異なつた2
種以上の加速電圧の電子ビームを試料に照射した
場合における試料像を対比して見くらべることが
できれば、極めて意義が深い。
In a scanning electron microscope, an electron beam is used as a probe with a minute diameter to irradiate and scan a sample, and information about the sample is obtained using signals from the sample generated by the irradiation. In such an apparatus, when a sample is irradiated with an electron beam at a high acceleration voltage and an electron beam at a low acceleration voltage,
The information obtained from the sample is different. In other words, when a sample is irradiated with an electron beam with a low acceleration voltage, information near the sample surface can be obtained, and when a sample is irradiated with an electron beam with a high acceleration voltage, information from deeper parts of the sample can be obtained. can get. There was a difference 2
It would be of great significance if it were possible to compare and compare the images of a sample obtained when the sample is irradiated with an electron beam with an acceleration voltage higher than that of the electron beam.

本発明は斯様な点に鑑み、試料の同一領域に関
する異なつた深さの像を共に鮮明に同時観察し得
る走査電子顕微鏡を提供するもので、以下図面に
基づき詳説する。
In view of these points, the present invention provides a scanning electron microscope that can clearly and simultaneously observe images at different depths of the same area of a sample, and will be described in detail below with reference to the drawings.

第1図は本発明の実施例を示す構成略図であ
り、1は走査電子顕微鏡の鏡体である。2は該鏡
体1内の上方におかれた電子銃で、該電子銃から
発生した電子線Eは集束レンズ3及び4により細
く集束されて試料5上に照射される。前記集束レ
ンズ3と4との間には少なくとも1段のX,Y偏
向コイル6X及び6Yが置かれており、該各偏向
コイルには倍率調整器7を介して走査信号発生回
路8からの鋸歯状波走査信号が供給される。その
結果電子線は試料5上で二次元的に走査されるこ
とになる。該電子線の走査により試料から発生す
る二次電子や反射電子は検出器9により検出さ
れ、映像増巾器10及び切換回路11を介して陰
極線管12及び13の輝度変調グリツトに供給さ
れる。該陰極線管12及び13の夫々の偏向コイ
ル14X,14Y及び15X,15Yには走査信
号発生回路8から前記偏向コイル6X,6Yへの
信号と同期した走査信号が供給されている。前記
切換回路11は一方の陰極線管、例えば12に映
像信号を供給しているとき、他方の陰極線管13
にはブランキング信号を供給するように構成され
ている。16は前記集束レンズ4に接近して或い
はその内部に置かれた焦点合せ用補助コイル22
に供給する励磁電流を制御するためのレンズ制御
回路である。17は電子線の非点収差を補正する
ための非点補正コイルで、非点補正回路18から
補正電流が供給される。19は前記電子銃2に印
加する加速電圧を制御するための加速電圧制御回
路で、該制御回路には加速電圧を指定するための
2つの設定手段20a及び20bが設けてある。
この2つの設定手段により電子銃2に印加さる加
速電圧としては例えば10KVの如き高加速電圧と
例えば1KVの如き低加速電圧との2種類の異なつ
た加速電圧Va,Vbを設定できる。又該設定手段
20a,20bは前記倍率調整器7、レンズ制御
回路16、非点補正回路18及び映像増巾器10
と連動関係にあつて、レンズ制御回路16は設定
手段20aで設定された加速電圧Vaで加速され
た電子線Eを試料5上でフオーカスさせるような
電流Iaと設定手段20bにより設定された加速電
圧Vbで加速された電子線を試料5上でフオーカ
スさせるような電流Ibとを設定する。又倍率調整
器7は設定手段20a,20bで設定されたいず
れの加速電圧においても常に一定の倍率となるよ
うにつまり試料5上の一定領域を走査するように
走査信号の振巾を2段階に設定する。更に非点補
正回路18は設定手段20a及び20bで設定さ
れた各加速電圧における非点収差を補正する2つ
の補正電流を設定する。更に映像増巾器10で
は、設定されたいずれの加速電圧においても陰極
線管12,13に供給される映像信号が常に一定
となるように増巾度及び直流レベルを2段階に設
定する。前記加速電圧制御回路19、倍率調整器
7、レンズ制御回路16、非点補正回路18及び
映像増巾器10にはタイミング回路21からのタ
イミング信号が送られており、該タイミング信号
に同期した各回路19,16,18からは設定さ
れた2つの信号が交互に送り出される。前記タイ
ミング回路21は走査信号発生回路8からのX軸
(水平)走査信号と同期したタイミング信号を発
生する。又該タイミング回路からのタイミング信
号は前記切換回路11にも送られており、それに
よつて映像信号を陰極線管12及び13に交互に
供給する。
FIG. 1 is a schematic structural diagram showing an embodiment of the present invention, and 1 is a mirror body of a scanning electron microscope. Reference numeral 2 denotes an electron gun placed above the mirror body 1, and the electron beam E generated from the electron gun is narrowly focused by focusing lenses 3 and 4 and irradiated onto the sample 5. At least one stage of X, Y deflection coils 6X and 6Y is placed between the focusing lenses 3 and 4, and each deflection coil is provided with a sawtooth signal from a scanning signal generating circuit 8 via a magnification adjuster 7. A wave scanning signal