WO2011132745A1 - Cellulose derivative, resin composition, molding material, molded body, method for producing molded body, and housing for electric/electronic device - Google Patents

Cellulose derivative, resin composition, molding material, molded body, method for producing molded body, and housing for electric/electronic device Download PDF

Info

Publication number
WO2011132745A1
WO2011132745A1 PCT/JP2011/059852 JP2011059852W WO2011132745A1 WO 2011132745 A1 WO2011132745 A1 WO 2011132745A1 JP 2011059852 W JP2011059852 W JP 2011059852W WO 2011132745 A1 WO2011132745 A1 WO 2011132745A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose derivative
group
cellulose
general formula
acid
Prior art date
Application number
PCT/JP2011/059852
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 真一
上平 茂生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011132745A1 publication Critical patent/WO2011132745A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters

Definitions

  • a plant-derived resin is originally produced by a photosynthesis reaction using carbon dioxide and water in the atmosphere as raw materials. Therefore, even if plant-derived resin is incinerated to generate carbon dioxide, the carbon dioxide is equivalent to carbon dioxide originally in the atmosphere, so the balance of carbon dioxide in the atmosphere is plus or minus zero After all, there is an idea that the total amount of CO 2 in the atmosphere is not increased. Based on this idea, plant-derived resins are referred to as so-called “carbon neutral” materials. The use of carbon-neutral materials in place of petroleum-derived resins is an urgent need to prevent global warming in recent years.
  • Patent Document 3 describes a cellulose ether ester having a specific structure, and describes that an optical film is prepared by dissolving the cellulose ether ester in a solvent and applying it.
  • Patent Document 4 describes that a cellulose derivative having an acyl group having a large number of carbon atoms is obtained from hydroxyethyl cellulose and a specific polyoxyalkylene agent.
  • Patent Document 5 describes cellulose stearate ester and cellulose palmitate ester made of hydroxypropyl cellulose.
  • Patent Document 6 describes, as liquid crystal polymers, cellulose derivatives obtained from hydroxyethyl cellulose and butyric acid, and cellulose derivatives obtained from hydroxypropyl cellulose and iodobutane.
  • the cellulose derivative described in Patent Document 6 exhibits liquid crystallinity, and such a liquid crystalline resin is described in a paper by Gray et al. (Macromolecules 1981, 14, 715-719).
  • the total molar substitution MS of the —C n H 2n —O— group is considered to be larger than 4.
  • a cellulose derivative having a total molar substitution MS of a —C n H 2n —O— group greater than 4 is in a rubbery state at room temperature and is not suitable for molding processing. .
  • An object of the present invention is to provide a cellulose derivative having good thermoplasticity and strength and suitable for molding processing.
  • the present inventors pay attention to the molecular structure of cellulose, and by making the cellulose into a cellulose derivative having a specific structure, the present invention expresses good thermoplasticity, and a molded article produced from the cellulose derivative has excellent impact resistance.
  • the present invention was completed. That is, the said subject can be achieved by the following means.
  • n 2 or 3
  • R A represents a hydrocarbon group having 1 to 3 carbon atoms.
  • Cellulose derivative [6] The cellulose derivative according to any one of [1] to [5] above, wherein the number average molecular weight is 200,000 or more and 500,000 or less. [7] The cellulose derivative according to any one of [1] to [6], wherein the cellulose derivative is obtained by acylating hydroxyethylcellulose, hydroxypropylcellulose, or hydroxyethylhydroxypropylcellulose. [8] The cellulose derivative according to any one of the above [1] to [7], wherein the cellulose derivative substantially does not contain an alkoxy group. [9] The cellulose derivative according to any one of [1] to [8] above, wherein the cellulose derivative is non-liquid crystalline.
  • a resin composition comprising the cellulose derivative according to any one of [1] to [9] above.
  • a molding material comprising the cellulose derivative according to any one of [1] to [9] above or the resin composition according to [10] above.
  • a molded body obtained by molding the cellulose derivative according to any one of [1] to [9], the resin composition according to [10], or the molding material according to [11].
  • the method includes heating and molding the cellulose derivative according to any one of [1] to [9], the resin composition according to [10], or the molding material according to [11].
  • the manufacturing method of a molded object [14] A housing for electrical and electronic equipment comprising the molded article according to [12] above.
  • the cellulose derivative of the present invention Since the cellulose derivative of the present invention has excellent thermoplasticity, it can be formed into a molded body. In particular, the cellulose derivative of the present invention can be molded at a low temperature even if it is a high molecular weight product. In addition, the molded body produced from the cellulose derivative of the present invention has good impact resistance, and is suitable as a component part for automobiles, home appliances, electrical and electronic equipment, mechanical parts, housing / building materials, etc. Can be used. Moreover, since it is a plant-derived resin, it can be replaced with a conventional petroleum-derived resin as a material that can contribute to the prevention of global warming.
  • the cellulose derivative in the present invention is a group in which at least a part of hydrogen atoms of a hydroxyl group contained in cellulose ⁇ (C 6 H 10 O 5 ) n ⁇ includes a structure represented by A) the general formula (1). And at least a part of hydrogen atoms of another hydroxyl group is substituted by the B) acyl group (—CO—R B ). More specifically, the cellulose derivative in the present invention has a repeating unit represented by the following general formula (2).
  • R 2 , R 3 and R 6 are each independently a hydrogen atom, A) a group containing the structure represented by General Formula (1), or B) an acyl group (—CO— R B ). However, at least a portion of R 2, R 3, and R 6 represents a group containing a structure represented by A) formula (1), R 2, at least part of R 3, and R 6 B) Represents an acyl group (—CO—R B ).
  • the cellulose derivative of the present invention comprises A) a group in which at least part of the hydroxyl groups of the ⁇ -glucose ring includes a structure represented by the general formula (1), and B) an acyl group (—CO—R B ).
  • B) an acyl group (—CO—R B ) By being substituted by, it is possible to impart formability to the cellulose. Furthermore, since cellulose is a completely plant-derived component, it is carbon neutral and can greatly reduce the burden on the environment.
  • the “cellulose” referred to in the present invention is a polymer compound in which a large number of glucoses are bonded by ⁇ -1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose. Means that the hydroxyl group bonded to is unsubstituted. Further, “hydroxyl group contained in cellulose” refers to a hydroxyl group bonded to carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose.
  • the cellulose derivative only needs to contain A) a group containing the structure represented by the general formula (1) and B) an acyl group (—CO—R B ) in any part of the cellulose derivative. These may be composed of repeating units, or may be composed of a plurality of types of repeating units. Further, the cellulose derivative does not need to contain a substituent of A) a group including the structure represented by the general formula (1) and B) an acyl group (—CO—R B ) in one repeating unit. . More specific embodiments include the following embodiments, for example.
  • R 2, R 3 and part of R 6 is, A) a repeating unit by a group containing a structure represented by the general formula (1) is substituted, one R 2, R 3 and R 6 A cellulose derivative comprising a part B ) a repeating unit substituted with an acyl group (—CO—R B ).
  • any one of R 2 , R 3, and R 6 is substituted with a group including the structure represented by A) the general formula (1), and any of R 2 , R 3, and R 6 B) A cellulose derivative composed of the same type of repeating unit substituted with an acyl group (—CO—R B ) (that is, having the above-mentioned substituents A) and B) in one repeating unit.
  • R A represents a hydrocarbon group having 1 to 3 carbon atoms.
  • R A may be either a straight chain or branched aliphatic group, and may have an unsaturated bond.
  • R A is preferably an alkyl group having 1 to 3 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • R A is more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
  • the group including the structure represented by the general formula (1) may include a plurality of alkyleneoxy groups or may include only one. More specifically, the group A) can be represented by the following general formula (1 ').
  • n ′ is not particularly limited, and varies depending on the amount of alkyleneoxy group introduced, but is, for example, about 10, preferably 9 and more preferably 7.
  • the group containing the structure represented by A) general formula (1) of the cellulose derivative of the present invention may be one type or two or more types.
  • n is preferably 2.
  • R B represents a hydrocarbon group having 1 to 3 carbon atoms.
  • the R B can be applied the same as those mentioned in R A in the general formula (1).
  • the preferred range of R B is the same as R A.
  • the cellulose derivative of the present invention may have one or more B) acyl groups.
  • A) a group containing the structure represented by the general formula (1), and B ) the substitution position of the acyl group (—CO—R B ), and the number of each substituent per ⁇ -glucose ring unit ( The degree of substitution) is not particularly limited.
  • A) Degree of substitution DSa of a group containing the structure represented by the general formula (1) (A in the repeating unit, A for hydroxyl groups at the 2nd, 3rd and 6th positions of the cellulose structure of the ⁇ -glucose ring)
  • the number of groups including the structure represented by 1) is 0 ⁇ DSa, and more preferably 0.1 ⁇ DSa. Since the melting start temperature can be lowered when 0.1 ⁇ DSa, thermoforming can be performed more easily.
  • the cellulose derivative may have an unsubstituted hydroxyl group.
  • the hydrogen atom substitution degree DSh (ratio in which the hydroxyl groups at the 2-position, 3-position and 6-position in the polymerization unit are unsubstituted) can be preferably in the range of 0 to 1.5, more preferably 0 to 0. .6. By setting DSh to 0.6 or less, it is possible to improve the fluidity of the thermoforming material, or to suppress foaming due to water absorption of the thermoforming material during acceleration / molding of thermal decomposition.
  • the cellulose derivative preferably does not substantially contain an alkoxy group other than the —C n H 2n —O— group in the group containing the structure represented by A) the general formula (1).
  • the cellulose derivative of the present invention further improves the hydrophobicity by substantially not containing an alkoxy group other than the —C n H 2n —O— group in the group containing the structure represented by the general formula (1). Can be made. This is because, for example, when an alkoxy group is included, a cellulose ether having an alkoxy group generally exhibits high hygroscopicity. Further, the alkoxy group does not have a hydroxyl group capable of easily introducing an acyl group which is a hydrophobic group.
  • the cellulose as the raw material may contain an alkoxy group
  • the cellulose derivative using the above-described substituents A) and B) introduced therein may contain an alkoxy group. Is substantially not included ".
  • the degree of substitution of the alkoxy group can be quantified by 1 H-NMR.
  • the introduction amount of —C n H 2n —O— group (also referred to as alkyleneoxy group) in the group containing the structure represented by the general formula (1) is the molar substitution degree (MS: per glucose residue).
  • the number of moles of substituents introduced) (edited by Cellulose Society, Cellulose Dictionary P142).
  • the total molar substitution degree MS of the alkyleneoxy group is 0.5 ⁇ MS ⁇ 3.0, preferably 0.5 ⁇ MS ⁇ 2.5, and 1.0 ⁇ MS ⁇ 2.0. Is more preferable.
  • MS is 0.5 or more and 3.0 or less, heat resistance, moldability and the like can be improved, and a cellulose derivative suitable for a thermoforming material can be obtained.
  • the cellulose derivative of the present invention is preferably non-liquid crystalline.
  • the type, degree of substitution, and MS (degree of molar substitution of alkyleneoxy group) of the cellulose derivative are determined by 1 H-NMR using the method described in Cellulose Communication 6, 73-79 (1999). can do.
  • the molecular weight of the cellulose derivative in the present invention has a number average molecular weight (Mn) of 150,000 or more, preferably in the range of 150,000 to 1,000,000, more preferably in the range of 200,000 to 500,000, further 300,000 to 500,000. preferable.
  • Mn number average molecular weight
  • the mass average molecular weight (Mw) is preferably in the range of 500,000 to 10 million, and more preferably in the range of 1.5 to 6 million.
  • the molecular weight distribution (MWD) is preferably in the range of 1.1 to 15.0, more preferably in the range of 2.0 to 12.5. By setting the molecular weight distribution within this range, moldability and the like can be improved.
  • the number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC). Specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
  • the degree of polymerization of the cellulose derivative is preferably in the range of 500 to 2000, more preferably in the range of 750 to 1500, and still more preferably 1000 to 1400.
  • the degree of polymerization is 240, when the number average molecular weight is 120,000, the degree of polymerization is 310, and when the number average molecular weight is 450,000, the degree of polymerization is about 1300.
  • the method for producing a cellulose derivative in the present invention is not particularly limited, and the cellulose derivative of the present invention can be produced by using cellulose as a raw material and etherifying and esterifying cellulose.
  • the raw material for cellulose is not limited, and examples thereof include cotton, linter, and pulp.
  • Preferred embodiments of the production method include, for example, hydroxyethyl cellulose having a hydroxyethyl group: —C 2 H 4 —OH or hydroxypropyl cellulose having a hydroxypropyl group: —C 3 H 6 —OH, or a hydroxyethyl group and a hydroxypropyl group It is performed by a method including a step of esterification (acylation) by reacting hydroxyethylhydroxypropylcellulose having an acid chloride or an acid anhydride.
  • esterification acylation
  • acid chloride for example, the method described in Cellulose 10; 283-296, 2003 can be used.
  • Hydroxyethyl cellulose, hydroxylpropyl cellulose, and hydroxyethyl hydroxypropyl cellulose can be synthesized from cellulose by a conventional method, or commercially available ones may be used.
  • hydroxyethyl cellulose and hydroxypropyl cellulose can be synthesized from cellulose.
  • the commercially available product has a plurality of substitution degree types. For each substitution degree type, there is a viscosity grade indicated by a viscosity value of a 2% aqueous solution at 20 ° C., with a viscosity value of about 1 to 200,000. is there.
  • a high viscosity grade has a higher molecular weight (Mn, Mw) than a low viscosity grade.
  • the viscosity of a raw material preferable for obtaining a high molecular weight body is a viscosity value of 5000 to 200,000.
  • Examples of commercially available hydroxyethyl cellulose include trade name AX-15 (manufactured by Sumitomo Seika), trade names EP 850 and SP 900 (manufactured by Daicel Chemical Industries).
  • Examples of commercially available hydroxypropyl cellulose include those under the trade names LDC-H (manufactured by Shin-Etsu Chemical Co., Ltd.) and Aldrich.
  • an acyl group contained in A) and a carboxylic acid chloride corresponding to B) an acyl group can be used.
  • the carboxylic acid chloride include acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride and the like.
  • carboxylic acid anhydrides corresponding to the acyl group and B) acyl group contained in A) can be used.
  • carboxylic anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, and the like.
  • An acid may be used as the catalyst.
  • Preferred acids include, for example, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, perchloric acid, phosphoric acid, trifluoroacetic acid, trichloroacetic acid and the like. More preferred are sulfuric acid and methanesulfonic acid.
  • Bisulfates may also be used, and examples include lithium bisulfate, sodium bisulfate, and potassium bisulfate.
