JPS6155208A - Drying of porous regenerated cellulose hollow fiber - Google Patents

Drying of porous regenerated cellulose hollow fiber

Info

Publication number
JPS6155208A
JPS6155208A JP17753184A JP17753184A JPS6155208A JP S6155208 A JPS6155208 A JP S6155208A JP 17753184 A JP17753184 A JP 17753184A JP 17753184 A JP17753184 A JP 17753184A JP S6155208 A JPS6155208 A JP S6155208A
Authority
JP
Japan
Prior art keywords
hollow
drying
fiber
hollow fiber
hollow fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17753184A
Other languages
Japanese (ja)
Inventor
Michitaka Iwata
岩田 道隆
Norihiko Suzuki
鈴木 徳彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17753184A priority Critical patent/JPS6155208A/en
Publication of JPS6155208A publication Critical patent/JPS6155208A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying

Abstract

PURPOSE:To carry out the drying of a wet porous hollow fiber of regenerated cellulose, without deteriorating the fiber, by substituting the water in the hollow fiber with a specific organic solvent, and drying the fiber under tension while applying pressure of gas to the hollow part. CONSTITUTION:The water in a cellulosic hollow fiber is substituted with an organic solvent having a boiling point of <=70 deg.C, solubility of >=10wt% in water, and free from hydroxyl group, and the fiber is dried under a tension higher than 0.1g/d and lower than the tensile breakage strength of the fiber, while applying pressure to the hollow part with a gas having a relative humidity of <=70%. The pressure is >=100mm.Hg and lower than the burst strength of the fiber. USE:Artificial kidney, artificial liver, artificial pancreas, ultrafiltration membrane, etc. of filtration/dialysis-type or of filtration-type.

Description

【発明の詳細な説明】 印 産業上の利用分野 本発明は、湿潤状態にある多孔性中空糸の乾燥方法に関
する。さらに詳しくは、セルロース銅アンモニア溶液か
ら得られる多孔性再生セルロース中空糸の製造工程に於
いて、湿潤状態にある中空糸を乾燥するに際し、沸点が
70℃以下で、水への溶解度が10重量係以上で、かつ
水酸基を持たない有機溶媒で中空糸中の水分を置換し、
次いて、相対湿度70優以下の気体で該中空糸の中空部
を100 ttrmHg以上、破裂強度以下の圧力で加
圧しながら0. I II/d以上、引張υ破壊強度以
下の張力下で乾燥することを特徴とする多孔性再生セル
ロース中空糸の乾燥方法に関する。なお、本発明に於け
る「多孔性中空糸」とは、壁厚部を電子顕微鏡で観察し
た際、壁厚部会面に於いて0,02μm以上の孔が10
967cm  以上観察される中空糸と定義し、そうで
ないものを「非多孔性中空糸」と定義する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for drying porous hollow fibers in a wet state. More specifically, in the manufacturing process of porous regenerated cellulose hollow fibers obtained from a cellulose cupric ammonia solution, when drying the hollow fibers in a wet state, the boiling point is 70°C or less and the solubility in water is 10% by weight. With the above steps, water in the hollow fibers is replaced with an organic solvent that does not have a hydroxyl group,
Next, the hollow part of the hollow fiber is pressurized with a gas having a relative humidity of 70 or less at a pressure of 100 ttrmHg or more and less than bursting strength, and then 0. I This invention relates to a method for drying porous regenerated cellulose hollow fibers, which is characterized by drying under a tension of not less than II/d and not more than tensile υ breaking strength. In addition, "porous hollow fiber" in the present invention means that when the wall thickness part is observed with an electron microscope, there are 10 pores of 0.02 μm or more on the surface of the wall thickness part.
Hollow fibers with a length of 967 cm or more are defined as "non-porous hollow fibers".

(ロ)従来の技術 物質の分離精製技術の中で、イオン、低分子物質あるい
は液相中での濁質や微粒子などミクロンオーダーの物質
を分離する手段としての膜分離技術の研究が盛んに行な
われている。この種の技術の経済的規模による実用化を
阻む最大の問題としては、物質分離速度が小さいことが
あげられる。
(b) Among conventional technology for separation and purification of substances, research is actively conducted on membrane separation technology as a means of separating micron-order substances such as ions, low-molecular substances, and suspended solids and fine particles in the liquid phase. It is. The biggest problem preventing commercialization of this type of technology on an economic scale is the low rate of material separation.