is provided. As a result, the electron beam is two-dimensionally scanned over the sample 5. Secondary electrons and reflected electrons generated from the sample by the scanning of the electron beam are detected by a detector 9, and are supplied to the brightness modulation grids of cathode ray tubes 12 and 13 via an image intensifier 10 and a switching circuit 11. The deflection coils 14X, 14Y and 15X, 15Y of the cathode ray tubes 12 and 13 are supplied with a scanning signal synchronized with the signal sent from the scanning signal generating circuit 8 to the deflection coils 6X, 6Y. When the switching circuit 11 is supplying a video signal to one cathode ray tube 12, for example, the switching circuit 11 switches the switching circuit 11 to the other cathode ray tube 13,
is configured to provide a blanking signal. Reference numeral 16 denotes a focusing auxiliary coil 22 placed close to or inside the focusing lens 4.
This is a lens control circuit for controlling the excitation current supplied to the lens. Reference numeral 17 denotes an astigmatism correction coil for correcting astigmatism of the electron beam, and a correction current is supplied from the astigmatism correction circuit 18. Reference numeral 19 denotes an acceleration voltage control circuit for controlling the acceleration voltage applied to the electron gun 2, and the control circuit is provided with two setting means 20a and 20b for specifying the acceleration voltage.
With these two setting means, two different acceleration voltages Va and Vb can be set as the acceleration voltage applied to the electron gun 2: a high acceleration voltage such as 10KV and a low acceleration voltage such as 1KV. Further, the setting means 20a and 20b include the magnification adjuster 7, the lens control circuit 16, the astigmatism correction circuit 18, and the image intensifier 10.
The lens control circuit 16 generates a current Ia such that the electron beam E accelerated at the acceleration voltage Va set by the setting means 20a is focused on the sample 5 and an acceleration voltage set by the setting means 20b. A current Ib is set so that the electron beam accelerated by Vb is focused on the sample 5. Further, the magnification adjuster 7 divides the amplitude of the scanning signal into two stages so that a constant magnification is always maintained at any acceleration voltage set by the setting means 20a and 20b, that is, a constant area on the sample 5 is scanned. Set. Further, the astigmatism correction circuit 18 sets two correction currents for correcting astigmatism at each acceleration voltage set by the setting means 20a and 20b. Further, in the video amplifier 10, the amplification degree and the DC level are set in two stages so that the video signals supplied to the cathode ray tubes 12 and 13 are always constant at any set acceleration voltage. A timing signal from a timing circuit 21 is sent to the acceleration voltage control circuit 19, magnification adjuster 7, lens control circuit 16, astigmatism correction circuit 18, and video intensifier 10. The two set signals are alternately sent out from the circuits 19, 16, and 18. The timing circuit 21 generates a timing signal synchronized with the X-axis (horizontal) scanning signal from the scanning signal generating circuit 8. The timing signal from the timing circuit is also sent to the switching circuit 11, whereby video signals are alternately supplied to the cathode ray tubes 12 and 13.