  • a solid acid catalyst may also be used.
  • a polymer solid acid catalyst such as an ion exchange resin, an inorganic oxide solid acid catalyst typified by zeolite, and a carbon type used in JP2009-67730A.
  • a solid acid catalyst is mentioned.
  • a Lewis acid catalyst may also be used, and examples thereof include titanic acid ester catalysts and zinc chloride used in US Pat. No. 2,976,277.
  • a base may be used as the catalyst.
  • examples thereof include pyridines, alkali metal salts of acetic acid such as sodium acetate, dimethylaminopyridine, and anilines.
  • a general organic solvent can be used.
  • carboxylic acids and carboxamide solvents are preferred.
  • carboxylic acid for example, a carboxylic acid corresponding to the acyl group contained in A) and the acyl group contained in B) can be used.
  • carboxylic acid ethyl acetate or acetonitrile may be used in combination.
  • carboxamide-based solvent examples include those used in JP-T-10-5117129 and US Pat. No. 2,705,710, and examples thereof include N, N-dimethylacetamide.
  • dimethyl sulfoxide containing lithium chloride as used in JP-A-2003-41052 may be used.
  • a halogenated solvent may be used, preferably dichloromethane.
  • Pyridine that can be used as a base may be used as a solvent.
  • acid chloride used as an esterifying agent may be used as a solvent.
  • acetic acid containing a carboxylic acid or a small amount of an acid catalyst may be added to the raw material cellulose derivative and mixed.
  • the generated vapor is condensed and discharged to harm to the reaction system.
  • the reaction product may be concentrated.
  • heat can be removed by removing the reaction heat generated by the esterification reaction with the latent heat of evaporation of the volatile solvent.
  • the reaction may be performed by irradiating ultrasonic waves.
  • the method for separating the target cellulose derivative is not particularly limited, and for example, precipitation, filtration, washing, drying, extraction, concentration, column chromatography and the like can be used alone or in appropriate combination of two or more. From the viewpoints of properties and purification efficiency, a method of separating the cellulose derivative by precipitation (reprecipitation) operation is preferable.
  • the solution containing the cellulose derivative is mixed with the poor solvent, for example, the reaction solution containing the cellulose derivative is put into the poor solvent of the cellulose derivative, or the poor solvent is put into the solution containing the cellulose derivative. Is done.
  • the solid-liquid separation method of the obtained precipitate is not particularly limited, and methods such as filtration and sedimentation can be used. Filtration is preferred, and various dehydrators using decompression, pressurization, gravity, squeezing, centrifugation and the like can be used. For example, a vacuum dehydrator, a pressure dehydrator, a belt press, a centrifugal filtration dehydrator, a vibrating screen, a roller press, a belt screen, and the like can be given.
  • the separated precipitate often removes acetic acid, acid used as an acid catalyst, solvent, and free metal components by washing such as water.
  • acetic acid and the acid used as the acid catalyst are preferably removed because they cause a decrease in the molecular weight of the resin during molding and a decrease in physical performance.
  • a neutralizing agent may be added during washing.
  • the neutralizing agent is not particularly limited as long as it is a base, but preferably includes an alkali metal compound and an alkaline earth metal compound. Specifically, sodium acetate, potassium acetate, calcium acetate, magnesium acetate, Calcium hydroxide, magnesium hydroxide and the like. Further, as disclosed in JP-B-6-67961, a buffer solution may be used for washing.
  • the drying method is not particularly limited, and various dryers that perform drying under conditions such as air blowing and reduced pressure can be used.
  • the shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic. Specifically, as the inorganic filler, glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate,
  • Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
  • the content thereof is not limited, but is usually 30 parts by mass or less, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
  • the resin composition of the present invention may contain a flame retardant.
  • the flame retardant is not particularly limited, and a conventional flame retardant can be used.
  • a conventional flame retardant can be used.
  • brominated flame retardants, chlorine-based flame retardants, phosphorus-containing flame retardants, silicon-containing flame retardants, nitrogen compound-based flame retardants, inorganic flame retardants and the like can be mentioned.
  • hydrogen halides are not generated by thermal decomposition during resin compounding or molding, and do not corrode processing machines or molds or deteriorate the working environment.
  • Phosphorus-containing flame retardants and silicon-containing flame retardants are preferred because they are less likely to adversely affect the environment through the generation of harmful substances such as dioxins when they are diffused or decomposed.
  • the phosphorus-containing flame retardant is not particularly limited, and a commonly used one can be used. Examples thereof include organic phosphorus compounds such as phosphate esters, phosphate condensation esters, and polyphosphates.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxye
  • Examples of the phosphoric acid condensed ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. Aromatic phosphoric acid condensed ester and the like.
  • polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned.
  • lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
  • halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris ( ⁇ -chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
  • phosphorus-containing flame retardants may be used singly or in combination of two or more.
  • silicon-containing flame retardant examples include an organic silicon compound having a two-dimensional or three-dimensional structure, polydimethylsiloxane, or a methyl group at a side chain or a terminal of polydimethylsiloxane, a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Examples thereof include those substituted or modified with an aromatic hydrocarbon group, so-called silicone oils, or modified silicone oils.
  • Examples of the substituted or unsubstituted aliphatic hydrocarbon group and aromatic hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Examples include a chloroalkyl group, an alkyl higher alcohol ester group, an alcohol group, an aralkyl group, a vinyl group, or a trifluoromethyl group.
  • These silicon-containing flame retardants may be used alone or in combination of two or more.
  • Examples of the flame retardant other than the phosphorus-containing flame retardant or the silicon-containing flame retardant include, for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate, zinc stannate, Metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, ammonium borate, ammonium octamolybdate, tungsten Inorganic flame retardants such as acid metal salts, complex oxides of tungsten and metalloid, ammonium sulfamate, ammonium bromide, zirconium compounds, guanidine compounds, fluorine compounds, graphite, and swellable graphite can be used. . These other flame retardants may be used alone or in combination of two or more.
  • the resin composition of the present invention contains a flame retardant
  • its content is not limited, but is usually 30 parts by mass or less, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative. By setting it as this range, impact resistance, brittleness, etc. can be improved, or generation
  • the resin composition of the present invention is not limited to the cellulose derivatives, fillers and flame retardants described above, and may be used for the purpose of further improving various properties such as moldability and flame retardancy within a range not impairing the object of the present invention.
  • Ingredients may be included.
  • other components include polymers other than the cellulose derivatives, plasticizers, stabilizers (antioxidants, UV absorbers, etc.), mold release agents (fatty acids, fatty acid metal salts, oxyfatty acids, fatty acid esters, aliphatic moieties.
  • any of a thermoplastic polymer and a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability.
  • Specific examples of polymers other than cellulose derivatives include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc.
  • Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, polyacetate (Including homopolymers and copolymers), polyurethanes, aromatic and aliphatic polyketones, polyphenylene sulfide, polyether ether ketone, thermoplastic starch resins, polymethyl methacrylate and methacrylate-acrylate copolymers Acrylic resin, AS resin (acrylonitrile-styrene copolymer), ABS resin, AES resin (ethylene rubber reinforced AS resin), ACS resin (chlorinated polyethylene reinforced AS resin), ASA resin (acrylic rubber reinforced AS resin) ), Polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS resin (methyl methacrylate-styrene copolymer), polycarbonate, polyarylate, polysulfone,
  • a multi-layer structure polymer called a so-called core-shell rubber which is composed of one or more shell layers to be covered and whose adjacent layers are composed of different types of polymers, can also be used, and further a core-shell rubber containing a silicone compound Can also be used.
  • These polymers may be used alone or in combination of two or more.
  • the content thereof is preferably 30 parts by mass or less, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
  • polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4
  • glycerin plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
  • Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid
  • Adipic acid esters such as benzylbutyl diglycol, citrate esters such as triethyl acetylcitrate and tributyl acetylcitrate, azelaic acid esters such as di-2-ethylhexyl azelate, sebashi Dibutyl, and include di-2-ethylhexyl sebacate and the like.
  • polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols.
  • a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
  • the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
  • the content thereof is usually 5 parts by mass or less, preferably 0.005 to 5 parts by mass, more preferably 0.005 parts by mass with respect to 100 parts by mass of the cellulose derivative. 01 to 1 part by mass.
  • the molding material of the present invention contains the cellulose derivative or the resin composition.
  • the molded body of the present invention can be obtained by molding the cellulose derivative, the resin composition, or the molding material. More specifically, it is obtained by a production method including a step of heating the cellulose derivative or the resin composition containing the cellulose derivative and various additives as necessary, and molding them by various molding methods. Examples of the molding method include injection molding, extrusion molding, blow molding and the like.
  • the heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
  • the use of the molded article of the present invention is not particularly limited.
  • interior or exterior parts of electric and electronic equipment home appliances, OA / media related equipment, optical equipment, communication equipment, etc.
  • automobiles mechanical parts And materials for housing and construction.
  • exterior parts especially casings
  • electrical and electronic equipment such as copiers, printers, personal computers, and televisions.
  • ⁇ Synthesis Example 2 Synthesis of acetoxypropylacetylcellulose (C-2)>
  • cellulose ether was first obtained by the following method. That is, t-butyl alcohol (757 g), isopropanol (35.7 g), acetone (26.8 g), water (73.2 g), and crushed linter (99.2 g) were weighed into a 3 L beaker, and 1 at room temperature. Stir for hours. Thereafter, this suspension and a 50% aqueous sodium hydroxide solution (55.6 g) were added to a 2 L autoclave and stirred at room temperature for 45 minutes.
  • the cellulose derivatives obtained above were classified into Cellulose Communication 6, 73-79 (1999) with respect to the type and degree of substitution of functional groups substituted with cellulose, and MS (total molar substitution degree of alkyleneoxy groups). ) was observed and determined by 1 H-NMR using the method described in 1 ).
  • A a group containing an acyl group and an alkyleneoxy group in cellulose derivatives (C-1), (C-6) to (C-9), (R-2), and (R-4)” All include a group represented by the following formula (1-1), and in the cellulose derivatives (C-2), (R-1), and (R-3), all are represented by the following formula (1-2).
  • the cellulose derivative (C-3) contains a group represented by the following general formula (1-3), and the cellulose derivative (C-4) represents a group represented by the following formula (1-4).
  • R represents H or CH 3 group.
  • the cellulose derivative (R-3) having MS having a liquid crystallinity of 5.0 and the cellulose derivative (R-5) having a pentanoyl group are almost rubbery at room temperature and are not suitable for molding applications.
  • the cellulose derivative (R-2) having an MS of 3.2 could be molded, the Charpy impact strength of the molded body was low.
  • the cellulose derivative (R-4) having a number average molecular weight of 92,000 was able to be molded, the Charpy impact strength was lower than that of the molded body of the example.
  • cellulose derivative (R-1) having MS of 0.3 has insufficient thermoplasticity and decomposes without melting even when the temperature is raised, and is not suitable for molding applications.
  • hydroxyethyl cellulose (R-6) and (R-7) having MS of 1.7 and 2.2, respectively decomposed without melting even when the temperature was raised, whereas hydroxyethyl cellulose with the same MS
  • the acetylated cellulose derivatives (C-1) and (C-7) could be molded at relatively low temperatures of 175 ° C. and 160 ° C., respectively. It was also found that the Charpy impact strength of (C-1) was higher than that of the cellulose derivative (R-4) having the same MS and a low molecular weight.
  • the cellulose derivative of the present invention Since the cellulose derivative of the present invention has excellent thermoplasticity, it can be formed into a molded body. In particular, the cellulose derivative of the present invention can be molded at a low temperature even if it is a high molecular weight product. In addition, the molded body produced from the cellulose derivative of the present invention has good impact resistance, and is suitable as a component part for automobiles, home appliances, electrical and electronic equipment, mechanical parts, housing / building materials, etc. Can be used. Moreover, since it is a plant-derived resin, it can be replaced with a conventional petroleum-derived resin as a material that can contribute to the prevention of global warming.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Disclosed is a cellulose derivative that is suitable for molding processes and has excellent thermal plasticity and strength. Specifically disclosed is a cellulose derivative wherein hydrogen atoms of hydroxyl groups contained in the cellulose have at least one group substituted by (A)) and at least one group substituted by (B)), and the total molar degree of substitution for the -CnH2n-O- groups contained in the groups substituted by (A)) is 0.5 - 3.0. The number average molecular weight is 150,000 or greater. (A)) Group containing the structure represented by general formula (1) (B)) Acyl group: -CO-RB (RB represents a C1-3 hydrocarbon group.) (In general formula (1), n represents 2 or 3, and RA represents a C1-3 hydrocarbon.)

Description

セルロース誘導体、樹脂組成物、成形材料、成形体、成形体の製造方法、及び電気電子機器用筐体Cellulose derivative, resin composition, molding material, molded article, method for producing molded article, and casing for electrical and electronic equipment
 本発明は、新規なセルロース誘導体、樹脂組成物、成形材料、成形体、成形体の製造方法、及び電気電子機器用筐体に関する。 The present invention relates to a novel cellulose derivative, a resin composition, a molding material, a molded body, a method for producing the molded body, and a casing for electric and electronic equipment.
 コピー機、プリンター等の電気電子機器を構成する部材には、その部材に求められる特性、機能等を考慮して、各種の素材が使用されている。例えば、電気電子機器の駆動機等を収納し、当該駆動機を保護する役割を果たす部材(筐体)にはPC(Polycarbonate)、ABS(Acrylonitrile-butadiene-styrene)樹脂、PC/ABS等が一般的に多量に使用されている(特許文献1)。これらの樹脂は、石油を原料として得られる化合物を反応させて製造されている。 Various materials are used for members constituting electrical and electronic devices such as copiers and printers in consideration of the characteristics and functions required of the members. For example, PC (Polycarbonate), ABS (Acrylonitrile-butadiene-styrene) resin, PC / ABS, etc. are generally used as a member (housing) that stores a drive machine for electrical and electronic equipment and protects the drive machine. In large amounts (Patent Document 1). These resins are produced by reacting compounds obtained from petroleum as a raw material.