物質分離速度は膜面積に依存するため、処理物質量が増
大するに従りて膜面積を増大せねばならず、通常使用さ
れる平面膜では必然的に装置が大塵化する。このような
問題は極めて細い中空糸でその中空部を囲む繊維壁を分
離膜として物質分離を行なわせ、この中空糸を多数本束
ねて物質分離部分を形成することによって単位体積当シ
の分離膜の有効面積を増大させ、装置を小型化すること
で解決される。将来膜分離システムが中心となる可能性
がある分野として、■低温で濃縮、精製、回収、を必要
とする分野(食品、生物化学工業分野)、■無菌、無塵
を必要とする分野(医薬品および治療機関、電子工業分
野)、■微量な高価物質の濃縮回収(原子力、重金属分
野)、■特殊少量分離分野(医薬分野)、■エネルギー
多消費分離分野(蒸留代替)などが考えられるが、これ
らの分野に利用される膜として、孔径の゛大きな取扱い
の容易な親水性膜の必要が高まっている。
Since the rate of substance separation depends on the membrane area, as the amount of substances to be treated increases, the membrane area must be increased, and with the normally used flat membrane, the apparatus inevitably becomes dusty. This problem can be solved by separating substances using extremely thin hollow fibers and using the fiber wall surrounding the hollow part as a separation membrane, and by bundling a large number of these hollow fibers to form a substance separation part. This can be solved by increasing the effective area of the device and downsizing the device. Fields where membrane separation systems may become the main focus in the future include: ■ Fields that require concentration, purification, and recovery at low temperatures (food and biochemical industries); ■ Fields that require sterility and dust-free operation (pharmaceuticals) Concentration and recovery of trace amounts of expensive substances (nuclear power, heavy metals fields), ■Special small quantity separation field (pharmaceutical field), ■Energy-intensive separation field (alternative to distillation), etc. As membranes used in these fields, there is an increasing need for hydrophilic membranes with large pore sizes and easy handling.

親水性の大きな素材として、再生セルロースがある。再
生セルロースは耐有機溶媒性および力学的性質に優れ、
また合成高分子と異なシ生体に対する毒性も少ない。し
たがって、再生セルロースで構成された平均孔径の大き
な中空糸の出現が期待されていた。
Regenerated cellulose is a highly hydrophilic material. Regenerated cellulose has excellent organic solvent resistance and mechanical properties,
Also, unlike synthetic polymers, it is less toxic to living organisms. Therefore, the appearance of hollow fibers composed of regenerated cellulose and having a large average pore diameter was expected.

本発明者らは、先にセルロース銅アンモニア溶液を環状
紡出口よシ押し出し、凝固、再生、水洗する工程に於い
て、外側環状紡出口よ)該紡糸原液を、該紡糸原液に対
して凝固性液体を中央部紡出口よシそれぞれ吐出させ、
かつ凝固前にミクロ相分離を生起させるととくより全繊
維にわたって連続貫通した中空部を有する多孔性再生セ
ルロース中空糸を製造することに成功した。
The present inventors first extruded the cellulose copper ammonia solution through the annular spinning spout, and in the process of coagulating, regenerating, and washing with water, the spinning dope (outer annular spinning spout) was The liquid is discharged from the central spinning port,
In addition, by causing microphase separation before coagulation, we succeeded in producing porous regenerated cellulose hollow fibers having hollow portions that continuously penetrated through the entire fiber.

しかし、多孔性再生セルロース中空糸は壁厚部(内、外
壁)に平均孔径0.02 μm 〜10 Amの孔が存
在しているため、従来の非多孔性再生セルロースの乾燥
方法、たとえば、湿潤状態にある中空糸を解舒ローラー
によシもち上げ、送シローラーと巻取ローラーよシ高温
の乾燥機内に送シ込み、連続的に通過させ中空糸中の水
分を加熱蒸発させる方法を本多孔性再生セルロース中空
糸にそのまま適用すれば、中空糸の中空部のつぶれや壁
厚部の孔のつぶれなどの問題が起こる。上記問題を克服
するために鋭意研究した結果、本発明に至った。
However, since porous regenerated cellulose hollow fibers have pores with an average pore size of 0.02 μm to 10 Am in the wall thickness (inner and outer walls), conventional drying methods for non-porous regenerated cellulose, such as wet This porous method describes a method in which the hollow fibers are lifted up by an unwinding roller, fed through a feed roller and a take-up roller into a high-temperature dryer, and then passed through continuously to heat and evaporate the moisture in the hollow fibers. If applied directly to regenerated cellulose hollow fibers, problems such as collapse of the hollow portion of the hollow fibers and collapse of pores in the thick wall portion will occur. As a result of intensive research to overcome the above problems, the present invention has been achieved.

(ハ)発明が解決しようとする問題点 本発明の目的は、上述のような従来技術の問題点(中空
糸の中空部のつぶれや壁厚部の孔のつぶれなど)を解決
し、湿潤状態にある多孔性再生セルロース中空糸をなん
ら損なうことなく有利に乾燥する方法を提供するにある
(c) Problems to be Solved by the Invention The purpose of the present invention is to solve the problems of the prior art as described above (such as the collapse of the hollow part of the hollow fiber and the collapse of the holes in the thick wall part), and to To provide a method for advantageously drying porous regenerated cellulose hollow fibers without any damage.