斯かる装置における動作を説明する。先ず設定
手段20a及び20bにより所望とする2つの加
速電圧Va及びVbを指定する。次に走査信号発生
回路8をオンにすると該走査信号発生回路8から
第2図aで示すような水平走査信号と垂直走査信
号(図示せず)が鏡体1内の偏向コイル6X,6
Y及び陰極線管12,13の各偏向コイル14
X,15X,14Y,15Yに供給される。又同
時に水平走査信号の一部はタイミング回路21に
供給されるため、該タイミング回路21からは第
2図bで示すようなタイミング信号が発生する。
該発生したタイミング信号は加速電圧制御回路1
9、倍率調整器7、レンズ制御回路16、映像増
巾器10及び切換回路11に夫々送られる。しか
して第2図bで示すタイミング信号の内、期間
T1のときには加速電圧制御回路19からは第2
図c中Vaで示すように高い方の加速電圧を電子
銃2に印加するため、電子銃からは加速電圧Va
で加速された電子線が取り出される。又レンズ制
御回路16からは第2図d中Iaで示すような加
速電圧Vaで加速された電子線を試料5上でフオ
ーカスさせるに適した電流Iaが補助レンズ22
に送られる。同様に非点補正回路18からは加速
電圧Vaの電子線の非点を補正する電流が非点補
正コイル17に送られる。従つて試料5上の一定
領域をフオーカスされた且つ非点補正された加速
電圧Vaの電子線が水平走査する。該電子線の走
査により検出器9からは第2図e中Saで示すよ
うな映像信号が検出され、該検出された映像信号
は映像増巾器10により同図f中Sa′で示すよう
に増巾された後、切換回路11を介して陰極線管
12に導入される。次に第2図bで示すタイミン
グ信号の内期間T2のときには加速電圧制御回路
19からは第2図b中Vbで示すように低い方の
加速電圧が電子銃2に印加され、電子銃から加速
電圧Vbで加速された電子線が取り出される。又
レンズ制御回路16からは加速電圧Vaで加速さ
れた電子線を試料5上でフオーカスさせるに適し
た電流Ib(Ib<Ia)(第2図d)が補助レンズ
22に送られ、更に非点補正制御回路18からも
加速電圧Vbで加速された電子線の非点を補助す
る電流が非点補正コイル17に送られる。更に倍
率調整器7からは加速電圧Vaで加速された電子
線を走査するときの走査信号よりも小さい振巾の
走査信号を偏向コイル6X,6Yに供給する。従
つて試料5の一定領域上を加速電圧Vaのときと
同じ走査巾でもつてフオーカスされた且つ非点補
正された加速電圧Vbの電子線が水平走査する。
該電子線の走査により検出器9からは第2図e中
bで示すような映像信号が検出され、映像増巾
器10に送られる。このとき映像増巾器10は第
2図b中期間T2のタイミング信号により増巾度
及び直流レベルが加速電圧Vaで加速した電子線
の場合よりも高くなるように切換られており、従
つて該映像増巾器10から出力される映像信号は
第2図fで示す様にT1の期間もT2の期間も大略
等しいレベル及び振巾を持つものとなる。しかし
て映像増巾器10からの映像信号Sb′は切換回路
11を介して陰極線管13に導入される。以下前
述の動作を繰り返すことにより1フレームの走査
が終了すれば、陰極線管12上に加速電圧Va
基づく試料像が、又陰極線管13上に加速電圧V
bに基づく試料像が夫々表示される。その結果異
なつた2つの加速電圧に基づく試料像を同時に観
察することができる。
The operation of such a device will be explained. First, two desired acceleration voltages Va and Vb are designated by the setting means 20a and 20b. Next, when the scanning signal generating circuit 8 is turned on, a horizontal scanning signal and a vertical scanning signal (not shown) as shown in FIG.
Y and each deflection coil 14 of the cathode ray tubes 12 and 13
It is supplied to X, 15X, 14Y, and 15Y. At the same time, a portion of the horizontal scanning signal is supplied to the timing circuit 21, so that the timing circuit 21 generates a timing signal as shown in FIG. 2b.
The generated timing signal is applied to the acceleration voltage control circuit 1.
9, a magnification adjuster 7, a lens control circuit 16, an image intensifier 10, and a switching circuit 11, respectively. However, in the timing signal shown in Figure 2b, the period
When T 1 , the acceleration voltage control circuit 19 outputs the second
Since the higher accelerating voltage is applied to the electron gun 2 as shown by V a in Figure c, the accelerating voltage V a from the electron gun is
The accelerated electron beam is extracted. Further, from the lens control circuit 16, a current I a suitable for focusing the electron beam accelerated by an accelerating voltage V a on the sample 5 as shown by I a in FIG.