 ところで、石油、石炭、天然ガス等の化石資源は、長年月の間、地中に固定されてきた炭素を主成分とするものである。このような化石資源、又は化石資源を原料とする製品を燃焼させて、二酸化炭素が大気中に放出された場合には、本来、大気中に存在せずに地中深くに固定されていた炭素を二酸化炭素として急激に放出することになり、大気中の二酸化炭素が大きく増加し、これが地球温暖化の原因となっている。したがって、化石資源である石油を原料とするABS、PC等のポリマーは、電気電子機器用部材の素材としては、優れた特性を有するものであるものの、化石資源である石油を原料とするものであるため、地球温暖化の防止の観点からは、その使用量の低減が望ましい。 By the way, fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years. When such fossil resources or products made from fossil resources are burned and carbon dioxide is released into the atmosphere, carbon that was originally not deep in the atmosphere but fixed deep in the ground Is rapidly released as carbon dioxide, and carbon dioxide in the atmosphere greatly increases, which causes global warming. Therefore, polymers such as ABS and PC made from petroleum, which is a fossil resource, have excellent characteristics as materials for electrical and electronic equipment, but are made from petroleum, which is a fossil resource. Therefore, it is desirable to reduce the amount used from the viewpoint of preventing global warming.
 一方、植物由来の樹脂は、元々、植物が大気中の二酸化炭素と水とを原料として光合成反応によって生成したものである。そのため、植物由来の樹脂を焼却して二酸化炭素が発生しても、その二酸化炭素は元々、大気中にあった二酸化炭素に相当するものであるから、大気中の二酸化炭素の収支はプラスマイナスゼロとなり、結局、大気中のCOの総量を増加させない、という考え方がある。このような考えから、植物由来の樹脂は、いわゆる「カーボンニュートラル」な材料と称されている。石油由来の樹脂に代わって、カーボンニュートラルな材料を用いることは、近年の地球温暖化を防止する上で急務となっている。 On the other hand, a plant-derived resin is originally produced by a photosynthesis reaction using carbon dioxide and water in the atmosphere as raw materials. Therefore, even if plant-derived resin is incinerated to generate carbon dioxide, the carbon dioxide is equivalent to carbon dioxide originally in the atmosphere, so the balance of carbon dioxide in the atmosphere is plus or minus zero After all, there is an idea that the total amount of CO 2 in the atmosphere is not increased. Based on this idea, plant-derived resins are referred to as so-called “carbon neutral” materials. The use of carbon-neutral materials in place of petroleum-derived resins is an urgent need to prevent global warming in recent years.
 このため、PCポリマーにおいて、石油由来の原料の一部としてデンプン等の植物由来資源を使用することにより石油由来資源を低減する方法が提案されている(特許文献2)。
 しかし、より完全なカーボンニュートラルな材料を目指す観点から、さらなる改良が求められている。
For this reason, in PC polymer, the method of reducing petroleum origin resources is proposed by using plant origin resources, such as starch, as some raw materials derived from petroleum (patent documents 2).
However, further improvements are required from the perspective of aiming for a more complete carbon neutral material.
 様々な分野において、セルロース誘導体として種々のものが提案されている。
 例えば、特許文献3には、特定構造のセルロースエーテルエステルが記載され、該セルロースエーテルエステルを溶剤に溶解させ、塗布することにより光学フィルムを作成することが記載されている。
 特許文献4には、ヒドロキシエチルセルロースと特定のポリオキシアルキレン化剤から、炭素数の多いアシル基を有するセルロース誘導体を得ることが記載されている。
 特許文献5には、ヒドロキシプロピルセルロースからなるセルロースステアレートエステル、及びセルロースパルミテートエステルが記載されている。
 特許文献6には、液晶ポリマーとして、ヒドロキシエチルセルロースと酪酸から得られたセルロース誘導体、及びヒドロキシプロピルセルロースとヨードブタンから得られたセルロース誘導体が記載されている。
Various cellulose derivatives have been proposed in various fields.
For example, Patent Document 3 describes a cellulose ether ester having a specific structure, and describes that an optical film is prepared by dissolving the cellulose ether ester in a solvent and applying it.
Patent Document 4 describes that a cellulose derivative having an acyl group having a large number of carbon atoms is obtained from hydroxyethyl cellulose and a specific polyoxyalkylene agent.
Patent Document 5 describes cellulose stearate ester and cellulose palmitate ester made of hydroxypropyl cellulose.
Patent Document 6 describes, as liquid crystal polymers, cellulose derivatives obtained from hydroxyethyl cellulose and butyric acid, and cellulose derivatives obtained from hydroxypropyl cellulose and iodobutane.
日本国特開昭56-55425号公報Japanese Unexamined Patent Publication No. 56-55425 日本国特開2008-24919号公報Japanese Unexamined Patent Publication No. 2008-24919 日本国特開2007-99876号公報Japanese Unexamined Patent Publication No. 2007-99876 日本国特許第3973904号公報Japanese Patent No. 3973904 日本国特開平5-255401号公報Japanese Patent Laid-Open No. 5-255401 日本国特開2002-275379号公報Japanese Unexamined Patent Publication No. 2002-275379
 本発明者らは、カーボンニュートラルな樹脂として、セルロースを使用することに着目した。しかし、セルロースは一般的に熱可塑性を持たないため、加熱等により成形することが困難であるため、成形加工に適さない。また、たとえ熱可塑性を付与できたとしても、耐衝撃性等の強度が大きく衰える問題がある。
 例えば、前記特許文献3に記載のセルロース誘導体は、重合度が低く、分子量が小さいため該セルロース誘導体を用いて作製された成形体は耐衝撃性に劣ると考えられる。
 前記特許文献4及び5に記載のセルロース誘導体は、アシル基の炭素数が多いため、室温でゴム状態であり、成形加工に適さないと考えられる。
 また、前記特許文献6に記載のセルロース誘導体は液晶性を示すものであるが、このような液晶性樹脂は、Grayらの論文(Macromolecules 1981,14,715-719.)に記載されているように、一般に、-C2n-O-基の総モル置換度MSが4よりも大きいと考えられる。本発明者らの検討により、-C2n-O-基の総モル置換度MSが4よりも大きいセルロース誘導体は、室温でゴム状態であり、成形加工に適さないことが明らかとなった。
The inventors of the present invention focused on using cellulose as a carbon neutral resin. However, since cellulose generally does not have thermoplasticity, it is difficult to mold by heating or the like, and thus is not suitable for molding. Further, even if thermoplasticity can be imparted, there is a problem that strength such as impact resistance is greatly reduced.
For example, since the cellulose derivative described in Patent Document 3 has a low degree of polymerization and a low molecular weight, a molded article produced using the cellulose derivative is considered to be inferior in impact resistance.
The cellulose derivatives described in Patent Documents 4 and 5 are considered to be unsuitable for molding because they are in a rubbery state at room temperature because of the large number of acyl group carbon atoms.
The cellulose derivative described in Patent Document 6 exhibits liquid crystallinity, and such a liquid crystalline resin is described in a paper by Gray et al. (Macromolecules 1981, 14, 715-719). In general, the total molar substitution MS of the —C n H 2n —O— group is considered to be larger than 4. As a result of studies by the present inventors, it has been clarified that a cellulose derivative having a total molar substitution MS of a —C n H 2n —O— group greater than 4 is in a rubbery state at room temperature and is not suitable for molding processing. .
 本発明の目的は、良好な熱可塑性、強度を有し、成形加工に適したセルロース誘導体を提供することである。 An object of the present invention is to provide a cellulose derivative having good thermoplasticity and strength and suitable for molding processing.
 本発明者らは、セルロースの分子構造に着目し、当該セルロースを特定構造のセルロース誘導体にすることにより、良好な熱可塑性を発現し、該セルロース誘導体から作製される成形体が優れた耐衝撃性を発現することを見出し、本発明を完成するに至った。
 すなわち、上記課題は以下の手段により達成することができる。
The present inventors pay attention to the molecular structure of cellulose, and by making the cellulose into a cellulose derivative having a specific structure, the present invention expresses good thermoplasticity, and a molded article produced from the cellulose derivative has excellent impact resistance. The present invention was completed.
That is, the said subject can be achieved by the following means.
〔1〕
 セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つを有し、
A)で置換された基に含まれる-C2n-O-基の総モル置換度が0.5以上3.0以下であり、
 かつ数平均分子量が15万以上であるセルロース誘導体。
 A)下記一般式(1)で表される構造を含む基
 B)アシル基:-CO-RB(RBは炭素数1~3の炭化水素基を表す。)
[1]
The hydrogen atom of the hydroxyl group contained in cellulose
Having at least one group substituted in A) below and at least one group substituted in B) below,
The total molar substitution degree of the —C n H 2n —O— group contained in the group substituted with A) is 0.5 or more and 3.0 or less,
A cellulose derivative having a number average molecular weight of 150,000 or more.
A) A group containing a structure represented by the following general formula (1) B) Acyl group: —CO—R B (R B represents a hydrocarbon group having 1 to 3 carbon atoms.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (一般式(1)中、nは2又は3を表し、Rは炭素数1~3の炭化水素基を表す。) (In the general formula (1), n represents 2 or 3, and R A represents a hydrocarbon group having 1 to 3 carbon atoms.)
〔2〕
 前記R及びRが、それぞれ独立に、メチル基、又はエチル基である、上記〔1〕に記載のセルロース誘導体。
〔3〕
 前記R及びRがメチル基である、上記〔1〕に記載のセルロース誘導体。
〔4〕
 前記一般式(1)で表される構造を含む基に含まれる-C2n-O-基の総モル置換度が0.5以上2.5以下である、上記〔1〕~〔3〕のいずれか1項に記載のセルロース誘導体。
〔5〕
 前記一般式(1)で表される構造を含む基に含まれる-C2n-O-基の総モル置換度が1.0以上2.0以下である、上記〔4〕に記載のセルロース誘導体。
〔6〕
 前記数平均分子量が20万以上50万以下である、上記〔1〕~〔5〕のいずれか1項に記載のセルロース誘導体。
〔7〕
 前記セルロース誘導体が、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース又はヒドロキシエチルヒドロキシプロピルセルロースをアシル化することにより得られる、上記〔1〕~〔6〕のいずれか1項に記載のセルロース誘導体。
〔8〕
 前記セルロース誘導体が、アルコキシ基を実質的に含まない、上記〔1〕~〔7〕のいずれか1項に記載のセルロース誘導体。
〔9〕
 前記セルロース誘導体が非液晶性である、上記〔1〕~〔8〕のいずれか1項に記載のセルロース誘導体。
〔10〕
 上記〔1〕~〔9〕のいずれか1項に記載のセルロース誘導体を含有する樹脂組成物。
〔11〕
 上記〔1〕~〔9〕のいずれか1項に記載のセルロース誘導体、又は上記〔10〕に記載の樹脂組成物を含有する成形材料。
〔12〕
 上記〔1〕~〔9〕のいずれか1項に記載のセルロース誘導体、上記〔10〕に記載の樹脂組成物、又は上記〔11〕に記載の成形材料を成形して得られる成形体。
〔13〕
 上記〔1〕~〔9〕のいずれか1項に記載のセルロース誘導体、上記〔10〕に記載の樹脂組成物、又は上記〔11〕に記載の成形材料を加熱し、成形する工程を備えた、成形体の製造方法。
〔14〕
 上記〔12〕に記載の成形体から構成される電気電子機器用筐体。
[2]
The cellulose derivative according to the above [1], wherein R A and R B are each independently a methyl group or an ethyl group.
[3]
The cellulose derivative according to [1] above, wherein R A and R B are methyl groups.
[4]
[1] to [3], wherein the total molar substitution degree of the —C n H 2n —O— group contained in the group containing the structure represented by the general formula (1) is 0.5 or more and 2.5 or less. ] The cellulose derivative of any one of.
[5]
The total molar substitution degree of the —C n H 2n —O— group contained in the group containing the structure represented by the general formula (1) is 1.0 or more and 2.0 or less, according to [4] above. Cellulose derivative.
[6]
The cellulose derivative according to any one of [1] to [5] above, wherein the number average molecular weight is 200,000 or more and 500,000 or less.
[7]
The cellulose derivative according to any one of [1] to [6], wherein the cellulose derivative is obtained by acylating hydroxyethylcellulose, hydroxypropylcellulose, or hydroxyethylhydroxypropylcellulose.
[8]
The cellulose derivative according to any one of the above [1] to [7], wherein the cellulose derivative substantially does not contain an alkoxy group.
[9]
The cellulose derivative according to any one of [1] to [8] above, wherein the cellulose derivative is non-liquid crystalline.
[10]
A resin composition comprising the cellulose derivative according to any one of [1] to [9] above.
[11]
A molding material comprising the cellulose derivative according to any one of [1] to [9] above or the resin composition according to [10] above.
[12]
A molded body obtained by molding the cellulose derivative according to any one of [1] to [9], the resin composition according to [10], or the molding material according to [11].
[13]
The method includes heating and molding the cellulose derivative according to any one of [1] to [9], the resin composition according to [10], or the molding material according to [11]. The manufacturing method of a molded object.
[14]
A housing for electrical and electronic equipment comprising the molded article according to [12] above.
 本発明のセルロース誘導体は、優れた熱可塑性を有するため、成形体とすることができる。特に本発明のセルロース誘導体は、高分子量体であっても低温で成形することができる。
 また、本発明のセルロース誘導体から作製される成形体は、良好な耐衝撃性を有しており、自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、植物由来の樹脂であるため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。
Since the cellulose derivative of the present invention has excellent thermoplasticity, it can be formed into a molded body. In particular, the cellulose derivative of the present invention can be molded at a low temperature even if it is a high molecular weight product.
In addition, the molded body produced from the cellulose derivative of the present invention has good impact resistance, and is suitable as a component part for automobiles, home appliances, electrical and electronic equipment, mechanical parts, housing / building materials, etc. Can be used. Moreover, since it is a plant-derived resin, it can be replaced with a conventional petroleum-derived resin as a material that can contribute to the prevention of global warming.
 以下、本発明について詳細に説明する。
1.セルロース誘導体
 本発明のセルロース誘導体は、
 セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つを有し、
A)で置換された基に含まれる-C2n-O-基の総モル置換度が0.5以上3.0以下であり、
 かつ数平均分子量が15万以上であるセルロース誘導体である。
 A)下記一般式(1)で表される構造を含む基
 B)アシル基:-CO-RB(RBは炭素数1~3の炭化水素基を表す。)
Hereinafter, the present invention will be described in detail.
1. Cellulose derivative The cellulose derivative of the present invention comprises:
The hydrogen atom of the hydroxyl group contained in cellulose
Having at least one group substituted in A) below and at least one group substituted in B) below,
The total molar substitution degree of the —C n H 2n —O— group contained in the group substituted with A) is 0.5 or more and 3.0 or less,
It is a cellulose derivative having a number average molecular weight of 150,000 or more.
A) A group containing a structure represented by the following general formula (1) B) Acyl group: —CO—R B (R B represents a hydrocarbon group having 1 to 3 carbon atoms.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (一般式(1)中、nは2又は3を表し、Rは炭素数1~3の炭化水素基を表す。) (In the general formula (1), n represents 2 or 3, and R A represents a hydrocarbon group having 1 to 3 carbon atoms.)
