JPS621403A - Cuprammonium cellulose porous membrane with good dimensional stability - Google Patents

Cuprammonium cellulose porous membrane with good dimensional stability

Info

Publication number
JPS621403A
JPS621403A JP13695385A JP13695385A JPS621403A JP S621403 A JPS621403 A JP S621403A JP 13695385 A JP13695385 A JP 13695385A JP 13695385 A JP13695385 A JP 13695385A JP S621403 A JPS621403 A JP S621403A
Authority
JP
Japan
Prior art keywords
porous membrane
cellulose
plane
average
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13695385A
Other languages
Japanese (ja)
Inventor
Michitaka Iwata
岩田 道隆
Seiichi Manabe
征一 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13695385A priority Critical patent/JPS621403A/en
Publication of JPS621403A publication Critical patent/JPS621403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a cuprammonium cellulose membrane having a good dimensional stability when wet, super mechanical disposition and super filtration performance by limiting such characteristics within a specific range as average molecular weight, in-plane orientation of molecular chain, dynamic modulus, average hole diameter, in-plane porosity and hole density. CONSTITUTION:To improve the brittleness, the average molecular weight of cellulose molecule is set over 5X10<4>. Cuprammonium cellulose with less protein molecule adsorbed is used. The average hole diameter should be 0.02-10mum, and the in-plane porosity of one plate is over 30% or the hole density per 1cm<2> of in-plane is 6X10<5>-3X10<7>pcs./D. All this setting increases filtration speed and filtration capacity. Also the in-plane orientation of cellulose molecular chain is limited within 60-80%, which lessens the transformation by swelling. The thermal stability of porous membrane is increased, provided the peak temperature in mechanical loss tangent - thermal curve measured at the frequency 110Hz is over 250 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、寸法安定性の良好な銅安セルロース多孔膜に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper ammonium cellulose porous membrane with good dimensional stability.

ココテ、銅安セルロースとは、セルロース銅アンモニア
溶液よシ再生された再生セルロースを意味する。
Cocote, copper ammonium cellulose means regenerated cellulose that has been regenerated from cellulose cupric ammonium solution.

本発明の銅安セルロース多孔膜は、水を含む液体または
気体混合物中の目的とする成分の分離除去および濃縮に
有用であって、特に生体関連分野および食品発酵分野で
用いられる。
The copper ammonium cellulose porous membrane of the present invention is useful for separating and removing and concentrating target components in liquid or gas mixtures containing water, and is particularly used in biological fields and food fermentation fields.

〔従来の技術〕[Conventional technology]

物質の分離精製技術の中で膜分離技術が注目されつつあ
る。蒸留と異な膜分離に伴なう温度変化を必要としない
こと、分離に必要なエネルギーが小さいこと、さらに工
程がコンパクトであるという膜分離プロセスの特徴を生
かし、広範囲の分野で高分子膜が利用されている。たと
えば、酪農、水産、畜産、食品加工、医薬品、化学工業
、繊維染色加工、鉄鋼、機械、表面処理、水処理、原子
カニ業などの分野である。将来膜分離システムが中心と
なる可能性のある分野として、(イ)低温での濃縮精製
、回収を必要とする分野(食品、生物化学工業分野)、
(o)無菌、無塵を必要とする分野(医薬品および治療
機関、電子工業)、(ハ)微量な高価物質の濃縮回収(
原子力、重金属分野)、に)特殊少量分離分野(医療分
野)、(ホ)エネルギー多消費分離分野(蒸留代替)が
考えられる。これらの分野に利用される膜として、孔径
の大きな湿潤時の寸法安定性の良好な取扱いの容易な親
水性膜の必要性が高まっている。
Membrane separation technology is attracting attention among materials separation and purification technologies. Polymer membranes are used in a wide range of fields by taking advantage of the characteristics of the membrane separation process, such as not requiring temperature changes associated with membrane separation, which is different from distillation, requiring little energy for separation, and having a compact process. has been done. For example, fields such as dairy farming, fisheries, livestock farming, food processing, pharmaceuticals, chemical industry, textile dyeing processing, steel, machinery, surface treatment, water treatment, and atomic crab industry. Fields where membrane separation systems may become central in the future include (a) fields that require concentration purification and recovery at low temperatures (food and biochemical industries);
(o) Fields that require sterility and dust-free conditions (pharmaceuticals and therapeutic institutions, electronic industry), (c) Concentration and recovery of trace amounts of expensive substances (
(nuclear power, heavy metal field), (2) special small quantity separation field (medical field), and (e) energy-intensive separation field (distillation alternative). As membranes used in these fields, there is an increasing need for hydrophilic membranes that have large pores, good dimensional stability when wet, and are easy to handle.