sent to. Similarly, the astigmatism correction circuit 18 sends a current to the astigmatism correction coil 17 to correct the astigmatism of the electron beam at the acceleration voltage V a . Therefore, the focused electron beam with the accelerating voltage V a horizontally scans a certain area on the sample 5 and is astigmatically corrected. By scanning the electron beam , the detector 9 detects a video signal as indicated by S a in FIG. After being amplified as described above, the light is introduced into the cathode ray tube 12 via the switching circuit 11. Next, during period T2 of the timing signal shown in FIG. 2b , the acceleration voltage control circuit 19 applies a lower acceleration voltage to the electron gun 2 as shown by Vb in FIG. An electron beam accelerated by an accelerating voltage V b is extracted from. Further, from the lens control circuit 16, a current I b (I b <I a ) (FIG. 2 d) suitable for focusing the electron beam accelerated by the accelerating voltage V a on the sample 5 is sent to the auxiliary lens 22. Furthermore, the astigmatism correction control circuit 18 also sends a current to the astigmatism correction coil 17 to assist in the astigmatism of the electron beam accelerated by the acceleration voltage V b . Further, the magnification adjuster 7 supplies the deflection coils 6X, 6Y with a scanning signal having a smaller amplitude than the scanning signal used when scanning the electron beam accelerated by the accelerating voltage V a . Therefore, the focused electron beam at the accelerating voltage V b horizontally scans over a certain area of the sample 5 with the same scanning width as at the accelerating voltage V a .
By scanning the electron beam, a video signal as shown by S b in FIG. 2e is detected from the detector 9 and sent to the video intensifier 10. At this time, the video intensifier 10 is switched by the timing signal of the middle period T2 in FIG. As a result, the video signal output from the video amplifier 10 has approximately the same level and amplitude during the T1 period and the T2 period, as shown in FIG. 2(f). The video signal S b ' from the video amplifier 10 is then introduced into the cathode ray tube 13 via the switching circuit 11. After one frame of scanning is completed by repeating the above-mentioned operations, a sample image based on the accelerating voltage V a is displayed on the cathode ray tube 12, and a sample image based on the accelerating voltage V a is displayed on the cathode ray tube 13.
Sample images based on b are displayed. As a result, sample images based on two different accelerating voltages can be observed simultaneously.