 すなわち、本発明におけるセルロース誘導体は、セルロース{(C10}に含まれる水酸基の水素原子の少なくとも一部が、前記A)一般式(1)で表される構造を含む基により置換され、別の水酸基の水素原子の少なくとも一部が、前記B)アシル基(-CO-R)により置換されている。
 より詳細には、本発明におけるセルロース誘導体は、下記一般式(2)で表される繰り返し単位を有する。
That is, the cellulose derivative in the present invention is a group in which at least a part of hydrogen atoms of a hydroxyl group contained in cellulose {(C 6 H 10 O 5 ) n } includes a structure represented by A) the general formula (1). And at least a part of hydrogen atoms of another hydroxyl group is substituted by the B) acyl group (—CO—R B ).
More specifically, the cellulose derivative in the present invention has a repeating unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (一般式(2)において、R、R及びRは、それぞれ独立に、水素原子、A)一般式(1)で表される構造を含む基、又はB)アシル基(-CO-R)を表す。但し、R、R、及びRの少なくとも一部がA)一般式(1)で表される構造を含む基を表し、R、R、及びRの少なくとも一部がB)アシル基(-CO-R)を表す。) (In General Formula (2), R 2 , R 3 and R 6 are each independently a hydrogen atom, A) a group containing the structure represented by General Formula (1), or B) an acyl group (—CO— R B ). However, at least a portion of R 2, R 3, and R 6 represents a group containing a structure represented by A) formula (1), R 2, at least part of R 3, and R 6 B) Represents an acyl group (—CO—R B ). )
 本発明のセルロース誘導体は、上記のようにβ-グルコース環の水酸基の少なくとも一部がA)一般式(1)で表される構造を含む基、及びB)アシル基(-CO-R)によって置換されていることにより、セルロースに成形性を付与することができる。
 更には、セルロースは完全な植物由来成分であるため、カーボンニュートラルであり、環境に対する負荷を大幅に低減することができる。
As described above, the cellulose derivative of the present invention comprises A) a group in which at least part of the hydroxyl groups of the β-glucose ring includes a structure represented by the general formula (1), and B) an acyl group (—CO—R B ). By being substituted by, it is possible to impart formability to the cellulose.
Furthermore, since cellulose is a completely plant-derived component, it is carbon neutral and can greatly reduce the burden on the environment.
 なお、本発明にいう「セルロース」とは、多数のグルコースがβ-1,4-グリコシド結合によって結合した高分子化合物であって、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基が無置換であるものを意味する。また、「セルロースに含まれる水酸基」とは、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基を指す。 The “cellulose” referred to in the present invention is a polymer compound in which a large number of glucoses are bonded by β-1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose. Means that the hydroxyl group bonded to is unsubstituted. Further, “hydroxyl group contained in cellulose” refers to a hydroxyl group bonded to carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose.
 前記セルロース誘導体は、その全体のいずれかの部分に前記A)一般式(1)で表される構造を含む基、及びB)アシル基(-CO-R)を含んでいればよく、同一の繰り返し単位からなるものであってもよいし、複数の種類の繰り返し単位からなるものであってもよい。また、前記セルロース誘導体は、ひとつの繰り返し単位において前記A)一般式(1)で表される構造を含む基、及びB)アシル基(-CO-R)の置換基を含有する必要はない。
 より具体的な態様としては、例えば以下の態様が挙げられる。
(1)R、R及びRの一部が、A)一般式(1)で表される構造を含む基で置換されている繰り返し単位と、R、R及びRの一部が、B)アシル基(-CO-R)で置換されている繰り返し単位、から構成されるセルロース誘導体。
(2)ひとつの繰り返し単位において、R、R及びRのいずれかがA)一般式(1)で表される構造を含む基で置換され、R、R及びRのいずれかがB)アシル基(-CO-R)で置換されている(すなわち、ひとつの繰り返し単位中に前記A)及びB)の置換基を有する)同種の繰り返し単位から構成されるセルロース誘導体。
(3)置換位置や置換基の種類が異なる繰り返し単位が、ランダムに結合しているセルロース誘導体。
 また、セルロース誘導体の一部には、無置換の繰り返し単位(すなわち、前記一般式(2)において、R、R及びRすべてが水素原子である繰り返し単位)を含んでいてもよい。
The cellulose derivative only needs to contain A) a group containing the structure represented by the general formula (1) and B) an acyl group (—CO—R B ) in any part of the cellulose derivative. These may be composed of repeating units, or may be composed of a plurality of types of repeating units. Further, the cellulose derivative does not need to contain a substituent of A) a group including the structure represented by the general formula (1) and B) an acyl group (—CO—R B ) in one repeating unit. .
More specific embodiments include the following embodiments, for example.
(1) R 2, R 3 and part of R 6 is, A) a repeating unit by a group containing a structure represented by the general formula (1) is substituted, one R 2, R 3 and R 6 A cellulose derivative comprising a part B ) a repeating unit substituted with an acyl group (—CO—R B ).
(2) In one repeating unit, any one of R 2 , R 3, and R 6 is substituted with a group including the structure represented by A) the general formula (1), and any of R 2 , R 3, and R 6 B) A cellulose derivative composed of the same type of repeating unit substituted with an acyl group (—CO—R B ) (that is, having the above-mentioned substituents A) and B) in one repeating unit.
(3) A cellulose derivative in which repeating units having different substitution positions and different types of substituents are bonded at random.
Further, a part of the cellulose derivative may contain an unsubstituted repeating unit (that is, a repeating unit in which R 2 , R 3 and R 6 are all hydrogen atoms in the general formula (2)).
 A)一般式(1)で表される構造を含む基について説明する。A)一般式(1)は、アシル基とアルキレンオキシ基を含む基である。 A) A group including the structure represented by the general formula (1) will be described. A) General formula (1) is a group containing an acyl group and an alkyleneoxy group.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 (一般式(1)中、nは2又は3を表し、Rは炭素数1~3の炭化水素基を表す。) (In the general formula (1), n represents 2 or 3, and R A represents a hydrocarbon group having 1 to 3 carbon atoms.)
 一般式(1)において、Rは炭素数1~3の炭化水素基を表す。Rは、直鎖、又は分岐脂肪族基のいずれでもよく、不飽和結合を持っていてもよい。
 Rとしては、炭素数1~3のアルキル基であることが好ましく、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、が挙げられる。Rはより好ましくはメチル基又はエチル基であり、更に好ましくはメチル基である。
In the general formula (1), R A represents a hydrocarbon group having 1 to 3 carbon atoms. R A may be either a straight chain or branched aliphatic group, and may have an unsaturated bond.
R A is preferably an alkyl group having 1 to 3 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, a propyl group, and an isopropyl group. R A is more preferably a methyl group or an ethyl group, and even more preferably a methyl group.
 前記A)一般式(1)で表される構造を含む基は、アルキレンオキシ基を複数含んでいてもよいし、1つだけ含むものであってもよい。より具体的には前記A)の基は、下記一般式(1’)で表すことができる。 A) The group including the structure represented by the general formula (1) may include a plurality of alkyleneoxy groups or may include only one. More specifically, the group A) can be represented by the following general formula (1 ').
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (一般式(1’)中、nは2又は3を表し、Rは炭素数1~3の炭化水素基を表す。n’は1以上の整数を表す。) (In the general formula (1 ′), n represents 2 or 3, and R A represents a hydrocarbon group having 1 to 3 carbon atoms. N ′ represents an integer of 1 or more.)
 一般式(1’)において、Rの具体例及び好ましい範囲は前記一般式(1)におけるRと同様である。
 n’の上限は特に限定されず、アルキレンオキシ基の導入量等により変わるが、例えば10程度であり、9が好ましく、7がより好ましい。
 本発明のセルロース誘導体が有するA)一般式(1)で表される構造を含む基は1種でも2種以上でもよい。例えば、アルキレンオキシ基を1つだけ含む前記A)の基(上記式一般式(1’)においてn’が1である基)と、アルキレンオキシ基を2以上含む前記A)の基(上記式一般式(1’)においてn’が2以上である基)とが混合して含まれていてもよい。
 nは2であることが好ましい。
In the general formula (1 '), specific examples and preferred ranges of R A are the same as R A in the general formula (1).
The upper limit of n ′ is not particularly limited, and varies depending on the amount of alkyleneoxy group introduced, but is, for example, about 10, preferably 9 and more preferably 7.
The group containing the structure represented by A) general formula (1) of the cellulose derivative of the present invention may be one type or two or more types. For example, a group of A) containing only one alkyleneoxy group (a group in which n ′ is 1 in the above formula (1 ′)) and a group of A) containing two or more alkyleneoxy groups (the above formula) And a group in which n ′ is 2 or more in the general formula (1 ′) may be mixed and contained.
n is preferably 2.
 B)アシル基(-CO-R)について説明する。
 B)アシル基(-CO-R)において、Rは炭素数1~3の炭化水素基を表す。Rとしては、前記一般式(1)におけるRで挙げたものと同様のものを適用することができる。Rの好ましい範囲も前記Rと同様である。
 本発明のセルロース誘導体が有するB)アシル基は1種でも2種以上でもよい。
B) The acyl group (—CO—R B ) will be described.
B) In the acyl group (—CO—R B ), R B represents a hydrocarbon group having 1 to 3 carbon atoms. The R B, can be applied the same as those mentioned in R A in the general formula (1). The preferred range of R B is the same as R A.
The cellulose derivative of the present invention may have one or more B) acyl groups.
 セルロース誘導体中のA)一般式(1)で表される構造を含む基、及びB)アシル基(-CO-R)の置換位置、並びにβ-グルコース環単位当たりの各置換基の数(置換度)は特に限定されない。 In the cellulose derivative, A) a group containing the structure represented by the general formula (1), and B ) the substitution position of the acyl group (—CO—R B ), and the number of each substituent per β-glucose ring unit ( The degree of substitution) is not particularly limited.
 例えば、A)一般式(1)で表される構造を含む基の置換度DSa(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対するA)一般式(1)で表される構造を含む基の数)は、0<DSaであり、0.1<DSaであることがより好ましい。0.1<DSaであることにより溶融開始温度を低くできるので、熱成形をより容易に行うことができる。 For example, A) Degree of substitution DSa of a group containing the structure represented by the general formula (1) (A in the repeating unit, A for hydroxyl groups at the 2nd, 3rd and 6th positions of the cellulose structure of the β-glucose ring) The number of groups including the structure represented by 1) is 0 <DSa, and more preferably 0.1 <DSa. Since the melting start temperature can be lowered when 0.1 <DSa, thermoforming can be performed more easily.
 B)アシル基(-CO-R)の置換度DSb(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対するB)アシル基の数)は、0.1<DSbであることが好ましく、0.1<DSb<2.0であることがより好ましい。
 また、A)一般式(1)で表される構造を含む基の置換度DSaとB)アシル基の置換度DSbの和DSa+DSbは、1.5<DSa+DSb≦3.0であり、2.0<DSa+DSb≦3.0であることが好ましく、2.5<DSa+DSb≦3.0であることがより好ましい。2.5<DSa+DSb≦3.0であることにより溶融開始温度を低くでき、成形片の吸湿性を低下させることができる。
B) Degree of substitution DSb of the acyl group (—CO—R B ) ( B ) in the repeating unit, B) the number of hydroxyl groups at the 2nd, 3rd and 6th positions of the cellulose structure of the β-glucose ring). 1 <DSb is preferable, and 0.1 <DSb <2.0 is more preferable.
The sum DSa + DSb of the substitution degree DSa of the group including the structure represented by the general formula (1) and B) the substitution degree DSb of the acyl group is 1.5 <DSa + DSb ≦ 3.0, and 2.0 <DSa + DSb ≦ 3.0 is preferable, and 2.5 <DSa + DSb ≦ 3.0 is more preferable. By satisfying 2.5 <DSa + DSb ≦ 3.0, the melting start temperature can be lowered, and the hygroscopicity of the molded piece can be lowered.
 また、セルロース誘導体中に無置換の水酸基を有してもよい。水素原子の置換度DSh(重合単位中、2位、3位及び6位の水酸基が無置換である割合)は好ましくは0~1.5の範囲とすることができ、より好ましくは0~0.6とすることができる。DShを0.6以下とすることにより、熱成形材料の流動性を向上させたり、熱分解の加速・成形時の熱成形材料の吸水による発泡等を抑制することができる。 In addition, the cellulose derivative may have an unsubstituted hydroxyl group. The hydrogen atom substitution degree DSh (ratio in which the hydroxyl groups at the 2-position, 3-position and 6-position in the polymerization unit are unsubstituted) can be preferably in the range of 0 to 1.5, more preferably 0 to 0. .6. By setting DSh to 0.6 or less, it is possible to improve the fluidity of the thermoforming material, or to suppress foaming due to water absorption of the thermoforming material during acceleration / molding of thermal decomposition.
 また、セルロース誘導体は、前記A)一般式(1)で表される構造を含む基における-C2n-O-基以外のアルコキシ基を実質的に含まないことが好ましい。セルロース誘導体が一般式(1)で表される構造を含む基における-C2n-O-基以外のアルコキシ基を実質的に含まないことにより、本発明のセルロース誘導体の疎水性を更に向上させることができる。これは、例えばアルコキシ基を含んだ場合には、アルコキシ基を有するセルロースエーテルが一般的に高い吸湿性を示すためである。またアルコキシ基が疎水基であるアシル基を容易に導入できる水酸基を有していない。これらのことから、本発明の成形材料用途として用いるには、疎水性に乏しいために不適である。
 なお、「一般式(1)で表される構造を含む基における-C2n-O-基以外のアルコキシ基を実質的に含まない」とは、本発明におけるセルロース誘導体が全く一般式(1)で表される構造を含む基における-C2n-O-基以外のアルコキシ基を含まない場合のみならず、本発明におけるセルロース誘導体が末端水酸基に微量のアルコキシ基を有する場合を包含するものとする。例えば、原料であるセルロースにアルコキシ基が含まれる場合があり、これを用いて前記A)及びB)の置換基を導入したセルロース誘導体はアルコキシ基が含まれる場合があるが、これは「アルコキシ基を実質的に含まない」に含まれるものとする。
 この場合、アルコキシ基の好ましい含有量としては、アルコキシ基の置換度DSで0.1以下、より好ましくは0.05以下である。なお、アルコキシ基の置換度は、H-NMRにより定量することができる。
The cellulose derivative preferably does not substantially contain an alkoxy group other than the —C n H 2n —O— group in the group containing the structure represented by A) the general formula (1). The cellulose derivative of the present invention further improves the hydrophobicity by substantially not containing an alkoxy group other than the —C n H 2n —O— group in the group containing the structure represented by the general formula (1). Can be made. This is because, for example, when an alkoxy group is included, a cellulose ether having an alkoxy group generally exhibits high hygroscopicity. Further, the alkoxy group does not have a hydroxyl group capable of easily introducing an acyl group which is a hydrophobic group. For these reasons, it is unsuitable for use as a molding material of the present invention because of its poor hydrophobicity.