親水性高分子の典型例であるセルロースで構成さ・れる
多孔膜としては、平均孔径が1001(0,01μfn
)以下の人工腎臓用多孔膜が知られている。この多孔膜
では孔径が小さく、かっ空孔率も小さい(10%以下)
ため、限外濾過あるいはマイクロフィルトレージ、ンに
ほとんど利用できない。一方、 酢酸セルロースあるい
は硝酸セルロースナトのセルロース誘導体膜をアルカリ
水溶液でケン化することによシ再生セルロース多孔膜が
得られている。このような方法で得られた多孔膜の平均
孔径は0.01〜2μmの範囲であり、セルロース誘導
体を出発物質とするため再生後のセルロース分子の分子
量は低く、3.5X10’以下である。このような孔径
範囲の孔を持つ従来の再生セルロース多孔膜のセルロー
ス分子の分子量は4.0X10’以下である。そのため
乾燥状態での多孔膜の力学的性質(%に強度)は著しく
低く、かつ脆い。たとえば、多孔膜の平均空孔率をPr
P(百分率表示)とすれば、弾性率はほぼ102(10
0−PrP)’dyn/In”である。引張シ破壊強度
は弾性率にほぼ比例し、弾性率は約1/10である。水
による湿潤状態での強度は、乾燥状態にくらべてさらに
低くなるため、セルロース誘導体から得られた従来の再
生セルロース多孔膜は取扱い時に破損することがある。
A porous membrane made of cellulose, which is a typical example of a hydrophilic polymer, has an average pore diameter of 1001 (0.01μfn).
) The following porous membranes for artificial kidneys are known. This porous membrane has small pore diameter and low porosity (10% or less).
Therefore, it can hardly be used for ultrafiltration or microfiltration. On the other hand, a regenerated cellulose porous membrane has been obtained by saponifying a cellulose derivative membrane such as cellulose acetate or cellulose nitrate with an aqueous alkaline solution. The average pore diameter of the porous membrane obtained by such a method is in the range of 0.01 to 2 μm, and since a cellulose derivative is used as a starting material, the molecular weight of the cellulose molecules after regeneration is low, being 3.5×10′ or less. In a conventional regenerated cellulose porous membrane having pores in such a pore size range, the molecular weight of cellulose molecules is 4.0×10′ or less. Therefore, the mechanical properties (strength in %) of the porous membrane in a dry state are extremely low and brittle. For example, the average porosity of a porous membrane is Pr
If P (expressed as a percentage), the elastic modulus is approximately 102 (10
0-PrP)'dyn/In''. The tensile strength at break is approximately proportional to the modulus of elasticity, which is approximately 1/10. The strength in a wet state with water is even lower than in a dry state. Therefore, conventional regenerated cellulose porous membranes obtained from cellulose derivatives may be damaged during handling.

また、セルロース誘導体を再生する上述の再生セルロー
ス多孔膜の作製方法は、その製造プロセスも長くなシ、
コスト的にも高くつく欠点がある。
In addition, the above-mentioned method for producing a regenerated cellulose porous membrane that regenerates cellulose derivatives requires a long manufacturing process;
It also has the disadvantage of being expensive.

また、再生セルロース多孔膜は水に膨潤した際、膨潤し
変形する。そのため被濾過流体の流れが乱れ、目づまシ
や滞流が起こる。
Furthermore, when the regenerated cellulose porous membrane is swollen in water, it swells and deforms. As a result, the flow of the fluid to be filtered is disturbed, causing clogging and stagnation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上述のような従来の再生セルロース多
孔膜の欠点を克服し、特に湿潤時の寸法安定性の良好な
、力学的性質および漣過性能に優れ、しかも工業的有利
に製造出来る銅安セルロース多孔膜を提供するにある。
The purpose of the present invention is to overcome the drawbacks of the conventional regenerated cellulose porous membrane as described above, to have particularly good dimensional stability when wet, excellent mechanical properties and filtration performance, and to be able to be produced industrially and advantageously. To provide a copper ammonium cellulose porous membrane.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る銅安セルロース多孔膜は、セルロース分子
の平均分子量が5X10’以上で、多孔膜を構成するセ
ルロース分子鎖の面内配向度が60%〜80%であわ、
測定周波数110Hzに於ける30℃の動的弾性率が3
.Ox 108(100−PrP) dyV/6n”以
上(Prpは百分率表示の平均空孔率)で、多孔膜に於
いて平均孔径が0.02〜10μmであり、かつ少なく
とも1つの面の面内空孔率(Pr)が30%以上である
か、あるいは面内の1c1n2当りの孔密度が6X10
5個/D以上、3 X 107個/D以下であることを
特徴とする。
The copper ammonium cellulose porous membrane according to the present invention has an average molecular weight of cellulose molecules of 5 x 10' or more, and an in-plane orientation degree of cellulose molecular chains constituting the porous membrane of 60% to 80%.
The dynamic elastic modulus at 30°C at a measurement frequency of 110Hz is 3.
.. Ox 108 (100-PrP) dyV/6n" or more (Prp is the average porosity expressed as a percentage), the porous film has an average pore diameter of 0.02 to 10 μm, and has in-plane pores on at least one surface. The porosity (Pr) is 30% or more, or the pore density per 1c1n2 in the plane is 6X10
It is characterized by being 5 pieces/D or more and 3×10 7 pieces/D or less.

本発明の銅安セルロース多孔膜の第1の特徴は、該膜の
平均分子量が5 X 10’以上のセルロース分子で構
成されている点にある。再生セルロース多孔膜は乾燥状
態では脆い。分子量の増大に伴なって多孔膜の強度は上
昇し、脆さが改善される。そのため多孔膜の取扱いが容
易となシ、多孔膜の破損は減少する。セルロースの平均
分子量が大きければ大きいほど、同一の空孔率で比較し
た場合の破損率は減少する。該平均分子量の膜物性に及
ばず影響は、平均分子量が大きくなるにしたがって飽和
する傾向が認められる。たとえば、平均分子量が5X1
0’以上でおれば、測定周波数110Hzに於ける30
℃の動的弾性率td 3.0xlO8(100−PrP
)dyn 702以上となる。したがって、平均分子景
は5.0X10’以上でおれば、実用上の取扱い易さの
点でさしつかえない。多孔膜の作製の容易さから、平均
分子量は3×105以下が望ましい。
The first feature of the copper ammonium cellulose porous membrane of the present invention is that the membrane is composed of cellulose molecules having an average molecular weight of 5 x 10' or more. Regenerated cellulose porous membranes are brittle in dry conditions. As the molecular weight increases, the strength of the porous membrane increases and its brittleness is improved. Therefore, handling of the porous membrane becomes easier and damage to the porous membrane is reduced. The higher the average molecular weight of cellulose, the lower the breakage rate when compared at the same porosity. It is observed that the influence of the average molecular weight on the physical properties of the film tends to become saturated as the average molecular weight increases. For example, if the average molecular weight is 5X1
30 at a measurement frequency of 110Hz if it is greater than 0'
Dynamic modulus of elasticity td 3.0xlO8 (100-PrP
) dyn 702 or more. Therefore, as long as the average molecular landscape is 5.0×10' or more, it is acceptable from the point of view of practical ease of handling. From the viewpoint of ease of manufacturing the porous membrane, the average molecular weight is desirably 3×10 5 or less.