に)問題点を解決するための手段 本発明に係る多孔性再生セルロース中空糸の乾燥方法は
、多孔性再生セルロース中空糸の製造工程に於いて、湿
潤状態にある中空糸を乾燥するに際し、沸点が70℃以
下で、水への溶解度が10重景俤以上で、かつ水酸基を
持たない有機溶媒で中空糸中の水分を置換し、次いで、
相対湿度70チ以下の気体で該中空糸の中空部をioo
   −一旬以上、破錠強度以下の圧力で加圧しながら
0、1 F/d以上、引張夛破壊強度以下の張力下で乾
燥することを特徴とする。
B) Means for Solving the Problems The method for drying porous regenerated cellulose hollow fibers according to the present invention is characterized in that, in the manufacturing process of porous regenerated cellulose hollow fibers, when drying the hollow fibers in a wet state, the boiling point is 70°C or less, the water solubility in water is 10 times higher, and the water in the hollow fibers is replaced with an organic solvent that does not have a hydroxyl group, and then
The hollow part of the hollow fiber is io
- It is characterized by drying under a tension of 0 or 1 F/d or more and less than the tensile breaking strength while applying pressure at a pressure of at least one hour and less than the tablet breaking strength.

本発明の主特徴は、湿潤状態にある多孔性再生セルロー
ス中空糸を沸点が70℃以下で、水への溶解度が10重
量%以上で、かつ水酸基を持たない有機溶媒で中空糸中
の水分を置換し、次いで相対湿度70チ以下の気体で該
中空糸の中空部を加圧し々から乾燥することである。水
分を有機溶媒で置換し乾燥する方法自体は一般的な手法
であるが、本発明のように沸点が70℃以下で、水への
溶解度が10重量%以上で、かつ水酸基を持たない有機
溶媒で中空糸中の水分を置換すると湿潤状態とほぼ同じ
性能を持つ中空糸が得られる。該有機溶媒以外の有機溶
媒(たとえばメタノール、エタノール)を用いて水分を
置換すると、多孔性再生セルロース中空糸の平均孔径が
乾燥の際著しく小さくなシ、ときKは0.02 am以
下となる。また、乾燥後の中空糸が薗<、かつもろくな
るのが一般的である。したがって、沸点が70℃以下で
、水への溶解度が10重量−以上で、かつ水酸基を持た
ない有機溶媒で中空糸中の水分を置換することが必須で
あシ、かくして、マイクロフィルトレージ冒ンなどに用
いられる中空糸としての性能を十分発揮出来る中空系が
得られ、同時に柔軟悴の高り中空糸が得られる。ここで
、乾燥後の「中空糸」とは水分率がlOチ以下のものを
いう。好ましい有機溶媒としてはアセトンがある。この
アセトンで水分を置換すると、理由は現在のところ不明
であるが、従来の非多孔性中空糸+該有機溶媒以外で置
換して乾燥した中空糸にくらべて柔軟性に富み、微細構
造的にも結晶化度は低く、分子間、分子内水素結合も十
分発達しない等の特徴がある。
The main feature of the present invention is to remove moisture in the porous regenerated cellulose hollow fibers in a wet state using an organic solvent with a boiling point of 70°C or less, a solubility in water of 10% by weight or more, and no hydroxyl group. Then, the hollow portion of the hollow fiber is dried while being pressurized with a gas having a relative humidity of 70 degrees or less. The method of replacing water with an organic solvent and drying is a common method, but as in the present invention, an organic solvent with a boiling point of 70°C or less, a solubility in water of 10% by weight or more, and no hydroxyl group is used. When the water in the hollow fibers is replaced with , hollow fibers with almost the same performance as in the wet state can be obtained. When water is replaced using an organic solvent other than the organic solvent (for example, methanol or ethanol), the average pore diameter of the porous regenerated cellulose hollow fibers becomes extremely small during drying, and K becomes 0.02 am or less. Furthermore, it is common for the hollow fibers to become thick and brittle after drying. Therefore, it is essential to replace the water in the hollow fibers with an organic solvent that has a boiling point of 70°C or less, a solubility in water of 10% by weight or more, and does not have hydroxyl groups. A hollow system can be obtained that can fully exhibit the performance as a hollow fiber used in such applications, and at the same time, a hollow fiber with high flexibility and stiffness can be obtained. Here, the term "hollow fibers" after drying refers to fibers with a moisture content of 10 cm or less. A preferred organic solvent is acetone. When water is replaced with acetone, the reason is currently unknown, but compared to conventional non-porous hollow fibers + hollow fibers that have been replaced with a solvent other than the organic solvent and dried, it becomes more flexible and has a finer structure. They also have low crystallinity, and their intermolecular and intramolecular hydrogen bonds are not sufficiently developed.

また、好ましくは、湿潤状態にある多孔性再生セルロー
ス中空゛糸を、相、対湿度70チ以下の気体で該中空糸
O中空部を50−電板上、破裂強度以下の圧力で加圧し
fkから前記有機溶媒で中空糸中O水分t−置換し、さ
らに該中空糸の・中空部を該気体で加圧しながら乾燥す
る。このような方法(よプ、有機溶媒と早く置換出来、
また中空糸の壁厚部のピンホーA−などの欠点を容品に
発見すること遮可能となる。
Preferably, the porous regenerated cellulose hollow fibers in a wet state are pressurized with a gas having a relative humidity of 70 degrees or less over a 50-volt electric plate at a pressure below the bursting strength. Then, the organic solvent is used to replace the moisture in the hollow fibers, and the hollow portions of the hollow fibers are further dried while being pressurized with the gas. This method (which can quickly replace organic solvents,
In addition, it is possible to prevent defects such as pinhole A- in the thick wall portion of the hollow fibers from being detected in the product.