Note that “substantially free of an alkoxy group other than the —C n H 2n —O— group in the group containing the structure represented by the general formula (1)” means that the cellulose derivative in the present invention has the general formula ( 1) Including the case where the group including the structure represented by 1) does not contain an alkoxy group other than the —C n H 2n —O— group, and also includes the case where the cellulose derivative in the present invention has a trace amount of an alkoxy group at the terminal hydroxyl group. It shall be. For example, the cellulose as the raw material may contain an alkoxy group, and the cellulose derivative using the above-described substituents A) and B) introduced therein may contain an alkoxy group. Is substantially not included ".
In this case, the preferred content of alkoxy groups, 0.1 in the degree of substitution DS C alkoxy group, and more preferably 0.05 or less. The degree of substitution of the alkoxy group can be quantified by 1 H-NMR.
 また、前記A)一般式(1)で表される構造を含む基における-C2n-O-基(アルキレンオキシ基ともいう)の導入量はモル置換度(MS:グルコース残基あたりの置換基の導入モル数)で表される(セルロース学会編集、セルロース辞典P142)。アルキレンオキシ基の総モル置換度MSは、0.5≦MS≦3.0であり、0.5≦MS≦2.5であることが好ましく、1.0≦MS≦2.0であることがより好ましい。MSが0.5以上3.0以下であることにより、耐熱性及び成形性等を向上させることができ、熱成形材料に好適なセルロース誘導体が得られる。
 また、本発明のセルロース誘導体が非液晶性であることが好ましい。
In addition, the introduction amount of —C n H 2n —O— group (also referred to as alkyleneoxy group) in the group containing the structure represented by the general formula (1) is the molar substitution degree (MS: per glucose residue). The number of moles of substituents introduced) (edited by Cellulose Society, Cellulose Dictionary P142). The total molar substitution degree MS of the alkyleneoxy group is 0.5 ≦ MS ≦ 3.0, preferably 0.5 ≦ MS ≦ 2.5, and 1.0 ≦ MS ≦ 2.0. Is more preferable. When MS is 0.5 or more and 3.0 or less, heat resistance, moldability and the like can be improved, and a cellulose derivative suitable for a thermoforming material can be obtained.
The cellulose derivative of the present invention is preferably non-liquid crystalline.
 セルロース誘導体が有する置換基の種類、置換度、及びMS(アルキレンオキシ基のモル置換度)は、Cellulose Communication 6,73-79(1999)に記載の方法を利用して、H-NMRにより決定することができる。 The type, degree of substitution, and MS (degree of molar substitution of alkyleneoxy group) of the cellulose derivative are determined by 1 H-NMR using the method described in Cellulose Communication 6, 73-79 (1999). can do.
 本発明におけるセルロース誘導体の分子量は、数平均分子量(Mn)が15万以上であり、15万~100万の範囲が好ましく、20万~50万の範囲がより好ましく、30万~50万が更に好ましい。また、質量平均分子量(Mw)は、50万~1000万の範囲が好ましく、150万~600万の範囲が更に好ましい。この範囲の平均分子量とすることにより、成形体の成形性、力学強度等を向上させることができる。 The molecular weight of the cellulose derivative in the present invention has a number average molecular weight (Mn) of 150,000 or more, preferably in the range of 150,000 to 1,000,000, more preferably in the range of 200,000 to 500,000, further 300,000 to 500,000. preferable. The mass average molecular weight (Mw) is preferably in the range of 500,000 to 10 million, and more preferably in the range of 1.5 to 6 million. By setting the average molecular weight within this range, it is possible to improve the moldability and mechanical strength of the molded body.
 分子量分布(MWD)は1.1~15.0の範囲が好ましく、2.0~12.5の範囲が更に好ましい。この範囲の分子量分布とすることにより、成形性等を向上させることができる。
 本発明における、数平均分子量(Mn)、質量平均分子量(Mw)及び分子量分布(MWD)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
The molecular weight distribution (MWD) is preferably in the range of 1.1 to 15.0, more preferably in the range of 2.0 to 12.5. By setting the molecular weight distribution within this range, moldability and the like can be improved.
In the present invention, the number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC). Specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
 本発明におけるセルロース誘導体の重合度は、500~2000の範囲が好ましく、750~1500の範囲がより好ましく、1000~1400であることが更に好ましい。なお、数平均分子量6万では重合度240、数平均分子量12万では重合度310、数平均分子量45万では重合度1300程度である。この範囲の重合度とすることにより、成形体の成形性、力学強度等を向上させることができる。 In the present invention, the degree of polymerization of the cellulose derivative is preferably in the range of 500 to 2000, more preferably in the range of 750 to 1500, and still more preferably 1000 to 1400. When the number average molecular weight is 60,000, the degree of polymerization is 240, when the number average molecular weight is 120,000, the degree of polymerization is 310, and when the number average molecular weight is 450,000, the degree of polymerization is about 1300. By setting it as the polymerization degree of this range, the moldability of a molded object, mechanical strength, etc. can be improved.
2.セルロース誘導体の製造方法
 本発明におけるセルロース誘導体の製造方法は特に限定されず、セルロースを原料とし、セルロースに対しエーテル化及びエステル化することにより本発明のセルロース誘導体を製造することができる。セルロースの原料としては限定的でなく、例えば、綿、リンター、パルプ等が挙げられる。
 好ましい製造方法の態様は、例えば、ヒドロキシエチル基:-C-OHを有するヒドロキシエチルセルロース又はヒドロキシプロピル基:-C-OHを有するヒドロキシプロピルセルロース、又はヒドロキシエチル基とヒドロキシプロピル基とを有するヒドロキシエチルヒドロキシプロピルセルロースに、酸クロライド又は酸無水物等を反応させることにより、エステル化(アシル化)する工程を含む方法によって行うものである。
 酸クロライドを反応させる方法としては、例えばCellulose 10;283-296,2003に記載の方法を用いることができる。
 このエステル化はヒドロキシエチル基、ヒドロキシプロピル基の水酸基、及びセルロースの水酸基に対して起こることから、複数のエステル化剤(酸無水物、酸クロライド)を用いて反応を行った際は、複数種のエステル化されたヒドロキシエチル基、ヒドロキシプロピル基、及びアシル基が得られる。
2. Method for Producing Cellulose Derivative The method for producing a cellulose derivative in the present invention is not particularly limited, and the cellulose derivative of the present invention can be produced by using cellulose as a raw material and etherifying and esterifying cellulose. The raw material for cellulose is not limited, and examples thereof include cotton, linter, and pulp.
Preferred embodiments of the production method include, for example, hydroxyethyl cellulose having a hydroxyethyl group: —C 2 H 4 —OH or hydroxypropyl cellulose having a hydroxypropyl group: —C 3 H 6 —OH, or a hydroxyethyl group and a hydroxypropyl group It is performed by a method including a step of esterification (acylation) by reacting hydroxyethylhydroxypropylcellulose having an acid chloride or an acid anhydride.
As a method for reacting acid chloride, for example, the method described in Cellulose 10; 283-296, 2003 can be used.
Since this esterification occurs with respect to the hydroxyl group of hydroxyethyl group, hydroxypropyl group, and hydroxyl group of cellulose, when the reaction is carried out using a plurality of esterifying agents (acid anhydride, acid chloride), a plurality of types are used. The esterified hydroxyethyl, hydroxypropyl, and acyl groups are obtained.
 ヒドロキシエチルセルロース、ヒドロキシルプロピルセルロース、及びヒドロキシエチルヒドロキシプロピルセルロースとしてはセルロースから常用の方法で合成することもできるし、市販されているものを用いても良い。
 例えば、特開2008-534735号公報に記載を参照して、セルロースからヒドロキシエチルセルロース、ヒドロキシプロピルセルロースを合成することができる。
 また、市販品には複数の置換度タイプがあり、各置換度タイプに対して、20℃における2%水溶液の粘度値で表示される粘度グレードがあり、約1~200,000の粘度値である。一般的に高粘度グレードは低粘度のグレードに対して、分子量(Mn、Mw)が大きい。使用する粘度グレードを変えることにより、生成するセルロース誘導体の分子量を調整しても良い。高分子量体を得るために好ましい原料の粘度は、5000~200,000の粘度値である。市販のヒドロキシエチルセルロースとしては、例えば、商品名AX-15(住友精化製)、商品名EP850、SP900(ダイセル化学工業製)などがある。市販のヒドロキシプロピルセルロースとしては、例えば、商品名LDC―H(信越化学工業製)、Aldrich製のものなどがある。
Hydroxyethyl cellulose, hydroxylpropyl cellulose, and hydroxyethyl hydroxypropyl cellulose can be synthesized from cellulose by a conventional method, or commercially available ones may be used.
For example, referring to the description in JP 2008-534735 A, hydroxyethyl cellulose and hydroxypropyl cellulose can be synthesized from cellulose.
In addition, the commercially available product has a plurality of substitution degree types. For each substitution degree type, there is a viscosity grade indicated by a viscosity value of a 2% aqueous solution at 20 ° C., with a viscosity value of about 1 to 200,000. is there. In general, a high viscosity grade has a higher molecular weight (Mn, Mw) than a low viscosity grade. You may adjust the molecular weight of the cellulose derivative to produce | generate by changing the viscosity grade to be used. The viscosity of a raw material preferable for obtaining a high molecular weight body is a viscosity value of 5000 to 200,000. Examples of commercially available hydroxyethyl cellulose include trade name AX-15 (manufactured by Sumitomo Seika), trade names EP 850 and SP 900 (manufactured by Daicel Chemical Industries). Examples of commercially available hydroxypropyl cellulose include those under the trade names LDC-H (manufactured by Shin-Etsu Chemical Co., Ltd.) and Aldrich.
 酸クロリドとしては、前記A)に含まれるアシル基及びB)アシル基に対応したカルボン酸クロライドを使用することができる。カルボン酸クロリドとしては、例えば、アセチルクロライド、プロピオニルクロライド、ブチリルクロリド、イソブチリルクロリド等が挙げられる。 As the acid chloride, an acyl group contained in A) and a carboxylic acid chloride corresponding to B) an acyl group can be used. Examples of the carboxylic acid chloride include acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride and the like.
 酸無水物としては、例えば前記A)に含まれるアシル基及びB)アシル基に対応したカルボン酸無水物を使用することができる。このようなカルボン酸無水物としては、例えば、酢酸無水物、プロピオン酸無水物、酪酸無水物等が挙げられる。 As the acid anhydride, for example, carboxylic acid anhydrides corresponding to the acyl group and B) acyl group contained in A) can be used. Examples of such carboxylic anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, and the like.
 触媒として、酸を用いても良い。好ましい酸としては、例えば硫酸、メタンスルホン酸、p-トルエンスルホン酸、過塩素酸、リン酸、トリフルオロ酢酸、トリクロロ酢酸等がある。更に好ましくは硫酸とメタンスルホン酸である。また、重硫酸塩も用いても良く、例えば、重硫酸リチウム、重硫酸ナトリウム、重硫酸カリウムが挙げられる。また、固体酸触媒も用いても良く、例えばイオン交換樹脂等の高分子固体酸触媒、ゼオライトに代表される無機酸化物固体酸触媒、特開2009-67730号公報で用いられるようなカーボン形の固体酸触媒が挙げられる。また、ルイス酸触媒も用いても良く、米国特許2,976,277号明細書で用いられるようなチタン酸エステル触媒、塩化亜鉛などが挙げられる。 An acid may be used as the catalyst. Preferred acids include, for example, sulfuric acid, methanesulfonic acid, p-toluenesulfonic acid, perchloric acid, phosphoric acid, trifluoroacetic acid, trichloroacetic acid and the like. More preferred are sulfuric acid and methanesulfonic acid. Bisulfates may also be used, and examples include lithium bisulfate, sodium bisulfate, and potassium bisulfate. A solid acid catalyst may also be used. For example, a polymer solid acid catalyst such as an ion exchange resin, an inorganic oxide solid acid catalyst typified by zeolite, and a carbon type used in JP2009-67730A. A solid acid catalyst is mentioned. A Lewis acid catalyst may also be used, and examples thereof include titanic acid ester catalysts and zinc chloride used in US Pat. No. 2,976,277.
 触媒としては、塩基を用いても良い。例えば、ピリジン類、酢酸ナトリウムなどの酢酸のアルカリ金属塩、ジメチルアミノピリジン、アニリン類が挙げられる。 A base may be used as the catalyst. Examples thereof include pyridines, alkali metal salts of acetic acid such as sodium acetate, dimethylaminopyridine, and anilines.
 触媒を用いなくてもエステル化反応が進行する反応系もある。例えば、溶媒としてN,N―ジメチルアセトアミド、アセチル化剤としてアセチルクロライド或いはプロピオニルクロライドを使用する反応系が挙げられる。 There is also a reaction system in which the esterification reaction proceeds without using a catalyst. For example, a reaction system using N, N-dimethylacetamide as a solvent and acetyl chloride or propionyl chloride as an acetylating agent can be mentioned.
 溶剤としては、一般的な有機溶剤を使用することができる。中でも、カルボン酸やカルボキサミド系の溶剤が好ましい。カルボン酸としては、例えば前記A)に含まれるアシル基及びB)に含まれるアシル基に対応したカルボン酸を用いることができる。カルボン酸を用いる場合には、酢酸エチルやアセトニトリルを併用しても良い。カルボキサミド系の溶剤としては、特表10-5117129号や米国特許第2705710号明細書で用いられるようなものがあり、例えばN,N-ジメチルアセトアミドが挙げられる。また、特開2003-41052号公報で用いられるような塩化リチウムを含むジメチルスルホキサイドを用いても良い。また、ハロゲン化溶剤を使用しても良く、好ましくはジクロロメタンである。また塩基として用いることが可能なピリジンを溶剤として用いても良い。また特開平9-157301号公報で用いられるように、エステル化剤として用いる酸クロリドを溶剤として用いても良い。   As the solvent, a general organic solvent can be used. Of these, carboxylic acids and carboxamide solvents are preferred. As the carboxylic acid, for example, a carboxylic acid corresponding to the acyl group contained in A) and the acyl group contained in B) can be used. When carboxylic acid is used, ethyl acetate or acetonitrile may be used in combination. Examples of the carboxamide-based solvent include those used in JP-T-10-5117129 and US Pat. No. 2,705,710, and examples thereof include N, N-dimethylacetamide. Further, dimethyl sulfoxide containing lithium chloride as used in JP-A-2003-41052 may be used. Further, a halogenated solvent may be used, preferably dichloromethane. Pyridine that can be used as a base may be used as a solvent. Further, as used in JP-A-9-157301, acid chloride used as an esterifying agent may be used as a solvent. *
 原料として用いるセルロース等は、綿花リンター及び木材パルプ等のバイオマス資源から作られる。セルロース等以外の原料についてもバイオマス資源から作られたものを用いても良い。例えば、セルロース系バイオマス又はデンプン系バイオマスから生成されたエタノールから発酵法により生成された酢酸や無水酢酸を挙げることができる。 Cellulose used as a raw material is made from biomass resources such as cotton linter and wood pulp. You may use what was made from biomass resources also about raw materials other than a cellulose etc. Examples thereof include acetic acid and acetic anhydride produced by fermentation from ethanol produced from cellulosic biomass or starch biomass.