すなわち、本発明の銅安セルロース多孔膜の特徴の一つ
として、グリセリン等の膨潤剤を含まない乾燥状態にお
いてでさえ十分な力学的性質を持つ点にある。
That is, one of the characteristics of the copper ammonium cellulose porous membrane of the present invention is that it has sufficient mechanical properties even in a dry state without a swelling agent such as glycerin.

また、タンパク質と高分子素材との吸着性に関して検討
した結果、銅安セルロースは親水性素材であるため、他
の高分子素材にくらべてタンパクの吸着が非常に少ない
特徴がある。したがりて、水処理関係で、しかも生体系
に関連した精密濾過分野用として本発明の銅安セルロー
ス多孔膜は有効に利用できる。
Furthermore, as a result of studying the adsorption properties between proteins and polymeric materials, ammonium ammonium cellulose is a hydrophilic material, so it has the characteristic that it adsorbs very little protein compared to other polymeric materials. Therefore, the copper ammonium cellulose porous membrane of the present invention can be effectively used in the field of precision filtration related to water treatment and biological systems.

本発明の銅安セルロース多孔膜の第2の特徴は、平均孔
径が0.02〜10μmであり、かつ少なくとも一つの
面の面内空孔率が30チ以上であるか、あるいは面内1
備2当りの孔密度が6×105個/D以上、3 X 1
07個/D以下である点にある。面内空孔率が30%以
上となると、多孔膜の濾過速度は大幅に増加し、また濾
過容量も増大する。理論的には、濾過速度は体積換算し
た平均空孔率に比例し、膜厚に反比例し、濾過容量もほ
ぼ平均空孔率に比例する。面内空孔率が30チ以上にな
ると、面内空孔率の増大に伴なう濾過速度および濾過容
量は共に増加する。面内空孔率は30チ以上であれば、
面内空孔率および平均空孔率共に太きければ太きいほど
よい。望ましくは、平均空孔率が55%以上であればよ
い。ただし、多孔膜の取扱い易さ、多孔膜の力学的性質
から、平均空孔率としては90%以下が望ましい。被濾
過流体は、多孔膜の表面から裏面へ向って濾過される。
The second feature of the copper ammonium cellulose porous membrane of the present invention is that the average pore diameter is 0.02 to 10 μm, and the in-plane porosity of at least one surface is 30 μm or more, or
Hole density per unit 2 is 6 x 105/D or more, 3 x 1
07 pieces/D or less. When the in-plane porosity is 30% or more, the filtration rate of the porous membrane increases significantly, and the filtration capacity also increases. Theoretically, the filtration rate is proportional to the average porosity in terms of volume and inversely proportional to the membrane thickness, and the filtration capacity is also approximately proportional to the average porosity. When the in-plane porosity increases to 30 inches or more, both the filtration rate and the filtration capacity increase as the in-plane porosity increases. If the in-plane porosity is 30 inches or more,
The thicker both the in-plane porosity and the average porosity, the better. Desirably, the average porosity should be 55% or more. However, from the viewpoint of ease of handling the porous membrane and mechanical properties of the porous membrane, the average porosity is preferably 90% or less. The fluid to be filtered is filtered from the front surface to the back surface of the porous membrane.

表面の平均孔径が同一で、かつ平均空孔率が同一の種々
の膜の組合せで濾過速度を比較した場合、裏面の孔径は
表面の孔径よシ大きければ、濾過速度および濾過容量も
大きい。膜の断面方向に於いて電子顕微鏡法で定義され
た平均孔径は、膜の厚さ方向に於ける位置によって変化
するのが一般的である。
When comparing the filtration rates of various membrane combinations with the same average pore size on the surface and the same average porosity, if the pore size on the back side is larger than the pore size on the front side, the filtration rate and filtration capacity are also large. The average pore diameter defined by electron microscopy in the cross-sectional direction of the membrane generally changes depending on the position in the thickness direction of the membrane.

同様に面内空孔率も変化する。平均空孔率にくらべて面
内空孔率は一般的には小さい。特に膜の中央部に於ける
面内空孔率は濾過速度を支配する点で重要であり、との
空孔率が30チ以上であれば濾過速度が大きい。
Similarly, the in-plane porosity also changes. The in-plane porosity is generally smaller than the average porosity. In particular, the in-plane porosity in the center of the membrane is important in that it controls the filtration rate, and if the porosity is 30 or more, the filtration rate is high.

また、平均孔半径とは、(1)式によって定義される弓
を意味する。多孔膜1crI!2当りの孔半径がrxr
+drに存在する孔密度をN(r)drと表示すると(
N(r)は孔径分布関数)、平均孔径弓は(1)式で与
えられる。本発明でいう平均孔径とは25で定義される
Moreover, the average hole radius means an arch defined by equation (1). Porous membrane 1crI! The hole radius per 2 is rxr
If the pore density existing at +dr is expressed as N(r)dr, then (
N(r) is a pore diameter distribution function), and the average pore diameter arch is given by equation (1). The average pore diameter in the present invention is defined as 25.