中空糸の中空部に付加する気体の圧力として11001
131LH以上、破裂強度以下でbることが必要でちる
。圧力110011sH以下では、乾燥不良や乾燥時間
が非常に長くかかり、乾燥過程で中空部の変形が起こる
場合が多い。また破裂強度以上では壁厚部の破裂といっ
た問題が起ζる。中空糸の壁厚部のピンホールなどのチ
ェックを同時に行なう場合の圧力としては、100ar
xHg以上、あらかじめ予測されたパプルボイ/ト以下
が好ましい。また、中空糸の中空部に付加させる気体は
相対湿度70%以下、望ましくは50ヂ以下である。相
対湿度が70俤よυ大であれば気体中の水分を中空糸が
吸着し、乾燥が困難になる。したがって気体の相対湿度
は低ければ低いほど好ましい。さらに、有機溶媒置換後
、有機溶媒を蒸発させる雰囲気湿度が高−と乾燥困難と
なるため、雰囲気湿度も70チ以下、好ましくは501
以下にコントロールすると再現性良く安定な乾燥状態の
多孔性再生セルロース中空糸が得られる。乾燥時に収縮
を防ぐため0.1 Ivd以上の張力を与えるのも重要
なことである。張力を与えず、無緊張下で乾燥すると収
縮が起こって中空糸の外径や内径の変化や平均孔径の減
少などの間層が起こる。
11001 as the pressure of gas added to the hollow part of the hollow fiber
131LH or more and bursting strength or less is required. If the pressure is less than 110011 sH, drying may be insufficient or the drying time may be extremely long, and the hollow portion may often be deformed during the drying process. Moreover, if the bursting strength is exceeded, problems such as bursting of the thick wall portion may occur. When simultaneously checking for pinholes in the wall thickness of hollow fibers, the pressure is 100 ar.
It is preferable that the temperature is equal to or higher than xHg and equal to or lower than the pre-predicted Paplevoice/t. Further, the relative humidity of the gas added to the hollow portion of the hollow fiber is 70% or less, preferably 50° or less. If the relative humidity is greater than 70 yen, the hollow fibers will adsorb moisture in the gas, making drying difficult. Therefore, the lower the relative humidity of the gas, the better. Furthermore, after replacing the organic solvent, if the atmospheric humidity in which the organic solvent is evaporated is high, drying becomes difficult.
By controlling as follows, porous regenerated cellulose hollow fibers in a dry state with good reproducibility and stability can be obtained. It is also important to apply a tension of 0.1 Ivd or more to prevent shrinkage during drying. When drying under no tension without applying any tension, shrinkage occurs, resulting in changes in the outer diameter and inner diameter of the hollow fibers, and a decrease in the average pore diameter.

本発明方法で得られた多孔性再生セルロース中空糸が利
用できる分離対象としては、水を含む液体または気体混
合物中の目的とする成分の分離除去、たとえば濾過/透
析型あるいは濾過型人工腎臓、人工肝臓、あるいは人工
膵臓用中空糸などが挙げられる。その細限外濾過膜とし
て利用できるが、親水性で力学的性質に優れた本多孔性
再生セルロース中空糸は、生体関連分野(医学、生物化
学工業)、あるいは食品醗酵分野に於いて適している。
The porous regenerated cellulose hollow fibers obtained by the method of the present invention can be used for separation and removal of target components in liquid or gas mixtures containing water, such as filtration/dialysis type or filtration type artificial kidneys, artificial Examples include hollow fibers for the liver or artificial pancreas. This porous regenerated cellulose hollow fiber, which is hydrophilic and has excellent mechanical properties, is suitable for use in bio-related fields (medicine, biochemical industry) and food fermentation fields. .

実施例に先立ち、発明の詳細な説明中などで用いられた
各種物性値の測定方法を以下に示す。
Prior to the examples, methods for measuring various physical property values used in the detailed explanation of the invention are shown below.

く平均分子量〉 銅アンモニア溶液中(20℃)で測定された極限粘度数
(ダ)(m/Jlンを下式(1)に代入することによシ
、平均分子量(粘度平均分子量) My を算出する。
Average molecular weight> By substituting the intrinsic viscosity number (Da) (m/Jl) measured in a cupric ammonia solution (20°C) into the following formula (1), the average molecular weight (viscosity average molecular weight) My can be calculated. calculate.