 前処理として、特許2754066号公報にあるように、カルボン酸又は少量の酸触媒を含んだ酢酸を、原料のセルロース誘導体に添加して、混合しても良い。 As pre-treatment, as disclosed in Japanese Patent No. 2754066, acetic acid containing a carboxylic acid or a small amount of an acid catalyst may be added to the raw material cellulose derivative and mixed.
 原料のセルロース等を使用前に乾燥して、含有水分を低減しても良い。含有水分は、無水酢酸と反応する副反応の原因となるため、含有水分を減らすことで、使用する無水酢酸量の低減が可能である。 The raw material cellulose or the like may be dried before use to reduce the water content. Since the moisture content causes a side reaction that reacts with acetic anhydride, the amount of acetic anhydride to be used can be reduced by reducing the moisture content.
 特許第2754066号公報にあるように、触媒を分割して添加する、或いは添加速度をかえること、又はそれらを組み合わせることで、エステル化反応の速度を制御しても良い。エステル化反応は激しい発熱反応であり、かつ反応液が高粘となるため、除熱が困難となる場合には、有効である。 As disclosed in Japanese Patent No. 2754066, the rate of the esterification reaction may be controlled by adding the catalyst in portions, changing the addition rate, or combining them. The esterification reaction is a vigorous exothermic reaction, and since the reaction solution becomes highly viscous, it is effective when heat removal is difficult.
 特開昭60-139701号公報にあるように、エステル化反応の全期間或いは初期を含む一部の期間、反応系内を減圧にし、発生する蒸気を凝縮させ、反応系害に流出させることにより反応生成物の濃縮を行っても良い。この方法では、エステル化反応によって発生する反応熱を揮発性溶媒の蒸発潜熱で奪うことにより除熱をすることができる。 As disclosed in JP-A-60-139701, by reducing the pressure in the reaction system for the entire period of the esterification reaction or for a part of the period including the initial stage, the generated vapor is condensed and discharged to harm to the reaction system. The reaction product may be concentrated. In this method, heat can be removed by removing the reaction heat generated by the esterification reaction with the latent heat of evaporation of the volatile solvent.
 特表2000-511588号公報にあるように多段階でエステル化反応を行っても良い。例えば、第1段階として、塩基触媒の存在下でセルロースを第1アセチル化剤と反応させた後で、第2段階として、酸触媒の存在下で第2アセチル化剤と反応するなどである。 The esterification reaction may be performed in multiple stages as disclosed in JP-T-2000-511588. For example, as a first step, cellulose is reacted with a first acetylating agent in the presence of a base catalyst, and then as a second step, it is reacted with a second acetylating agent in the presence of an acid catalyst.
 エステル化反応の温度は、高ければエステル化反応速度が早まり、反応時間短縮が可能となるが、解重合反応による分子量低下が起き易くなる。温度が低ければエステル化反応が遅くなる。目的のセルロース誘導体の構造、目標の分子量(Mn、Mw)により、反応温度及び時間の調整することが好ましい。 If the temperature of the esterification reaction is high, the esterification reaction rate is accelerated and the reaction time can be shortened, but the molecular weight is likely to decrease due to the depolymerization reaction. If the temperature is low, the esterification reaction becomes slow. It is preferable to adjust the reaction temperature and time depending on the structure of the target cellulose derivative and the target molecular weight (Mn, Mw).
 エステル化反応を行う際に、国際公開第01/070820号にあるように、超音波を照射して反応しても良い。 When performing the esterification reaction, as in International Publication No. 01/070820, the reaction may be performed by irradiating ultrasonic waves.
 エステル化反応では、反応の進行に伴って、反応器内の混合物は固液状態から次第にドープ状を呈するようになり、反応系内のドープ粘度が非常に高くなる。特公平2-5761号公報に記載されているように、反応系の気相成分を反応系外に留去しつつ、減圧条件でエステル化反応する方法では、更にドープ粘度が高くなる。これらのようにドープ粘度が非常に高くなる場合には、エステル化反応器として二軸のニーダーを用いるのが望ましい。ただし、溶媒のカルボン酸を増量する、或いは他の有機溶媒を併用することにより、反応液の濃度を下げることにより、ドープ粘度を下げることで、汎用のグラスラインニング製反応釜 等を使用することもできる In the esterification reaction, as the reaction proceeds, the mixture in the reactor gradually exhibits a dope shape from the solid-liquid state, and the dope viscosity in the reaction system becomes very high. As described in Japanese Examined Patent Publication No. 2-5761, the dope viscosity is further increased in a method in which the gas phase component of the reaction system is distilled out of the reaction system and the esterification reaction is performed under reduced pressure conditions. When the dope viscosity becomes very high as described above, it is desirable to use a biaxial kneader as the esterification reactor. However, a general glass lined reaction kettle or the like should be used by reducing the dope viscosity by increasing the amount of carboxylic acid as a solvent or by using another organic solvent in combination to lower the concentration of the reaction solution. Can also
 エステル化工程が終了した後、塩基(通常は水溶液の形態)、又は水(アルコールでも良い)を加えて、未反応の無水酢酸を分解して反応を停止する。塩基を加える場合には、酸触媒が中和され、水を加える場合には酸触媒は中和されない。一般的には中和した方が良いが、中和しなくても良い。中和した方が良い場合は、例えばセルロース誘導体に結合した結合硫酸の影響により、合成したポリマーの熱安定性が低下する場合である。また、結合硫酸量を低減させるための方法として、特開2006-89574号公報にあるように、塩基を連続的に添加するなどの方法により、一度に中和せずに、結合硫酸が分解しやすい液性を保ちつつ、段階的に中和する方法をとることができる。中和剤として用いられるものとしては、塩基であれば特に限定されないが、好ましくはアルカリ金属化合物やアルカリ土類金属化合物が挙げられ、具体的には酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸マグネシウム、水酸化カルシウム、水酸化マグネシウムなどである。 After the esterification step is completed, a base (usually in the form of an aqueous solution) or water (alcohol may be used) is added to decompose unreacted acetic anhydride to stop the reaction. When a base is added, the acid catalyst is neutralized, and when water is added, the acid catalyst is not neutralized. Generally, it is better to neutralize, but it is not necessary to neutralize. The case where it is better to neutralize is, for example, the case where the thermal stability of the synthesized polymer is lowered due to the influence of bound sulfuric acid bonded to the cellulose derivative. Further, as a method for reducing the amount of bound sulfuric acid, as disclosed in JP-A-2006-89574, the bound sulfuric acid is decomposed without neutralization at once by a method such as continuous addition of a base. A method of neutralizing step by step while maintaining easy liquidity can be employed. The neutralizing agent is not particularly limited as long as it is a base, but preferably includes an alkali metal compound and an alkaline earth metal compound. Specifically, sodium acetate, potassium acetate, calcium acetate, magnesium acetate, Calcium hydroxide, magnesium hydroxide and the like.
 目的のセルロース誘導体の分離方法としては、特に限定されず、例えば沈殿、濾過、洗浄、乾燥、抽出、濃縮、カラムクロマトグラフィーなどの方法を単独で、又は2以上を適宜組み合わせて使用できるが、操作性、精製効率等の観点で、沈殿(再沈殿)操作により該セルロース誘導体を分離する方法が好ましい。沈殿操作は、該セルロース誘導体を含む反応液を該セルロース誘導体の貧溶媒中に投入する、又は該セルロース誘導体を含む溶液に貧溶媒を投入するなど、該セルロース誘導体を含む溶液を該貧溶媒と混合することにより行われる。 The method for separating the target cellulose derivative is not particularly limited, and for example, precipitation, filtration, washing, drying, extraction, concentration, column chromatography and the like can be used alone or in appropriate combination of two or more. From the viewpoints of properties and purification efficiency, a method of separating the cellulose derivative by precipitation (reprecipitation) operation is preferable. In the precipitation operation, the solution containing the cellulose derivative is mixed with the poor solvent, for example, the reaction solution containing the cellulose derivative is put into the poor solvent of the cellulose derivative, or the poor solvent is put into the solution containing the cellulose derivative. Is done.
 目的のセルロース誘導体の貧溶媒としては、該セルロース誘導体の溶解度の低い溶媒であれば良く、例えば、希酢酸、水、アルコール類などが挙げられる。好ましくは、希酢酸或いは水である。 The poor solvent for the target cellulose derivative may be a solvent having low solubility of the cellulose derivative, and examples thereof include dilute acetic acid, water, and alcohols. Preferably, it is dilute acetic acid or water.
 得られた沈殿の固液分離方法としては、特に限定されず、濾過、沈降などの方法が使用できる。好ましくは濾過であり、減圧、加圧、重力、圧搾、遠心などを用いる各種脱水機を使用することができる。例えば、真空脱水機、加圧脱水機、ベルトプレス、遠心濾過脱水機、振動スクリーン、ローラープレス、ベルトスクリーンなどが挙げられる。 The solid-liquid separation method of the obtained precipitate is not particularly limited, and methods such as filtration and sedimentation can be used. Filtration is preferred, and various dehydrators using decompression, pressurization, gravity, squeezing, centrifugation and the like can be used. For example, a vacuum dehydrator, a pressure dehydrator, a belt press, a centrifugal filtration dehydrator, a vibrating screen, a roller press, a belt screen, and the like can be given.
 分離された沈殿物は、水洗などの洗浄により酢酸、酸触媒として使用した酸、溶媒、遊離の金属成分を除去する場合が多い。特に酢酸、酸触媒として使用した酸は、成形時における樹脂の分子量低下とそれによる物理性能の低下の原因となるため、除くことが好ましい。 The separated precipitate often removes acetic acid, acid used as an acid catalyst, solvent, and free metal components by washing such as water. In particular, acetic acid and the acid used as the acid catalyst are preferably removed because they cause a decrease in the molecular weight of the resin during molding and a decrease in physical performance.
 洗浄の際に中和剤を加えても良い。中和剤として用いられるものとしては、塩基であれば特に限定されないが、好ましくはアルカリ金属化合物やアルカリ土類金属化合物が挙げられ、具体的には酢酸ナトリウム、酢酸カリウム、酢酸カルシウム、酢酸マグネシウム、水酸化カルシウム、水酸化マグネシウムなどである。また、特公平6-67961号公報にあるように、緩衝液を洗浄に用いても良い。 A neutralizing agent may be added during washing. The neutralizing agent is not particularly limited as long as it is a base, but preferably includes an alkali metal compound and an alkaline earth metal compound. Specifically, sodium acetate, potassium acetate, calcium acetate, magnesium acetate, Calcium hydroxide, magnesium hydroxide and the like. Further, as disclosed in JP-B-6-67961, a buffer solution may be used for washing.
 乾燥方法は特に限定されず、送風や減圧などの条件下乾燥を行う、各種乾燥機を使用することができる。 The drying method is not particularly limited, and various dryers that perform drying under conditions such as air blowing and reduced pressure can be used.
 そのほかの具体的な製造条件等は、常法に従うことができる。例えば、「セルロースの事典」131頁~164頁(朝倉書店、2000年)等に記載の方法を参考にすることができる。 Other specific manufacturing conditions can follow the usual method. For example, the method described in “Encyclopedia of Cellulose” pages 131 to 164 (Asakura Shoten, 2000) can be referred to.
3.樹脂組成物、成形材料、及び成形体
 本発明の樹脂組成物は、上記で説明したセルロース誘導体を含有する。また、必要に応じてその他の添加剤を含有することができる。
 本発明の樹脂組成物に含まれる成分の含有割合は、特に限定されない。好ましくは前記セルロース誘導体を75質量%以上、より好ましくは80質量%以上、更に好ましくは80~100質量%含有する。
 本発明の樹脂組成物は、本発明のセルロース誘導体のほか、必要に応じて、フィラー、難燃剤等の種々の添加剤を含有していてもよい。
3. Resin Composition, Molding Material, and Molded Article The resin composition of the present invention contains the cellulose derivative described above. Moreover, another additive can be contained as needed.
The content rate of the component contained in the resin composition of this invention is not specifically limited. Preferably, the cellulose derivative is contained in an amount of 75% by mass or more, more preferably 80% by mass or more, and further preferably 80 to 100% by mass.
In addition to the cellulose derivative of the present invention, the resin composition of the present invention may contain various additives such as a filler and a flame retardant as necessary.
 本発明の樹脂組成物は、フィラー(強化材)を含有してもよい。フィラーを含有することにより、形成される成形体の機械的特性を強化することができる。 The resin composition of the present invention may contain a filler (reinforcing material). By containing the filler, the mechanical properties of the formed article can be enhanced.
 フィラーとしては、常用のものを使用できる。フィラーの形状は、繊維状、板状、粒状、粉末状等いずれでもよい。また、無機物でも有機物でもよい。
 具体的には、無機フィラーとしては、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等の繊維状の無機フィラーや;ガラスフレーク、非膨潤性雲母、カーボンブラック、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化アルミニウム、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土等の板状や粒状の無機フィラーが挙げられる。
Usable fillers can be used. The shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
Specifically, as the inorganic filler, glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gypsum, novaculite, dawsonite, and a plate-like or granular inorganic fillers of clay or the like.