孔−個当りの限外濾過速度は、は−するの4乗に比例し
、また定孔率に比例する。したがって、濾過速度のみを
大きくするには、iは大きければ大きいほどよい。しか
しながら、目的とする分離対象の粒子径との関連から、
当然最大孔径が決定される。親水性のスクリーン型フィ
ルターとしての特性が十分発揮される領域は、平均孔径
(すなわち2弓)として20μm以下である。また、平
均孔径が0.02μm未満の場合、該膜による分離対象
とする粒子は、一般に球状でないものが増大し、本発明
多孔膜の特徴が生かされない。後述するように、本発明
の多孔膜の主要な使用目的は、分離対象物として、水を
含む液体または気体混合物中の目的とする成分の分離除
去および濃縮にあり、しかも高速度で濾過することを目
的とする。当然平均孔径が小さくなると濾過速度の低下
は著しい。
The ultrafiltration rate per pore is proportional to the fourth power of the pores, and is also proportional to the constant porosity. Therefore, in order to increase only the filtration rate, the larger i is, the better. However, in relation to the particle size of the target separation target,
Naturally, the maximum pore diameter is determined. The region where the characteristics as a hydrophilic screen filter are fully exhibited is an average pore diameter (ie, two bows) of 20 μm or less. Furthermore, if the average pore diameter is less than 0.02 μm, the particles to be separated by the membrane generally have an increased number of particles that are not spherical, and the characteristics of the porous membrane of the present invention cannot be utilized. As will be described later, the main purpose of the porous membrane of the present invention is to separate and remove and concentrate target components in liquid or gas mixtures containing water as separation targets, and to filter at high speed. With the goal. Naturally, as the average pore diameter becomes smaller, the filtration rate decreases significantly.

また、多孔膜の厚さは通常薄ければ薄いほどよいが、取
扱いの容易さおよびピンホールの混存をさけるため、5
μm以上の厚さを持つのが一般的である。平均孔径が0
102μm未満の孔の場合には、貫通孔でないもの(非
貫通孔)の存在確率が増大し。
Generally, the thinner the porous membrane is, the better, but for ease of handling and to avoid the presence of pinholes,
Generally, it has a thickness of μm or more. Average pore size is 0
In the case of holes smaller than 102 μm, the probability of existence of holes that are not through holes (non-through holes) increases.

いわば濾過膜としての性能は、貫通孔で予測される性能
以下となる。非貫通孔の混存をさけるだめ、平均孔径は
0,02μm以上でなければならない。平均孔径が大き
くなるにしたがい、多孔膜の膜厚を厚くするととKよシ
ピンホールの混入を防ぐことができる。しかしながら、
濾過速度は膜厚に反比例するので、膜としては薄い方が
望ましい。両者の相反する傾向のため、膜厚の最適範囲
は多孔膜の製法と密接に関連する。
In other words, the performance as a filtration membrane is lower than that expected for through holes. In order to avoid the presence of non-through holes, the average pore diameter must be 0.02 μm or more. By increasing the thickness of the porous membrane as the average pore diameter increases, the inclusion of pinholes can be prevented. however,
Since the filtration rate is inversely proportional to the membrane thickness, it is desirable that the membrane be thinner. Because of these contradictory tendencies, the optimal range of film thickness is closely related to the manufacturing method of the porous film.

本発明の銅安セルロース多孔膜の最大の特徴は、多孔膜
を構成するセルロース分子鎖の面内配向度が60チ〜8
0q6の範囲内にある点である。本発明者らは、セルロ
ース分子鎖の面内配向度と多孔膜の湿潤時の寸法安定性
との関係を検討した結果、面内配向度が60チ未満の場
合、膨潤によって多孔膜の変形(伸長)が大きい。また
面内配向度が80%を超える場合は、膜厚方向での膨潤
(伸長)変形および膜平面方向での収縮変形が起こる。
The greatest feature of the copper ammonium cellulose porous membrane of the present invention is that the degree of in-plane orientation of the cellulose molecular chains constituting the porous membrane is 60 to 8.
This is a point within the range of 0q6. The present inventors investigated the relationship between the degree of in-plane orientation of cellulose molecular chains and the dimensional stability of the porous membrane during wet conditions. As a result, we found that when the degree of in-plane orientation is less than 60 degrees, the porous membrane deforms due to swelling. elongation) is large. Further, when the degree of in-plane orientation exceeds 80%, swelling (elongation) deformation in the film thickness direction and contraction deformation in the film plane direction occur.

したがって、膨潤によるセルロース多孔膜の変形や多孔
膜面上での目づまシなどを防ぐには、多孔膜を構成する
セルロース分子鎖の面内配向度は60チ〜80%である
ことが必要である。
Therefore, in order to prevent deformation of the cellulose porous membrane due to swelling and blockage on the porous membrane surface, the degree of in-plane orientation of the cellulose molecular chains constituting the porous membrane must be between 60 and 80%. be.

さらに、測定周波数110Hzに於ける力学的損失正接
−δ一温度曲線において、ピーク温度T’ma工が25
0℃以上であれば、多孔膜の熱的安定性が増大し、有機
溶媒中での耐熱性が上昇する。
Furthermore, in the mechanical loss tangent - δ -temperature curve at a measurement frequency of 110 Hz, the peak temperature T'ma is 25
If the temperature is 0° C. or higher, the thermal stability of the porous membrane increases, and the heat resistance in an organic solvent increases.

本発明の銅安セルロース多孔MFi次のように製造する
ことができる。例えば、特開昭58−89625号、同
59−45333号、同59−45334号および同5
9−199728号に記載される方法に従って、セルロ
ース銅アンモニア溶液から裏腹し、アセトン蒸気雰囲気
に放置し、硫酸水溶液で再生し、水洗し、次いで、多孔
膜をアセトンで処理してアセトンで水分を置換する。
The copper ammonium cellulose porous MFi of the present invention can be manufactured as follows. For example, JP-A-58-89625, JP-A-59-45333, JP-A-59-45334 and JP-A-5
According to the method described in No. 9-199728, the cellulose was removed from the copper ammonia solution, left in an acetone vapor atmosphere, regenerated with an aqueous sulfuric acid solution, washed with water, and then the porous membrane was treated with acetone to replace the moisture with acetone. do.