My= (η) X 3.2 X 10     (1
)く平均孔半径、孔密度〉 多孔膜1cIIL2当シの孔半径がr −r + dr
lc存在する孔の数をN(r)drと表示すると(N(
r)は孔径分布関数)、平均孔半径F3sおよび孔密度
Nは下式(3)および(4)で与えられる。
My= (η) X 3.2 X 10 (1
) Average pore radius, pore density> Pore radius of porous membrane 1cIIL2 is r − r + dr
If the number of holes existing in lc is expressed as N(r)dr, then (N(
r) is a pore size distribution function), the average pore radius F3s and the pore density N are given by the following equations (3) and (4).

N=/″’ gr) d r       (4)湿潤
状態の中空糸内部の水分をアセトンで置換し、その後風
乾して得られた中空糸の内外壁面および壁厚部における
中間面の電子顕微鏡写真を走葺型電子顕微鏡を用いて撮
影する。壁厚部のサンプリングは、中空糸をエポキシ樹
脂に包埋後、ウルトラミクロトーム(LKB社(スウェ
ーデン)製Ultratome III 8800 m
、 ) K装着したガラスナイフを用いて、外壁面から
測定して壁厚の1/1.8〜1/2.2の位置で中央糸
の繊維軸方向に対して平行に厚さ約1μmの試料を切シ
出した。該写真から公知の方法で孔径分布関数N(r)
を算出し、これを(3)式に代入する。すなわち、孔径
分布を求めたい部分の走査型電子顕微鏡写真を適当な大
きさくたとえば20ciX20α)K拡大焼付けし、得
られた写真上に等間隔にテストライン(直線)を20本
描く。おのおのの直線は多数の孔を横切る。孔を横切っ
た際の孔内に存在する直線の長さを測定し、この頻度分
布関数を求める。この頻度分布関数を用いて、たとえば
ステレオロノ(たとえば、諏、訪紀夫著一定量形態学”
岩波書店)の方法でN(r)を定める。なお平均孔径は
2i3である。
N=/''' gr) d r (4) Electron micrographs of the inner and outer wall surfaces and the intermediate surface of the wall thickness of the hollow fiber obtained by replacing the moisture inside the wet hollow fiber with acetone and then air drying. Images are taken using a scanning electron microscope. Sampling of the thick wall part is performed using an ultramicrotome (LKB (Sweden) Ultratome III 8800 m after embedding the hollow fiber in epoxy resin).
, ) Using a glass knife equipped with K, cut an approximately 1 μm thick piece parallel to the fiber axis direction of the central yarn at a position of 1/1.8 to 1/2.2 of the wall thickness as measured from the outer wall surface. The sample was cut out. From the photograph, the pore size distribution function N(r) is determined by a known method.
is calculated and substituted into equation (3). That is, a scanning electron micrograph of the part where the pore size distribution is to be determined is enlarged and printed to an appropriate size, for example, 20 ci x 20 α)K, and 20 test lines (straight lines) are drawn at equal intervals on the obtained photograph. Each straight line crosses a number of holes. Measure the length of the straight line that exists within the hole when it crosses the hole, and find this frequency distribution function. Using this frequency distribution function, we can use, for example, Stereolono
N(r) is determined by the method of Iwanami Shoten). Note that the average pore diameter is 2i3.

〈バブルポイントおよび破裂強度〉 湿潤状態にある中空糸の一端の中空部に、注射器に接続
された注射針を挿入し、この部分を固定する。中空糸の
もう一端を接着剤等で封鎖する。
<Bubble point and bursting strength> A needle connected to a syringe is inserted into the hollow part of one end of the hollow fiber in a wet state, and this part is fixed. Seal the other end of the hollow fiber with adhesive or the like.

その後、中空糸を25℃の水中に浸漬し、注射筒の上部
よシ窒素を圧力源として加圧し、水中に浸漬した中空糸
の壁厚部よシ最初にバブルが出現した時の窒素の圧力を
読み取ってバブルポイントとする。さらに窒素の圧力を
増加させると中空糸は破裂する。この際の圧力が破裂強
度である。
After that, the hollow fiber was immersed in water at 25°C, and the upper part of the syringe was pressurized using nitrogen as a pressure source. Read and set it as a bubble point. Further increasing the nitrogen pressure causes the hollow fibers to burst. The pressure at this time is the bursting strength.

く引張シ破壊強度〉 長さ10αの中空糸を東洋yN−、ルドウイン社製テン
シロンUTM−n20型引張シ試験機で、20℃。
Tensile fracture strength> Hollow fibers with a length of 10α were tested at 20°C using a Tensilon UTM-n20 type tensile strength testing machine manufactured by Toyo YN- and Ludwin Co., Ltd.

60 S RHの条件下で引張シ速度50 wJ’t+
で測定する。
Tensile speed 50 wJ't+ under the condition of 60 S RH
Measure with.

(ホ)実施例 以下、実施例によって本発明を具体的に説明する。(e) Examples Hereinafter, the present invention will be specifically explained with reference to Examples.