 有機フィラーとしては、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維等の合成繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、マニラ麻、亜麻、リネン、絹、ウール等の天然繊維、微結晶セルロース、さとうきび、木材パルプ、紙屑、古紙等から得られる繊維状の有機フィラーや、有機顔料等の粒状の有機フィラーが挙げられる。 Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
 樹脂組成物がフィラーを含有する場合、その含有量は限定的でないが、セルロース誘導体100質量部に対して、通常30質量部以下、好ましくは5~10質量部とすればよい。 When the resin composition contains a filler, the content thereof is not limited, but is usually 30 parts by mass or less, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
 本発明の樹脂組成物は、難燃剤を含有してもよい。これによって、その燃焼速度の低下又は抑制といった難燃効果を向上させることができる。
 難燃剤は、特に限定されず、常用のものを用いることができる。例えば、臭素系難燃剤、塩素系難燃剤、リン含有難燃剤、ケイ素含有難燃剤、窒素化合物系難燃剤、無機系難燃剤等が挙げられる。これらの中でも、樹脂との複合時や成形加工時に熱分解してハロゲン化水素が発生して加工機械や金型を腐食させたり、作業環境を悪化させたりすることがなく、また、焼却廃棄時にハロゲンが気散したり、分解してダイオキシン類等の有害物質の発生等によって環境に悪影響を与える可能性が少ないことから、リン含有難燃剤及びケイ素含有難燃剤が好ましい。
The resin composition of the present invention may contain a flame retardant. Thereby, the flame retarding effect such as reduction or suppression of the burning rate can be improved.
The flame retardant is not particularly limited, and a conventional flame retardant can be used. For example, brominated flame retardants, chlorine-based flame retardants, phosphorus-containing flame retardants, silicon-containing flame retardants, nitrogen compound-based flame retardants, inorganic flame retardants and the like can be mentioned. Among these, hydrogen halides are not generated by thermal decomposition during resin compounding or molding, and do not corrode processing machines or molds or deteriorate the working environment. Phosphorus-containing flame retardants and silicon-containing flame retardants are preferred because they are less likely to adversely affect the environment through the generation of harmful substances such as dioxins when they are diffused or decomposed.
 リン含有難燃剤としては、特に限定されることはなく、常用のものを用いることができる。例えば、リン酸エステル、リン酸縮合エステル、ポリリン酸塩などの有機リン系化合物が挙げられる。 The phosphorus-containing flame retardant is not particularly limited, and a commonly used one can be used. Examples thereof include organic phosphorus compounds such as phosphate esters, phosphate condensation esters, and polyphosphates.
 リン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチルなどを挙げることができる。 Specific examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, melamine phosphate, dimelamine phosphate, melamine pyrophosphate, triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate, diethyl phenylphosphonate Can be mentioned.
 リン酸縮合エステルとしては、例えば、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート並びにこれらの縮合物などの芳香族リン酸縮合エステル等を挙げることができる。 Examples of the phosphoric acid condensed ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. Aromatic phosphoric acid condensed ester and the like.
 また、リン酸、ポリリン酸と周期律表1族~14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるポリリン酸塩を挙げることもできる。ポリリン酸塩の代表的な塩として、金属塩としてリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など、脂肪族アミン塩としてメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩などがあり、芳香族アミン塩としてはピリジン塩、トリアジン等が挙げられる。 In addition, polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned. As typical salts of polyphosphates, lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts, Examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
 また、前記以外にも、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリス(β-クロロプロピル)ホスフェート)などの含ハロゲンリン酸エステル、また、リン原子と窒素原子が二重結合で結ばれた構造を有するホスファゼン化合物、リン酸エステルアミドを挙げることができる。
 これらのリン含有難燃剤は、1種単独でも2種以上を組み合わせて用いてもよい。
In addition to the above, halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris (β-chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
These phosphorus-containing flame retardants may be used singly or in combination of two or more.
 ケイ素含有難燃剤としては、二次元又は三次元構造の有機ケイ素化合物、ポリジメチルシロキサン、又はポリジメチルシロキサンの側鎖又は末端のメチル基が、水素原子、置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基で置換又は修飾されたもの、いわゆるシリコーンオイル、又は変性シリコーンオイルが挙げられる。 Examples of the silicon-containing flame retardant include an organic silicon compound having a two-dimensional or three-dimensional structure, polydimethylsiloxane, or a methyl group at a side chain or a terminal of polydimethylsiloxane, a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Examples thereof include those substituted or modified with an aromatic hydrocarbon group, so-called silicone oils, or modified silicone oils.
 置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基としては、例えば、アルキル基、シクロアルキル基、フェニル基、ベンジル基、アミノ基、エポキシ基、ポリエーテル基、カルボキシル基、メルカプト基、クロロアルキル基、アルキル高級アルコールエステル基、アルコール基、アラルキル基、ビニル基、又はトリフロロメチル基等が挙げられる。
 これらのケイ素含有難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
Examples of the substituted or unsubstituted aliphatic hydrocarbon group and aromatic hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Examples include a chloroalkyl group, an alkyl higher alcohol ester group, an alcohol group, an aralkyl group, a vinyl group, or a trifluoromethyl group.
These silicon-containing flame retardants may be used alone or in combination of two or more.
 また、前記リン含有難燃剤又はケイ素含有難燃剤以外の難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ、ヒドロキシスズ酸亜鉛、スズ酸亜鉛、メタスズ酸、酸化スズ、酸化スズ塩、硫酸亜鉛、酸化亜鉛、酸化第一鉄、酸化第二鉄、酸化第一錫、酸化第二スズ、ホウ酸亜鉛、ホウ酸アンモニウム、オクタモリブデン酸アンモニウム、タングステン酸の金属塩、タングステンとメタロイドとの複合酸化物、スルファミン酸アンモニウム、臭化アンモニウム、ジルコニウム系化合物、グアニジン系化合物、フッ素系化合物、黒鉛、膨潤性黒鉛等の無機系難燃剤を用いることができる。これらの他の難燃剤は、1種単独で用いても、2種以上を併用して用いてもよい。 Examples of the flame retardant other than the phosphorus-containing flame retardant or the silicon-containing flame retardant include, for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate, zinc stannate, Metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, ammonium borate, ammonium octamolybdate, tungsten Inorganic flame retardants such as acid metal salts, complex oxides of tungsten and metalloid, ammonium sulfamate, ammonium bromide, zirconium compounds, guanidine compounds, fluorine compounds, graphite, and swellable graphite can be used. . These other flame retardants may be used alone or in combination of two or more.
 本発明の樹脂組成物が難燃剤を含有する場合、その含有量は限定的でないが、セルロース誘導体100質量部に対して、通常30質量部以下、好ましくは2~10質量部とすればよい。この範囲とすることにより、耐衝撃性・脆性等を改良させたり、ペレットブロッキングの発生を抑制できる。 When the resin composition of the present invention contains a flame retardant, its content is not limited, but is usually 30 parts by mass or less, preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative. By setting it as this range, impact resistance, brittleness, etc. can be improved, or generation | occurrence | production of pellet blocking can be suppressed.
 本発明の樹脂組成物は、前記のセルロース誘導体、フィラー及び難燃剤以外にも、本発明の目的を阻害しない範囲で、成形性、難燃性等の各種特性をより一層改善する目的で他の成分を含んでいてもよい。
 他の成分としては、例えば、前記セルロース誘導体以外のポリマー、可塑剤、安定剤(酸化防止剤、紫外線吸収剤など)、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変成シリコーン)、帯電防止剤、難燃助剤、加工助剤、ドリップ防止剤、抗菌剤、防カビ剤等が挙げられる。更に、染料や顔料を含む着色剤などを添加することもできる。
The resin composition of the present invention is not limited to the cellulose derivatives, fillers and flame retardants described above, and may be used for the purpose of further improving various properties such as moldability and flame retardancy within a range not impairing the object of the present invention. Ingredients may be included.
Examples of other components include polymers other than the cellulose derivatives, plasticizers, stabilizers (antioxidants, UV absorbers, etc.), mold release agents (fatty acids, fatty acid metal salts, oxyfatty acids, fatty acid esters, aliphatic moieties. Saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent, flame retardant aid, Examples include processing aids, anti-drip agents, antibacterial agents, and antifungal agents. Further, a coloring agent containing a dye or a pigment can be added.
 前記セルロース誘導体以外のポリマーとしては、熱可塑性ポリマー、熱硬化性ポリマーのいずれも用い得るが、成形性の点から熱可塑性ポリマーが好ましい。セルロース誘導体以外のポリマーの具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン-1共重合体、ポリプロピレンホモポリマー、ポリプロピレンコポリマー(エチレン-プロピレンブロックコポリマーなど)、ポリブテン-1及びポリ-4-メチルペンテン-1等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びその他の芳香族ポリエステル等のポリエステル、ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン12等のポリアミド、ポリスチレン、ハイインパクトポリスチレン、ポリアセタール(ホモポリマー及び共重合体を含む)、ポリウレタン、芳香族及び脂肪族ポリケトン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、熱可塑性澱粉樹脂、ポリメタクリル酸メチルやメタクリル酸エステル-アクリル酸エステル共重合体などのアクリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ABS樹脂、AES樹脂(エチレン系ゴム強化AS樹脂)、ACS樹脂(塩素化ポリエチレン強化AS樹脂)、ASA樹脂(アクリル系ゴム強化AS樹脂)、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニルエステル系樹脂、無水マレイン酸-スチレン共重合体、MS樹脂(メタクリル酸メチル-スチレン共重合体)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性ポリイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素系ポリマー、酢酸セルロース、ポリビニルアルコール、不飽和ポリエステル、メラミン樹脂、フェノール樹脂、尿素樹脂、ポリイミドなどを挙げることができる。また、各種アクリルゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体及びそのアルカリ金属塩(いわゆるアイオノマー)、エチレン-アクリル酸アルキルエステル共重合体(例えば、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体)、ジエン系ゴム(例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えば、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンランダム共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン-アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエン又はイソプレンとの共重合体、ブチルゴム、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、ニトリルゴム、ポリエーテルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコーンゴム、その他ポリウレタン系やポリエステル系、ポリアミド系などの熱可塑性エラストマー等が挙げられる。 As the polymer other than the cellulose derivative, any of a thermoplastic polymer and a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability. Specific examples of polymers other than cellulose derivatives include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc. Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, polyacetate (Including homopolymers and copolymers), polyurethanes, aromatic and aliphatic polyketones, polyphenylene sulfide, polyether ether ketone, thermoplastic starch resins, polymethyl methacrylate and methacrylate-acrylate copolymers Acrylic resin, AS resin (acrylonitrile-styrene copolymer), ABS resin, AES resin (ethylene rubber reinforced AS resin), ACS resin (chlorinated polyethylene reinforced AS resin), ASA resin (acrylic rubber reinforced AS resin) ), Polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS resin (methyl methacrylate-styrene copolymer), polycarbonate, polyarylate, polysulfone, polyethersulfone, phenoxy resin Thermoplastic polyimide such as polyphenylene ether, modified polyphenylene ether, polyetherimide, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether Fluoropolymers such as polymers, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymers, cellulose acetate, polyvinyl alcohol, unsaturated polyesters, melamine resins, phenol resins, A urea resin, a polyimide, etc. can be mentioned. Various acrylic rubbers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate copolymer) Copolymer, ethylene-butyl acrylate copolymer), diene rubber (for example, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (for example, Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer Polymer, polybutadiene Styrene-grafted styrene, butadiene-acrylonitrile copolymer), polyisobutylene, copolymer of isobutylene and butadiene or isoprene, butyl rubber, natural rubber, thiocol rubber, polysulfide rubber, acrylic rubber, nitrile rubber, poly Examples include ether rubber, epichlorohydrin rubber, fluoro rubber, silicone rubber, and other thermoplastic elastomers such as polyurethane, polyester, and polyamide.
 更に、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造等を有するもの、ビニル基などを有するもの、あるいは各種の平均粒径を有するものや、コア層とそれを覆う1以上のシェル層から構成され、また隣接し合った層が異種の重合体から構成されるいわゆるコアシェルゴムと呼ばれる多層構造重合体なども使用することができ、更にシリコーン化合物を含有したコアシェルゴムも使用することができる。
 これらのポリマーは、1種単独で用いても、2種以上を併用してもよい。
Furthermore, those having various degrees of crosslinking, those having various microstructures such as cis structure and trans structure, those having vinyl groups, those having various average particle diameters, core layers and the like A multi-layer structure polymer called a so-called core-shell rubber, which is composed of one or more shell layers to be covered and whose adjacent layers are composed of different types of polymers, can also be used, and further a core-shell rubber containing a silicone compound Can also be used.
These polymers may be used alone or in combination of two or more.
 本発明の樹脂組成物がセルロース誘導体以外のポリマーを含有する場合、その含有量は、セルロース誘導体100質量部に対して30質量部以下が好ましく、2~10質量部がより好ましい。 When the resin composition of the present invention contains a polymer other than the cellulose derivative, the content thereof is preferably 30 parts by mass or less, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
 本発明の樹脂組成物は、可塑剤を含有してもよい。これにより、難燃性及び成形性をより一層向上させることができる。可塑剤としては、ポリマーの成形に常用されるものを用いることができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。 The resin composition of the present invention may contain a plasticizer. Thereby, a flame retardance and a moldability can be improved further. As the plasticizer, those commonly used for polymer molding can be used. Examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
 ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ロジンなどの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸若しくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。 Specific examples of the polyester plasticizer include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
 グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート及びグリセリンモノアセトモノモンタネート等が挙げられる。 Specific examples of the glycerin plasticizer include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシル、アジピン酸メチルジグリコールブチルジグリコール、アジピン酸ベンジルメチルジグリコール、アジピン酸ベンジルブチルジグリコールなどのアジピン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、及びセバシン酸ジ-2-エチルヘキシル等が挙げられる。 Specific examples of polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid. Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid Adipic acid esters such as benzylbutyl diglycol, citrate esters such as triethyl acetylcitrate and tributyl acetylcitrate, azelaic acid esters such as di-2-ethylhexyl azelate, sebashi Dibutyl, and include di-2-ethylhexyl sebacate and the like.
 ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/又はランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、及び末端エーテル変性化合物等が挙げられる。 Specific examples of the polyalkylene glycol plasticizer include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols. And a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
 エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。 The epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
 その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール等が挙げられる。 Specific examples of other plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid Examples thereof include aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
 本発明の樹脂組成物が可塑剤を含有する場合、その含有量は、セルロース誘導体100質量部に対して通常5質量部以下であり、0.005~5質量部が好ましく、より好ましくは0.01~1質量部である。 When the resin composition of the present invention contains a plasticizer, the content thereof is usually 5 parts by mass or less, preferably 0.005 to 5 parts by mass, more preferably 0.005 parts by mass with respect to 100 parts by mass of the cellulose derivative. 01 to 1 part by mass.
 本発明の成形材料は、前記セルロース誘導体又は前記樹脂組成物を含有する。 The molding material of the present invention contains the cellulose derivative or the resin composition.