その後、2軸延伸機に該膜を固定し、5〜20%延伸し
た状態で乾燥することによ)本発明の多孔膜が得られる
Then, the porous membrane of the present invention is obtained by fixing the membrane in a biaxial stretching machine and drying it in a 5 to 20% stretched state.

本発明の多孔膜を製造する方法の一具体例を示すと次の
とお)である。10%(重量)のセルロース銅アンモニ
ア溶液を厚さ500μmのアプリケータで通常の方法で
ガラス板上に流延し、ただちに35℃のアセトン蒸気雰
囲気下に入れ、60分放置後、得られた膜を20℃、2
%硫酸水溶液に    ゛浸漬し、その後水洗し、しか
る後肢1ft20cのアセトン中に浸漬することによ少
、該膜中の水分をアセトンで置換し、その後2軸延伸機
に該膜を固定し、それぞれ10%延伸した状態で乾燥す
る。
A specific example of the method for manufacturing the porous membrane of the present invention is as follows. A 10% (by weight) cellulose cuprammonium solution was cast onto a glass plate using a 500 μm thick applicator in the usual manner, immediately placed in an acetone vapor atmosphere at 35°C, and left for 60 minutes to form a film. at 20℃, 2
% sulfuric acid aqueous solution, then washed with water, and then immersed in 1 ft 20 cm of acetone to replace the moisture in the membrane with acetone, and then fixed the membrane in a biaxial stretching machine, and Dry in a 10% stretched state.

〔発明の効果〕〔Effect of the invention〕

本発明の銅安セルロース多孔膜は、湿潤時の寸法安定性
に優るほか、強度などの力学的性質、濾過性能および耐
熱性に優る。
The copper ammonium cellulose porous membrane of the present invention has excellent dimensional stability when wet, as well as mechanical properties such as strength, filtration performance, and heat resistance.

このような本発明多孔膜が利用できる分離対象として、
水を含む液体ま念は気体混合物中の目的とする成分の分
離除去が挙げられ、従って、この多孔膜は、たとえば、
人工腎臓用あるbは人工肝臓、人工膵臓用、血漿分離用
、微生物分離用および矧胞培養用多孔膜などとして有用
である。その他限外瀘過膜として利用できるほとんどす
べての分野で利用できるが、親水性で力学的性質に優れ
る強靭な本発明の多孔膜は、生体関連分野(医学、生物
化学工業)あるいは食品発酵分野が特に適する。
Separation targets for which the porous membrane of the present invention can be used include:
Liquids containing water can be used to separate and remove target components in gas mixtures, and therefore, this porous membrane can be used, for example, to
Part B for artificial kidneys is useful as a porous membrane for artificial liver, artificial pancreas, plasma separation, microorganism separation, and cyst culture. Although it can be used in almost all other fields in which ultrafiltration membranes can be used, the porous membrane of the present invention, which is hydrophilic and has excellent mechanical properties and is strong, can be used in bio-related fields (medicine, biochemical industry) and food fermentation fields. Particularly suitable.

実施例に先立ち、発明の詳細な説明中で用いられた各種
物性値の測定方法を以下に示す。
Prior to Examples, methods for measuring various physical property values used in the detailed description of the invention are shown below.

〈平均分子量〉 銅アンモニア溶液中(20’tl:)で測定された極限
粘度数〔η) (Ill/I )?(2)式代入するこ
とによシ、平均分子量(粘度平均分子量)Mvを算出す
る。
<Average molecular weight> Intrinsic viscosity number [η) (Ill/I) measured in cupric ammonia solution (20'tl:)? By substituting the formula (2), the average molecular weight (viscosity average molecular weight) Mv is calculated.

馬=[7] x 3.2 X 103(2)く面内配向
度〉 理学電機社製X線発生装置(RU−200PL)とゴニ
オメ−タ(SG−9R) 、 計数管にはシンチレーシ
ョンカウンター、計数部には波高分析器を用い、3゜k
V、80mAでX線発生装置を運転し、ニッケルフィル
ターで単色化したCu−にα線(波長λ=1.542X
)で対称透過法を採用して測定する。
Horse = [7] x 3.2 A pulse height analyzer is used for the counting section, and 3°k
The X-ray generator was operated at V and 80 mA, and α-rays (wavelength λ = 1.542
) is measured using the symmetric transmission method.

多孔膜を表裏面を積重ねて平行に束ねて、X線を膜面に
平行に入射するように、理学電機i製の繊維試料測定装
置(回転試料台)に固定した。スキャニング速度1°/
分、チャート速度1o■/分。
The porous membranes were stacked front and back and bundled in parallel, and fixed to a fiber sample measuring device (rotating sample stand) manufactured by Rigaku Denki I so that the X-rays were incident parallel to the membrane surface. Scanning speed 1°/
min, chart speed 1o/min.

タイムコンスタント1秒、/イパージェンススリットA
0.レシービングスリット0.3 tram 、スキャ
ッタリングスリット凭0に於いて、回折角2θが4°〜
35°の範囲でX線回折強度曲線を測定する。
Time constant 1 second, /Epergence slit A
0. When the receiving slit is 0.3 tram and the scattering slit is 0, the diffraction angle 2θ is 4°~
The X-ray diffraction intensity curve is measured in a range of 35°.

銅安セルロース多孔膜ハ、セルロースn 結晶mを示し
、2θ=12°((101)面からの反射)、20’(
(xoT)面からの反射)、22°((002) 面か
らの反射)の381の回折で特徴づけられる。
Copper ammonium cellulose porous film c, cellulose n crystal m, 2θ = 12° (reflection from (101) plane), 20' (
(reflection from (xoT) plane), 381 diffraction at 22° (reflection from (002) plane).