〈実施例1〜5〉 セルロースリンター(粘度平均分子量2.3×105)
を公知の方法で調製したアンそニア濃度6.8重量%、
銅濃度3.1重−11の銅アンモニア溶液中に6重f%
で溶解せしめ、濾過脱泡を行ない紡糸原液とした。該紡
糸原液を環状紡出口の外側紡出口(外@ 2 rarx
dr )よυ2.0吟ので、一方、アセトンと水との比
率が67.3重量%で、アンモニアと水との比率が0.
9重量%の混合溶液を中央紡出口(外(40,4rtr
凰φ)よ、92.5 at/分でそれぞれアセトンと水
との比率が67.3重tSで、アンモニアと水との比率
が0.9重量%の混合溶液中に直接吐出し、5m/分の
速度で巻取った。なお、吐出直後の透明青色状の繊維状
物は次第に白色化し、ミクロ相分離を生起しながら凝固
が起こシ、繊維(中空糸)としての形状が維持されてい
た。その後、25℃の2重量%硫酸水溶液で再生し、し
かる後、25℃の水で水洗した。湿潤状態にある中空糸
の一端の中空部に注射器に接続された注射針を挿入し、
この部分を固定した。中空糸のもう一端を接着剤で封鎖
した。その後、中空糸をアセトン中に浸漬しながら、f
x1表に示す相対湿度の空気で、300 *1眩の圧力
を加えながら2分間中空糸中の水分を置換した。その後
、相対湿度40%の雰囲気下に中空糸を取シ出し、接着
剤で封鎖した中空糸の一端を力、トシ、その一端に0.
5 N/dの張力をかけ、相対湿度5(lの空気で中空
部を加圧しなからアセトンを蒸発させて乾燥状態の中空
糸を得た・乾燥条件および得られた中空糸の外壁面の平
均孔径を第1表に示す。
<Examples 1 to 5> Cellulose linter (viscosity average molecular weight 2.3 x 105)
Anthonia concentration 6.8% by weight prepared by a known method,
6 F% in copper ammonia solution with a copper concentration of 3.1 F/-11
The mixture was dissolved in water, filtered and defoamed to obtain a spinning stock solution. The spinning stock solution is passed through the outer spinning outlet (outside @ 2 rarx) of the annular spinning outlet.
dr) is υ2.0 gin, so on the other hand, the ratio of acetone to water is 67.3% by weight, and the ratio of ammonia to water is 0.
A 9% by weight mixed solution was added to the central spinning spout (outside (40,4 rtr
凰φ), directly discharged at 92.5 at/min into a mixed solution with acetone and water ratio of 67.3 weight tS and ammonia and water ratio of 0.9% by weight, and 5 m/min. It was wound at a speed of 1 minute. Immediately after being discharged, the transparent blue fibrous material gradually turned white, coagulated while causing microphase separation, and maintained its shape as a fiber (hollow fiber). Thereafter, it was regenerated with a 2% by weight aqueous sulfuric acid solution at 25°C, and then washed with water at 25°C. Insert a needle connected to a syringe into the hollow part of one end of the hollow fiber in a moist state,
This part has been fixed. The other end of the hollow fiber was sealed with adhesive. After that, while immersing the hollow fiber in acetone,
The moisture in the hollow fibers was replaced with air having the relative humidity shown in Table x1 for 2 minutes while applying a pressure of 300*1. Thereafter, the hollow fiber was taken out in an atmosphere with a relative humidity of 40%, and one end of the hollow fiber sealed with adhesive was applied with a force of 0.0% to that end.
A tension of 5 N/d was applied, and the hollow part was pressurized with air at a relative humidity of 5 (l), and then the acetone was evaporated to obtain a dry hollow fiber.Drying conditions and the outer wall surface of the obtained hollow fiber were The average pore diameter is shown in Table 1.

第1表に示すように1置換時の加圧する空気の相対湿度
が低い方が乾燥時間が早く効率的である。
As shown in Table 1, the lower the relative humidity of pressurized air during one displacement, the faster the drying time is and the more efficient it is.

〈比較例1〉 実施例1で得られた湿潤状態の中空糸の一端の中空部に
注射器に接続された注射針を挿入し、この部分を固定し
た。中空糸のもう一端を接着剤で側鎖した。その後、中
空糸をアセトン中に浸漬しながら、相対温度80%の空
気で300 wXmHgの圧力を加えながら2分間中空
糸中の水分を置換した。
<Comparative Example 1> A syringe needle connected to a syringe was inserted into a hollow portion at one end of the wet hollow fiber obtained in Example 1, and this portion was fixed. The other end of the hollow fiber was side chained with adhesive. Thereafter, while the hollow fibers were immersed in acetone, the moisture in the hollow fibers was replaced with air at a relative temperature of 80% for 2 minutes while applying a pressure of 300 wXmHg.

その後相対湿度40係の雰囲気下に中空糸を取シ出し、
接着剤で封鎖した中空糸の一端をカットし、その一端に
0.51/dの張力をかけ、相対湿度50チの空気で中
空部を加圧しながらアセトンを蒸発させて乾燥させたが
、15分間行なっても水分率おくと収縮が起こシ、中空
糸も大きく変形した。
After that, the hollow fiber was taken out in an atmosphere with a relative humidity of 40 parts.
One end of the hollow fiber sealed with adhesive was cut, a tension of 0.51/d was applied to the end, and the hollow part was pressurized with air at a relative humidity of 50 cm to evaporate the acetone and dry. Even if it was carried out for a minute, shrinkage occurred when the moisture content was increased, and the hollow fibers were also significantly deformed.