尚該実施例では陰極線管を2つ用いたが、1つ
の陰極線管上の左半分及び右半分に異なつた2つ
の加速電圧の像を夫々独立に表示するように構成
してもよい。
Although two cathode ray tubes are used in this embodiment, the configuration may be such that images of two different accelerating voltages are independently displayed on the left and right halves of one cathode ray tube.

又、1フレーム或いは数フレームを走査する毎
に加速電圧の切換を行うように構成してもよい。
更に、加速電圧の切換は二段階に限定されるもの
ではなく、所望の数に設定してもよい。更に又、
焦点合せ用の補助レンズを設けたが、該補助レン
ズを用いることなく集束レンズ4或いは4と3に
供給する励磁電流を変化させてもよい。
Alternatively, the accelerating voltage may be changed every time one frame or several frames are scanned.
Furthermore, the switching of the acceleration voltage is not limited to two stages, and may be set to a desired number. Furthermore,
Although the auxiliary lens for focusing is provided, the excitation current supplied to the focusing lens 4 or 4 and 3 may be changed without using the auxiliary lens.

以上詳細に説明した様に、本発明によれば、加
速電圧の切換えにかわらず前記レンズ手段による
合焦点が維持されるように前記加速電圧の切換え
に同期して前記レンズ手段を異なつた2種以上の
レンズ強度に切換えるための手段と、該加速電圧
の切換えにかかわらず前記電子線により前記試料
の同一領域が走査されるように前記加速電圧の切
換えに同期して前記偏向系に送られる偏向信号を
切換えるための手段を備えるようにしたため、試
料の同一領域に関する異なつた深さの像を共に鮮
明に同時観察可能な走査電子顕微鏡が提供され
る。
As explained in detail above, according to the present invention, the lens means is changed between two different types in synchronization with the switching of the acceleration voltage so that the focused point by the lens means is maintained regardless of the switching of the acceleration voltage. means for switching to the above lens strength, and a deflection sent to the deflection system in synchronization with switching of the accelerating voltage so that the same area of the sample is scanned by the electron beam regardless of switching of the accelerating voltage. By including means for switching the signals, a scanning electron microscope is provided that allows images of different depths of the same area of the sample to be observed simultaneously and clearly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成略図、第
2図a乃至fは本発明の動作を説明するための図
である。 第1図中1は鏡体、2は電子銃、3及び4は集
束レンズ、5は試料、6X及び6Yは偏向コイ
ル、7は倍率調整器、8は走査信号発生器、9は
検出器、10は映像増巾器、11は切換回路、1
2及び13は陰極線管、16はレンズ制御回路、
17は非点補正コイル、18は非点補正制御回
路、19は加速電圧制御回路、20a及び20b
は設定手段、21はタイミング回路、22は補助
コイルである。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, and FIGS. 2 a to 2 f are diagrams for explaining the operation of the present invention. In Fig. 1, 1 is a mirror body, 2 is an electron gun, 3 and 4 are focusing lenses, 5 is a sample, 6X and 6Y are deflection coils, 7 is a magnification adjuster, 8 is a scanning signal generator, 9 is a detector, 10 is a video intensifier, 11 is a switching circuit, 1
2 and 13 are cathode ray tubes, 16 is a lens control circuit,
17 is an astigmatism correction coil, 18 is an astigmatism correction control circuit, 19 is an acceleration voltage control circuit, 20a and 20b
2 is a setting means, 21 is a timing circuit, and 22 is an auxiliary coil.

Claims (1)