(002)面の面内配向度は、積層膜平面に対して平行
にxme入射させる。2θ=21.5°にコ9ニオメー
タをセットし、対称透過法を用いて子午線から赤道線を
経て再び子午線に至る180°の方位角方向のX線回折
強度曲線を測定する。このときのスキャニング速度は4
°/分、チャート速度は10■/分、タイムコンスタン
トは1秒、コリメータは2■φ、レシービングスリット
は縦幅1.9■、横幅3.5日である。得られた方位角
方向の回折強度曲線から半値巾Hを読み取り、(3)式
に代入して面内配向度を算出する。
To determine the in-plane orientation of the (002) plane, xme is incident parallel to the plane of the laminated film. A co9niometer is set at 2θ=21.5°, and an X-ray diffraction intensity curve in an azimuthal direction of 180° from the meridian through the equator line and back to the meridian is measured using the symmetrical transmission method. The scanning speed at this time is 4
°/min, the chart speed is 10/min, the time constant is 1 second, the collimator is 2/min, and the receiving slit is 1.9/min in height and 3.5 days in width. The half-width H is read from the obtained diffraction intensity curve in the azimuthal direction, and is substituted into equation (3) to calculate the degree of in-plane orientation.

面内配向度(働= ((180−H)/180 )刈0
0   (3)〈平均孔半径ζ、面内空孔率Pr、孔密
度N〉走査型電子顕微鏡には日本電子層JSM−U3型
を用い、表裏面の電子顕微鏡写真を撮影する。
In-plane orientation degree (work = ((180-H)/180) cutting 0
0 (3) <Average pore radius ζ, in-plane porosity Pr, pore density N> A JEOL JSM-U3 type scanning electron microscope is used to take electron micrographs of the front and back surfaces.

この際、引伸し倍率を3倍以下になるように、撮影倍率
はできるだけ大きくする。該写真から公知の方法で孔径
分布関数N (r)を算出し、これを本文中(1)式疋
代人する。すなわち、孔径分布を求め九い部分の走査型
電子顕微鏡写真を適当な大きさくたとえば20mX20
crn)に拡大焼付けし、得られた写真上に等間隔にテ
ストライン(直線)を20本描く。おのおのの直線は多
数の孔を横切る。
At this time, the imaging magnification is made as large as possible so that the enlargement magnification is 3 times or less. The pore size distribution function N (r) is calculated from the photograph using a known method, and is expressed as formula (1) in the text. In other words, the pore size distribution is determined and a scanning electron micrograph of the 90-degree area is taken to an appropriate size, for example, 20 m x 20 m.
crn) and draw 20 test lines (straight lines) at equal intervals on the resulting photograph. Each straight line crosses a number of holes.

多孔膜の表面または裏面上の孔を横切った際の孔内圧存
在する直線の長さを測定し、この頻度分布関数を求める
。もし膜表面上(裏面上)の孔かどうかの判定が困難な
場合は、写真上で観察される孔をすべて膜表面上の孔と
みなし、この際(5)式で算出される孔密度の見が本発
明に於ける孔密度と定義する。また、この際の面内空孔
率は(6)式で算出されるPrの2倍が面内空孔率であ
ると定義する。
The length of the straight line where the pore internal pressure exists when it crosses the pores on the front or back surface of the porous membrane is measured, and the frequency distribution function is determined. If it is difficult to determine whether the pores are on the membrane surface (on the back side), all pores observed on the photograph are considered to be pores on the membrane surface, and in this case, the pore density calculated by equation (5) is This is defined as the pore density in the present invention. Further, the in-plane porosity at this time is defined as twice Pr calculated by equation (6).

この頻度分布関数を用いて、たとえば、ステレオロジ(
たとえば、諏訪紀夫著、定量形態学、合波書店)の方法
でN(r)を定める。面内空孔率P、は    ・N 
(r)を用いて(4)式で算出される。
Using this frequency distribution function, for example, stereology (
For example, N(r) is determined by the method of Norio Suwa, Quantitative Morphology, Goiwa Shoten). In-plane porosity P, is ・N
It is calculated using equation (4) using (r).

く平均空孔率Prρ〉 平面状の多孔膜を47日φの円形に切シ出し、該多孔膜
を真空中で乾燥し、水分率f:0.596以下とする。
Average porosity Prρ> A planar porous membrane is cut out into a circular shape with a diameter of 47 days, and the porous membrane is dried in a vacuum to a moisture content f of 0.596 or less.

乾燥後の多孔膜の厚さをd(i、重量6wG)とすると
、平均空孔率Prρは(6)式で与えられる〈Tm1x
と動的弾性率〉 幅1■、長さ5crnの短冊状の試料を多孔膜から切シ
出し、東洋?−ルドウィン社製レオ・パイプロン(Rh
ao Vibron) DDV−Inc Wを使用し、
測定周波数110Hz、乾燥空気下で、平均昇温速度1
0℃/分で−δ一温度曲線と動的弾性率一温度曲線を測
定する。得られた曲線よシーδのピーク温度位置T’m
a工と30℃に於ける動的弾性率を読み取る。
If the thickness of the porous membrane after drying is d (i, weight 6wG), the average porosity Prρ is given by equation (6) <Tm1x
and dynamic elastic modulus〉 A strip-shaped sample with a width of 1cm and a length of 5crn was cut out from the porous membrane, and the Toyo? - Rheo Pipelon (Rh) made by Ludwin
ao Vibron) DDV-Inc W,
Measurement frequency 110Hz, average heating rate 1 under dry air
Measure the −δ-temperature curve and the dynamic modulus-temperature curve at 0° C./min. According to the obtained curve, the peak temperature position T'm of sea δ
Read the dynamic elastic modulus at a temperature of 30°C.