〈実施例6〉 実施例1で得られた湿潤状態の中空糸の一端の中空部に
注射器に接続された注射針を挿入し、この部分を固定し
た。中空糸のもう一端を接着剤で封鎖した。その後、中
空糸をプロピルアミン中に浸漬しながら、相対湿度40
チの空気で300imHgの圧力を加えながら2分間中
空糸中の水分を置換した。その後相対湿度40チの雰囲
気下に中空糸を取シ出し、接着剤で封鎖した中空糸の一
端をカットし、その一端に0.5 、F/dの張力をか
け、相対湿度40チの空気で中空部を加圧しながらプロ
ピルアミンを蒸発させて乾燥状態の中空糸を得た。
<Example 6> A syringe needle connected to a syringe was inserted into a hollow portion at one end of the wet hollow fiber obtained in Example 1, and this portion was fixed. The other end of the hollow fiber was sealed with adhesive. Thereafter, while the hollow fibers were immersed in propylamine, the relative humidity was adjusted to 40°C.
Water in the hollow fibers was replaced with air for 2 minutes while applying a pressure of 300 imHg. After that, the hollow fiber was taken out in an atmosphere with a relative humidity of 40 °C, one end of the hollow fiber sealed with adhesive was cut, and a tension of 0.5, F/d was applied to the end, and the hollow fiber was placed in an atmosphere with a relative humidity of 40 °C. The propylamine was evaporated while pressurizing the hollow part to obtain a dry hollow fiber.

得られた≠中空糸の外壁面の平均孔径は2.4μmであ
った。
The average pore diameter of the outer wall surface of the obtained hollow fiber was 2.4 μm.

〈比較例2〉 実施例1で得られた湿・潤状態の中空糸の一端の中空部
に注射器に接続された注射針を挿入し、この部分を固定
した。中空糸のもう一端を接着剤で封鎖した。その後、
中空糸をメタノール中に浸漬しながら、相対湿度50%
の空気で、300mm匂6の圧力を加えながら2分間中
空糸中の水分を置換した。その後相対湿度40%の雰囲
気下に中空糸を取シ出し、接着剤で封鎖した中空糸の一
端をカットし、その一端に0.5 、F/dの張力をか
け、相対湿度40俤の空気で中空部を加圧しながらメタ
ノールを蒸発させて乾燥状態の中空糸を得たが、中空糸
は透明で、電子顕微鏡で孔は観察出来なかりた。
<Comparative Example 2> A syringe needle connected to a syringe was inserted into a hollow portion at one end of the wet hollow fiber obtained in Example 1, and this portion was fixed. The other end of the hollow fiber was sealed with adhesive. after that,
While the hollow fiber is immersed in methanol, the relative humidity is 50%.
The moisture in the hollow fibers was replaced with air for 2 minutes while applying a pressure of 300 mm. After that, the hollow fiber was taken out in an atmosphere with a relative humidity of 40%, one end of the hollow fiber sealed with adhesive was cut, and a tension of 0.5, F/d was applied to the end, and the air with a relative humidity of 40% was placed. The methanol was evaporated while pressurizing the hollow part to obtain a dry hollow fiber, but the hollow fiber was transparent and no pores could be observed with an electron microscope.

く比較例3〉 実施例1で得られた湿潤状態の中空糸の一端の中空部に
注射器に接続された注射針を挿入し、この部分を固定し
た。中空糸のもう一端を接着剤で封鎖した。その後アセ
トン中に浸漬しながら、相対湿度5(lの空気で300
−旬の圧力を加えながら2分間中空糸中の水分を置換し
た。その後、相対湿度40チの雰囲気下に中空糸を取シ
出し、接着剤で封鎖した中空糸の一端をカットし、該雰
囲気下に放置した。10分後の中空糸は水分率10チ以
下であったが、中空糸は収縮し、中空糸の中空部はつぶ
れてしまって、使用不可能であったO
Comparative Example 3 A syringe needle connected to a syringe was inserted into the hollow part of one end of the wet hollow fiber obtained in Example 1, and this part was fixed. The other end of the hollow fiber was sealed with adhesive. Then, while immersed in acetone,
- Moisture in the hollow fibers was replaced for 2 minutes while applying constant pressure. Thereafter, the hollow fibers were taken out in an atmosphere with a relative humidity of 40 °C, one end of the hollow fibers sealed with adhesive was cut, and the fibers were left in the atmosphere. After 10 minutes, the moisture content of the hollow fiber was less than 10%, but the hollow fiber had shrunk and the hollow part of the hollow fiber had collapsed, making it unusable.