【特許請求の範囲】[Claims] 1 電子線を発生するための電子線発生手段、該
電子線発生手段からの電子線を細く集束して試料
上に照射するレンズ手段、前記電子線を試料上で
走査するための偏向系を備えた装置において、前
記電子線の走査に同期して前記電子線発生手段に
異なつた2種以上の加速電圧を交互に切換えて印
加するための手段、該加速電圧の切換えにかかわ
らず前記レンズ手段による合焦点が維持されるよ
うに前記加速電圧の切換えに同期して前記レンズ
手段を異なつた2種以上のレンズ強度に切換える
ための手段、該加速電圧の切換えにかかわらず前
記電子線により前記試料の同一領域が走査される
ように前記加速電圧の切換えに同期して前記偏向
系に送られる偏向信号を切換えるための手段、前
記各加速電圧で加速された電子線に基づく夫々の
試料像を表示し得る表示手段からなる走査電子顕
微鏡。
1 Equipped with an electron beam generating means for generating an electron beam, a lens means for narrowly focusing the electron beam from the electron beam generating means and irradiating it onto the sample, and a deflection system for scanning the electron beam on the sample. in the apparatus, means for alternately switching and applying two or more different accelerating voltages to the electron beam generating means in synchronization with scanning of the electron beam; means for switching the lens means to two or more different lens strengths in synchronization with the switching of the accelerating voltage so that a focused point is maintained; means for switching a deflection signal sent to the deflection system in synchronization with switching of the accelerating voltage so that the same area is scanned; displaying each sample image based on the electron beam accelerated by the respective accelerating voltage; A scanning electron microscope consisting of display means for obtaining.
JP3391079A 1979-03-23 1979-03-23 Scanning electron microscope Granted JPS55126954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3391079A JPS55126954A (en) 1979-03-23 1979-03-23 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3391079A JPS55126954A (en) 1979-03-23 1979-03-23 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPS55126954A JPS55126954A (en) 1980-10-01
JPS6155735B2 true JPS6155735B2 (en) 1986-11-28

Family

ID=12399663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3391079A Granted JPS55126954A (en) 1979-03-23 1979-03-23 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPS55126954A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454507Y2 (en) * 1987-10-15 1992-12-21
JPH0454506Y2 (en) * 1987-09-30 1992-12-21
JPH0454505Y2 (en) * 1987-09-30 1992-12-21

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914262U (en) * 1982-07-20 1984-01-28 日本電子株式会社 Automatic photographing device in electron microscope
JP3934461B2 (en) * 2002-04-11 2007-06-20 株式会社キーエンス Method for preventing charge-up of electron microscope and electron microscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427354A (en) * 1977-08-01 1979-03-01 Hitachi Ltd Scan-type electronic microscope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427354A (en) * 1977-08-01 1979-03-01 Hitachi Ltd Scan-type electronic microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454506Y2 (en) * 1987-09-30 1992-12-21
JPH0454505Y2 (en) * 1987-09-30 1992-12-21
JPH0454507Y2 (en) * 1987-10-15 1992-12-21

Also Published As

Publication number Publication date
JPS55126954A (en) 1980-10-01

Similar Documents

Publication Publication Date Title
JPH05290787A (en) Scanning electron microscope
JPS6155735B2 (en)
US3748467A (en) Scanning electron microscope
US4321468A (en) Method and apparatus for correcting astigmatism in scanning electron microscopes and similar equipment
GB2074429A (en) Method and apparatus for compensating for astigmatism in electron beam devices
JP2003151484A (en) Scanning type charged particle beam device
JP2002150987A (en) Electron microscope and photographing method of transmission electron image in electron microscope
JPH10293552A (en) Automatic convergent circuit for monitor
SU1240347A3 (en) Device for checking engraved printing plates
JPH06243812A (en) Scanning electron microscope
JPH07262950A (en) Scanning electron microscope
JPH0343650Y2 (en)
JPS5842938B2 (en) scanning electron microscope
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam
JPS62198043A (en) Three-dimensional observation device
JPH0221549A (en) Scanning electron microscope
JPH07161327A (en) Focusing method in charged particle beam
JPS6089047A (en) Scanning electron microscope
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPS6332220B2 (en)
JPH04277456A (en) Charged particle beam device
JPS5840758A (en) Astigmatism correction in sample-scanning-type sample- image displayer by means of particle rays
JPS6248344B2 (en)
JP2002319361A (en) Method of setting different magnification for scanning electron microscope
JPS61181051A (en) Electron ray equipment