くウェットシーリンケージ〉 得られた多孔膜を温度20℃、湿度65%下に16時間
以上放置する。その後、多孔at幅10備、長さ106
nの大きさにカットし、その多孔膜t−25℃の純水中
に浸漬する。30分後湿潤状態の多孔膜の幅および長さ
を測定する。ウェットシーリンケージは(7)式で与え
られる。
Wet Sea Linkage> The obtained porous membrane is left at a temperature of 20° C. and a humidity of 65% for 16 hours or more. After that, porous at width 10, length 106
The porous membrane was cut into a size of n and immersed in pure water at t-25°C. After 30 minutes, the width and length of the wet porous membrane are measured. The wet sea linkage is given by equation (7).

〔実施例〕〔Example〕

以下、実施例について本発明を具体的に説明する。 The present invention will be specifically described below with reference to Examples.

〈実施例〉 セルロースリンター(平均分子量2.3X10  )を
公知の方法で調製した銅アンモニア溶液中VcB係の濃
度で溶解後、該溶液にアセトンを12%添加し、撹拌後
、30℃の空気中に通常の方法でガラス板上に500μ
mのアプリケータで流延する。
<Example> Cellulose linter (average molecular weight 2.3 x 10) was dissolved in a copper ammonia solution prepared by a known method at a concentration of VcB, then 12% acetone was added to the solution, and after stirring, the solution was dissolved in air at 30°C. 500μ on a glass plate in the usual way.
Cast with m applicator.

直ちに、該流延物を20℃のアセトン蒸気雰囲気の濃度
が飽和蒸気圧の70%の雰囲気下に入れ、100分放置
後、20℃、2チ硫散水溶液中に15分間浸漬再生し、
その後水洗し、しかる後肢膜t−20℃のアセトン中に
15分間浸漬し、膜中の水分をアセトンで置換し、その
後2軸延伸機に該膜を固定し、それぞれ10%延伸した
状態で真空乾燥した。得られた多孔膜の平均分子量は5
.7X10  、(002)面の面内配向度は6813
0℃の動的弾性率は1.3 X 10  d7n /y
B”、平均孔径は1.1μm、平均空孔率は66チ、孔
密度は4.1X10 個および’rmax は260℃
である。また湿潤時の縦方向のウェットシーリンケージ
は+5qb、横方向は+6俤であった。
Immediately, the cast product was placed in an acetone vapor atmosphere at 20°C with a concentration of 70% of the saturated vapor pressure, and after being left for 100 minutes, it was immersed in an aqueous solution of di-sulfuric acid at 20°C for 15 minutes for regeneration.
After that, the hindlimb membrane was washed with water, immersed in acetone at t-20°C for 15 minutes to replace the moisture in the membrane with acetone, and then fixed in a biaxial stretching machine and vacuumed after being stretched by 10%. Dry. The average molecular weight of the obtained porous membrane was 5
.. 7X10, the in-plane orientation degree of the (002) plane is 6813
The dynamic elastic modulus at 0°C is 1.3 x 10 d7n /y
B”, average pore diameter is 1.1μm, average porosity is 66cm, pore density is 4.1X10, and 'rmax is 260℃
It is. In addition, the wet sea linkage in the vertical direction when wet was +5 qb, and the horizontal wet sea linkage was +6 qb.

く比較例〉 公知の方法(USP3,883,626 )で得られた
程々のセルロースアセテート多孔膜をpi(12,0の
苛性ソーダ水溶液を用いて30℃でケン化し、再生セル
ロース多孔膜を得た。その微細構造上の特徴と各種物性
値を第1表に示す。
Comparative Example A moderately porous cellulose acetate membrane obtained by a known method (US Pat. No. 3,883,626) was saponified at 30°C using an aqueous solution of pi (12.0) sodium hydroxide to obtain a regenerated porous cellulose membrane. Table 1 shows its microstructural characteristics and various physical property values.

第1表 なお、試料番号1−1〜1−3で得られた多孔膜を構成
するセルロース分子の平均分子量は1.5X10〜2.
0X10  に分布する。
Table 1 Note that the average molecular weight of cellulose molecules constituting the porous membranes obtained with sample numbers 1-1 to 1-3 is 1.5X10 to 2.
0x10 distribution.

セルロース誘導体を再生して得られる多孔膜は、平均孔
径が低いほかに、動的弾性率が本発明の多孔膜の晃以下
であり、Tm1工も低い。これらが原因して該多孔膜の
強度や耐熱性は、本発明多孔膜にぐらぺて著しく劣るこ
とがわかる。また、ウェットシーリンケージは一10%
前後であり、収縮時の伸びが大きいことがわかる。
The porous membrane obtained by regenerating the cellulose derivative has a low average pore diameter, a dynamic elastic modulus lower than that of the porous membrane of the present invention, and a low Tm1. It can be seen that due to these factors, the strength and heat resistance of the porous membrane are significantly inferior to those of the porous membrane of the present invention. In addition, the wet sea linkage is -10%
It can be seen that the elongation during contraction is large.