Claims (1)

【特許請求の範囲】 1、セルロース銅アンモニア溶液から得られる多孔性再
生セルロース中空糸の製造工程に於いて、湿潤状態にあ
る中空糸を乾燥するに際し、沸点が70℃以下で、水へ
の溶解度が10重量%以上で、かつ水酸基を持たない有
機溶媒で中空糸中の水分を置換し、次いで相対湿度70
%以下の気体を用いて、該中空糸の中空部を100mm
Hg以上、破裂強度以下の圧力で加圧しながら0.1g
/d以上、引張り破壊強度以下の張力下で乾燥すること
を特徴とする多孔性再生セルロース中空糸の乾燥方法。 2、多孔性再生セルロース中空糸を乾燥するのに際し、
相対湿度70%以下の気体で該中空糸の中空部を50m
mHg以上、破裂強度以下の圧力で加圧しながら該有機
溶媒で中空糸中の水分を置換する特許請求の範囲第1項
記載の乾燥方法。 3、中空部を100mmHg以上、該中空糸のバブルポ
イント以下の圧力で加圧する特許請求の範囲第1項又は
第2項記載の乾燥方法。 4、有機溶媒がアセトンである特許請求の範囲第1項、
第2項又は第3項記載の乾燥方法。
[Claims] 1. In the manufacturing process of porous regenerated cellulose hollow fibers obtained from a cellulose cupric ammonia solution, when drying the hollow fibers in a wet state, the boiling point is 70°C or less and the solubility in water is The water in the hollow fibers is replaced with an organic solvent that has a content of 10% by weight or more and does not have hydroxyl groups, and then the relative humidity is 70%.
% or less of gas, the hollow part of the hollow fiber is
0.1g while pressurizing at a pressure of Hg or more and less than bursting strength.
A method for drying porous regenerated cellulose hollow fibers, characterized by drying under a tension of /d or more and tensile breaking strength or less. 2. When drying porous regenerated cellulose hollow fibers,
The hollow part of the hollow fiber is heated for 50 m with gas having a relative humidity of 70% or less.
The drying method according to claim 1, wherein water in the hollow fibers is replaced with the organic solvent while pressurizing at a pressure of mHg or more and less than bursting strength. 3. The drying method according to claim 1 or 2, wherein the hollow portion is pressurized at a pressure of 100 mmHg or more and not more than the bubble point of the hollow fiber. 4. Claim 1, wherein the organic solvent is acetone;
The drying method according to item 2 or 3.
JP17753184A 1984-08-28 1984-08-28 Drying of porous regenerated cellulose hollow fiber Pending JPS6155208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17753184A JPS6155208A (en) 1984-08-28 1984-08-28 Drying of porous regenerated cellulose hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17753184A JPS6155208A (en) 1984-08-28 1984-08-28 Drying of porous regenerated cellulose hollow fiber

Publications (1)

Publication Number Publication Date
JPS6155208A true JPS6155208A (en) 1986-03-19

Family

ID=16032554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17753184A Pending JPS6155208A (en) 1984-08-28 1984-08-28 Drying of porous regenerated cellulose hollow fiber

Country Status (1)

Country Link
JP (1) JPS6155208A (en)

Similar Documents

Publication Publication Date Title
US4464321A (en) Process for the preparation of chitosan fibers
Li et al. Development and characterization of anti-fouling cellulose hollow fiber UF membranes for oil–water separation
US3896061A (en) Semi-permeable membranes, their preparation and their use
JPH0673616B2 (en) Method for producing polyimide two-layer hollow fiber membrane
US10675588B2 (en) Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
Tsai et al. Pervaporation of water/alcohol mixtures through chitosan/cellulose acetate composite hollow‐fiber membranes
US5490931A (en) Fabrication of a fluoropolymer hollow fiber having a defect-free separation layer
Tsai et al. Study of the separation properties of chitosan/polysulfone composite hollow-fiber membranes
JP3698078B2 (en) Method for producing asymmetric hollow fiber gas separation membrane
Miao et al. Production of polyethersulfone hollow fiber ultrafiltration membranes. I. Effects of water (internal coagulant) flow rate (WFR) and length of air gap (LAG)
JPH025132B2 (en)
JPS6155208A (en) Drying of porous regenerated cellulose hollow fiber
JPS5889627A (en) Finely porous regenerated cellulose membrane
US5320754A (en) Pan composite membranes
JPS59204911A (en) Regenerated cellulose hollow fiber of novel structure
CN114797501B (en) Preparation method of pennisetum sinese nanofiber hollow fiber nanofiltration membrane
JPS62234510A (en) Drying method for regenerated hollow cellulose yarn
JPH0246608B2 (en)
JP2011020071A (en) Method for manufacturing polysulfone-based hollow fiber membrane
JPS61296112A (en) Cuprammonium cellulose hollow yarn membrane
JPH01260012A (en) Method for drying hollow cellular regenerated cellulose yarn
JPH02169019A (en) Production of double-layered hollow yarn membrane comprising polyimide
JPS62184108A (en) Polymeric porous hollow fiber
JPS621403A (en) Cuprammonium cellulose porous membrane with good dimensional stability
JPS5889628A (en) Regenerated cellulose porous membrane