Claims (1)

【特許請求の範囲】 1、セルロース分子の平均分子量が5×10^4以上で
、多孔膜を構成するセルロース分子鎖の面内配向度が6
0%〜80%の範囲内にあり、測定周波数110Hzに
於ける30℃の動的弾性率が3.0×10^8(100
−Prρ)dyn/cm^2以上(Prρは百分率表示
の平均空孔率)で、多孔膜に於いて平均孔径(D)が0
.02〜10μmであり、かつ少なくとも一つの面の面
内空孔率(Pr)が30%以上であるかあるいは面内の
1cm^2当りの孔密度が6×10^5個/D以上、3
×10^7個/D(Dの単位はμm)以下であることを
特徴とする湿潤時の寸法安定性の良好な銅安セルロース
多孔膜。 2、多孔膜の平均空孔率(Prρ)が55%以上、90
%以下であり、かつ膜の中央部に於ける面内空孔率(P
r)が30%以上である特許請求の範囲第1項記載の銅
安セルロース多孔膜。 3、測定周波数110Hzに於ける力学的損失正接ta
n^δのピーク温度T_m_a_xが250℃以上であ
る特許請求の範囲第1項または第2項記載の銅安セルロ
ース多孔膜。
[Scope of Claims] 1. The average molecular weight of cellulose molecules is 5×10^4 or more, and the degree of in-plane orientation of cellulose molecular chains constituting the porous membrane is 6.
It is within the range of 0% to 80%, and the dynamic elastic modulus at 30°C at a measurement frequency of 110Hz is 3.0 × 10^8 (100
-Prρ) dyn/cm^2 or more (Prρ is the average porosity expressed as a percentage), and the average pore diameter (D) in the porous membrane is 0.
.. 02 to 10 μm, and the in-plane porosity (Pr) of at least one surface is 30% or more, or the pore density per 1 cm^2 in the plane is 6 x 10^5 pieces/D or more, 3
A copper ammonium cellulose porous membrane having good dimensional stability when wet, characterized in that the number is 10^7 pieces/D (the unit of D is μm) or less. 2. The average porosity (Prρ) of the porous membrane is 55% or more, 90
% or less, and the in-plane porosity (P
The copper ammonium cellulose porous membrane according to claim 1, wherein r) is 30% or more. 3. Mechanical loss tangent ta at measurement frequency 110Hz
The copper ammonium cellulose porous membrane according to claim 1 or 2, wherein the peak temperature T_m_a_x of n^δ is 250°C or higher.
JP13695385A 1985-06-25 1985-06-25 Cuprammonium cellulose porous membrane with good dimensional stability Pending JPS621403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13695385A JPS621403A (en) 1985-06-25 1985-06-25 Cuprammonium cellulose porous membrane with good dimensional stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13695385A JPS621403A (en) 1985-06-25 1985-06-25 Cuprammonium cellulose porous membrane with good dimensional stability

Publications (1)

Publication Number Publication Date
JPS621403A true JPS621403A (en) 1987-01-07

Family

ID=15187363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13695385A Pending JPS621403A (en) 1985-06-25 1985-06-25 Cuprammonium cellulose porous membrane with good dimensional stability

Country Status (1)

Country Link
JP (1) JPS621403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132745A1 (en) * 2010-04-22 2011-10-27 富士フイルム株式会社 Cellulose derivative, resin composition, molding material, molded body, method for producing molded body, and housing for electric/electronic device
JP2018020286A (en) * 2016-08-03 2018-02-08 日本特殊膜開発株式会社 Pore diffusion membrane separation module for fractionation of component molecules in high molecule solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599305A (en) * 1979-01-26 1980-07-29 Asahi Chem Ind Co Ltd Selectively permeable membrane
JPS5889626A (en) * 1981-11-25 1983-05-28 Asahi Chem Ind Co Ltd Tough regenerated cellulose porous membrane
JPS59204911A (en) * 1983-05-02 1984-11-20 Asahi Chem Ind Co Ltd Regenerated cellulose hollow fiber of novel structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599305A (en) * 1979-01-26 1980-07-29 Asahi Chem Ind Co Ltd Selectively permeable membrane
JPS5889626A (en) * 1981-11-25 1983-05-28 Asahi Chem Ind Co Ltd Tough regenerated cellulose porous membrane
JPS59204911A (en) * 1983-05-02 1984-11-20 Asahi Chem Ind Co Ltd Regenerated cellulose hollow fiber of novel structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132745A1 (en) * 2010-04-22 2011-10-27 富士フイルム株式会社 Cellulose derivative, resin composition, molding material, molded body, method for producing molded body, and housing for electric/electronic device
JP2018020286A (en) * 2016-08-03 2018-02-08 日本特殊膜開発株式会社 Pore diffusion membrane separation module for fractionation of component molecules in high molecule solution

Similar Documents

Publication Publication Date Title
CN111229053B (en) High-flux nanofiltration membrane, and preparation method and application thereof
JPH01148305A (en) High molecular porous hollow yarn and process for removing virus utilizing the same
US4822540A (en) Process for the preparation of a porous regenerated cellulose hollow fiber
KR102206959B1 (en) Method of purifying a biological material of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
Bhanthumnavin et al. Surface modification of bacterial cellulose membrane by oxygen plasma treatment
Voicu et al. Cellulose acetate membranes with controlled porosity and their use for the separation of aminoacids and proteins
EP0080206B1 (en) Porous regenerated cellulose membrane and process for the preparation thereof
JPS621403A (en) Cuprammonium cellulose porous membrane with good dimensional stability
JPS6244017B2 (en)
CN111804162A (en) Preparation method of high-flux polytetrafluoroethylene composite nanofiltration membrane
JPS5889626A (en) Tough regenerated cellulose porous membrane
JPS6388007A (en) Virus free module
JPS6244018B2 (en)
JPS61254202A (en) Hollow fiber for separating bacteria particles
JPS61274707A (en) Regenerated porous membrane for separating bacteria
JP2006055780A (en) Flat-membrane-pore diffusion separator
JPS61296112A (en) Cuprammonium cellulose hollow yarn membrane
JPS59204911A (en) Regenerated cellulose hollow fiber of novel structure
JPH01254204A (en) Method for removing virus
JPS58192840A (en) Separation and concentration method of ethanol from aqueous solution thereof
JPH01199604A (en) Filter membrane containing bacterized cellulose
JPH04284828A (en) Membrane separation method
He et al. Nb2CTx MXene coating with inhibition of oxidative stress prepared by Marangoni effect for hemodialysis therapy
JPS63102676A (en) Concentration of virus
JPH0446978B2 (en)