 本発明の成形体は、前記セルロース誘導体、前記樹脂組成物、又は前記成形材料を成形することにより得られる。
 より具体的には、前記セルロース誘導体、又は、前記セルロース誘導体及び必要に応じて各種添加剤等を含む樹脂組成物を加熱し、各種の成形方法により成形する工程を含む製造方法によって得られる。
 成形方法としては、例えば、射出成形、押し出し成形、ブロー成形等が挙げられる。
 加熱温度は、通常160~300℃であり、好ましくは180~260℃である。
The molded body of the present invention can be obtained by molding the cellulose derivative, the resin composition, or the molding material.
More specifically, it is obtained by a production method including a step of heating the cellulose derivative or the resin composition containing the cellulose derivative and various additives as necessary, and molding them by various molding methods.
Examples of the molding method include injection molding, extrusion molding, blow molding and the like.
The heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
 本発明の成形体の用途は、特に限定されるものではないが、例えば、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)の内装又は外装部品、自動車、機械部品、住宅・建築用材料等が挙げられる。これらの中でも、優れた耐熱性及び耐衝撃性を有しており、環境への負荷が小さい観点から、例えば、コピー機、プリンター、パソコン、テレビ等といった電気電子機器用の外装部品(特に筐体)として好適に使用することができる。 The use of the molded article of the present invention is not particularly limited. For example, interior or exterior parts of electric and electronic equipment (home appliances, OA / media related equipment, optical equipment, communication equipment, etc.), automobiles, mechanical parts And materials for housing and construction. Among these, from the viewpoint of having excellent heat resistance and impact resistance and low environmental impact, for example, exterior parts (especially casings) for electrical and electronic equipment such as copiers, printers, personal computers, and televisions. ) Can be suitably used.
 以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
 <合成例1:アセトキシエチルアセチルセルロース(C-1)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた3Lの三ツ口フラスコにヒドロキシエチルセルロース(商品名AX-15;住友精化製)65g、N,N-ジメチルアセトアミド2000mLを量り取り、110℃で1時間攪拌した。その後、アセチルクロライド250mLを室温下でゆっくりと滴下し、系の温度を80℃に昇温した。このまま2時間攪拌した後、反応系の温度を室温まで冷却した。反応溶液を水6Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で2回洗浄を行った。得られた白色固体を80℃で6時間真空乾燥することにより目的のセルロース誘導体(C-1)(アセトキシエチルアセチルセルロース、置換度は表1に記載)を白色粉体として得た(72.1g)。
<Synthesis Example 1: Synthesis of acetoxyethylacetylcellulose (C-1)>
In a 3 L three-necked flask equipped with a mechanical stirrer, thermometer, condenser, and dropping funnel, weigh 65 g of hydroxyethyl cellulose (trade name AX-15; manufactured by Sumitomo Seika), 2000 mL of N, N-dimethylacetamide, and add 1 at 110 ° C. Stir for hours. Thereafter, 250 mL of acetyl chloride was slowly added dropwise at room temperature to raise the temperature of the system to 80 ° C. After stirring for 2 hours, the temperature of the reaction system was cooled to room temperature. When the reaction solution was poured into 6 L of water with vigorous stirring, a white solid was precipitated. The white solid was filtered off by suction filtration and washed twice with a large amount of water. The obtained white solid was vacuum-dried at 80 ° C. for 6 hours to obtain the target cellulose derivative (C-1) (acetoxyethylacetylcellulose, the degree of substitution described in Table 1) as a white powder (72.1 g). ).
<合成例2:アセトキシプロピルアセチルセルロース(C-2)の合成>
 特開2008-534735号公報を参考に、下記の手法でまずセルロースエーテルを得た。すなわち、3Lビーカーにt-ブチルアルコール(757g)、イソプロパノール(35.7g)、アセトン(26.8g)、水(73.2g)、解砕したリンター(99.2g)を量り取り、室温で1時間攪拌した。その後、この懸濁液と50%水酸化ナトリウム水溶液(55.6g)を2Lオートクレーブに加え、室温で45分間攪拌した。その後55℃に昇温し、プロピレンオキシド(124.6g)を加えて2時間攪拌したのち、95℃で2時間攪拌した。これに続いて、この反応混合物を40℃に冷却し、60%硝酸水溶液(56.0g)を加えて中性にしたのち、ブフナーロートでろ過した。残留物をアセトンで洗浄したのち、脱水することでヒドロキシプロピルセルロースを固体として得た(143g)。
 合成例1のヒドロキシエチルセルロースを上記ヒドロキシプロピルセルロースに変えた以外は、同様にして、セルロース誘導体(C-2)(アセトキシプロピルアセチルセルロース)を固体として得た(72.1g)。
<Synthesis Example 2: Synthesis of acetoxypropylacetylcellulose (C-2)>
With reference to JP-A-2008-534735, cellulose ether was first obtained by the following method. That is, t-butyl alcohol (757 g), isopropanol (35.7 g), acetone (26.8 g), water (73.2 g), and crushed linter (99.2 g) were weighed into a 3 L beaker, and 1 at room temperature. Stir for hours. Thereafter, this suspension and a 50% aqueous sodium hydroxide solution (55.6 g) were added to a 2 L autoclave and stirred at room temperature for 45 minutes. Thereafter, the temperature was raised to 55 ° C., propylene oxide (124.6 g) was added and stirred for 2 hours, and then stirred at 95 ° C. for 2 hours. Following this, the reaction mixture was cooled to 40 ° C., neutralized with 60% aqueous nitric acid (56.0 g), and filtered through a Buchner funnel. The residue was washed with acetone and then dehydrated to obtain hydroxypropylcellulose as a solid (143 g).
A cellulose derivative (C-2) (acetoxypropylacetylcellulose) was obtained as a solid in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was replaced with the hydroxypropylcellulose (72.1 g).
<合成例3:アセトキシエチルアセトキシプロピルアセチルセルロース(C-3)の合成>
 合成例2のプロピレンオキシドをプロピレンオキシド(62.3g)、エチレンオキシド(47.4g)に変えた以外は、同様にして、ヒドロキシエチルヒドロキシプロピルセルロースを固体として得た(124g)。
 合成例1のヒドロキシエチルセルロースを上記ヒドロキシエチルヒドロキシプロピルセルロースに変えた以外は、同様にして、セルロース誘導体(C-3)(アセトキシエチルアセトキシプロピルアセチルセルロース)を固体として得た(69.9g)。
<Synthesis Example 3: Synthesis of acetoxyethyl acetoxypropyl acetyl cellulose (C-3)>
Hydroxyethylhydroxypropylcellulose was obtained as a solid (124 g) in the same manner except that the propylene oxide of Synthesis Example 2 was changed to propylene oxide (62.3 g) and ethylene oxide (47.4 g).
A cellulose derivative (C-3) (acetoxyethylacetoxypropylacetylcellulose) was obtained as a solid (69.9 g) in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was replaced with the hydroxyethylhydroxypropylcellulose.
<合成例4:プロピオニルオキシエチルプロピオニルセルロース(C-4)の合成>
 合成例1のアセチルクロライドをプロピオニルクロライドに変えた以外は、同様にして、目的のセルロース誘導体(C-4)(プロピオニルオキシエチルプロピオニルセルロース)を白色粉体として得た(77.3g)。
<Synthesis Example 4: Synthesis of propionyloxyethyl propionyl cellulose (C-4)>
The target cellulose derivative (C-4) (propionyloxyethylpropionylcellulose) was obtained as a white powder in the same manner except that the acetyl chloride in Synthesis Example 1 was changed to propionyl chloride (77.3 g).
<合成例5:ブタノイルオキシエチルブタノイルセルロース(C-5)の合成>
 合成例1のアセチルクロライドをブタノイルクロライドに変えた以外は、同様にして、目的のセルロース誘導体(C-5)(ブタノイルオキシエチルブタノイルセルロース)を白色粉体として得た(80.1g)。
<Synthesis Example 5: Synthesis of butanoyloxyethyl butanoyl cellulose (C-5)>
The target cellulose derivative (C-5) (butanoyloxyethylbutanoylcellulose) was obtained as a white powder in the same manner except that the acetyl chloride in Synthesis Example 1 was changed to butanoyl chloride (80.1 g). .
<合成例6:アセトキシエチルアセチルセルロース(C-6)の合成>
 合成例2のプロピレンオキシドをエチレンオキシド(42.2g)に変えた以外は、同様にして、ヒドロキシエチルセルロースを固体として得た(114g)。合成例1のヒドロキシエチルセルロースを上記ヒドロキシエチルセルロースに変えた以外は、同様にして、目的のセルロース誘導体(C-6)(アセトキシエチルアセチルセルロース)を固体として得た(70.4g)。
<Synthesis Example 6: Synthesis of acetoxyethylacetylcellulose (C-6)>
Hydroxyethyl cellulose was obtained as a solid (114 g) in the same manner except that the propylene oxide of Synthesis Example 2 was changed to ethylene oxide (42.2 g). The target cellulose derivative (C-6) (acetoxyethylacetylcellulose) was obtained as a solid (70.4 g) in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was changed to the hydroxyethylcellulose.
<合成例7:アセトキシエチルアセチルセルロース(C-7)の合成>
 合成例1のヒドロキシエチルセルロースを商品名SP900(ダイセル製)に変えた以外は、同様にして、目的のセルロース誘導体(C-7)(アセトキシエチルアセチルセルロース)を白色粉体として得た(79.6g)。
<Synthesis Example 7: Synthesis of acetoxyethyl acetyl cellulose (C-7)>
The target cellulose derivative (C-7) (acetoxyethylacetylcellulose) was obtained as a white powder in the same manner except that the hydroxyethyl cellulose of Synthesis Example 1 was changed to the trade name SP900 (manufactured by Daicel) (79.6 g). ).
<合成例8:アセトキシエチルアセチルセルロース(C-8)の合成>
 合成例1のヒドロキシエチルセルロースを商品名EP850(ダイセル製)に変えた以外は、同様にして、目的のセルロース誘導体(C-8)(アセトキシエチルアセチルセルロース)を白色粉体として得た(81.6g)。
<Synthesis Example 8: Synthesis of acetoxyethylacetylcellulose (C-8)>
The target cellulose derivative (C-8) (acetoxyethyl acetylcellulose) was obtained as a white powder in the same manner except that the hydroxyethyl cellulose of Synthesis Example 1 was changed to the trade name EP850 (manufactured by Daicel) (81.6 g ).
<合成例9:アセトキシエチルアセチルセルロース(C-9)の合成>
 合成例2のプロピレンオキシドをエチレンオキシド(96.5g)に変えた以外は、同様にして、ヒドロキシエチルセルロースを固体として得た(129g)。
 合成例1のヒドロキシエチルセルロースを上記ヒドロキシエチルセルロースに変えた以外は、同様にして、目的のセルロース誘導体(C-9)(アセトキシエチルアセチルセルロース)を固体として得た(68.4g)。
<Synthesis Example 9: Synthesis of acetoxyethyl acetyl cellulose (C-9)>
Hydroxyethyl cellulose was obtained as a solid (129 g) in the same manner except that the propylene oxide of Synthesis Example 2 was changed to ethylene oxide (96.5 g).
The target cellulose derivative (C-9) (acetoxyethylacetylcellulose) was obtained as a solid (68.4 g) in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was changed to the hydroxyethylcellulose.
<合成例10:アセトキシプロピルアセチルセルロース(R-1)の合成>
 合成例1のヒドロキシエチルセルロースをヒドロキシプロピルセルロース(商品名LDC―H(信越化学工業製))に変えた以外は、同様にして、セルロース誘導体(R-1)(アセトキシプロピルアセチルセルロース)を白色粉体として得た(73.3g)。
<Synthesis Example 10: Synthesis of acetoxypropylacetylcellulose (R-1)>
Cellulose derivative (R-1) (acetoxypropylacetylcellulose) was treated with white powder in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was changed to hydroxypropylcellulose (trade name LDC-H (manufactured by Shin-Etsu Chemical Co., Ltd.)). (73.3 g).
<合成例11:アセトキシエチルアセチルセルロース(R-2)の合成>
 合成例2のプロピレンオキシドをエチレンオキシド(113.4g)に変えた以外は、同様にして、ヒドロキシエチルセルロースを固体として得た(143g)。
 合成例1のヒドロキシエチルセルロースを上記ヒドロキシエチルセルロースに変えた以外は、同様にして、セルロース誘導体(R-2)(アセトキシエチルアセチルセルロース)を固体として得た(69.0g)。
<Synthesis Example 11: Synthesis of acetoxyethylacetylcellulose (R-2)>
Hydroxyethyl cellulose was obtained as a solid (143 g) in the same manner except that the propylene oxide of Synthesis Example 2 was changed to ethylene oxide (113.4 g).
A cellulose derivative (R-2) (acetoxyethylacetylcellulose) was obtained as a solid (69.0 g) in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was changed to the hydroxyethylcellulose.
<合成例12:アセトキシプロピルアセチルセルロース(R-3)の合成>
 合成例1のヒドロキシエチルセルロースをヒドロキシプロピルセルロース(商品番191906、Aldrich製)に変えた以外は、同様にして、セルロース誘導体(R-3)(アセトキシプロピルアセチルセルロース)を白色固体として得た(76.7g)。
<Synthesis Example 12: Synthesis of acetoxypropylacetylcellulose (R-3)>
A cellulose derivative (R-3) (acetoxypropylacetylcellulose) was obtained as a white solid in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was changed to hydroxypropylcellulose (product number 191906, manufactured by Aldrich) (76. 7g).
<合成例13:アセトキシエチルアセチルセルロース(R-4)の合成>
 合成例1のヒドロキシエチルセルロースを商品名AL15(住友精化製)に変えた以外は、同様にして、セルロース誘導体(R-4)(アセトキシエチルアセチルセルロース)を白色固体として得た(74.2g)。
<Synthesis Example 13: Synthesis of acetoxyethylacetylcellulose (R-4)>
A cellulose derivative (R-4) (acetoxyethylacetylcellulose) was obtained as a white solid in the same manner except that the hydroxyethylcellulose of Synthesis Example 1 was changed to the trade name AL15 (manufactured by Sumitomo Seika) (74.2 g) .
<合成例14:ペンタノイルオキシエチルペンタノイルセルロース(R-5)の合成>
 合成例1のアセチルクロライドをペンタノイルクロライドに変えた以外は、同様にして、セルロース誘導体(R-5)(ペンタノイルオキシエチルペンタノイルセルロース)を白色固体として得た(84.1g)。
<Synthesis Example 14: Synthesis of pentanoyloxyethyl pentanoyl cellulose (R-5)>
A cellulose derivative (R-5) (pentanoyloxyethyl pentanoyl cellulose) was obtained as a white solid in the same manner except that the acetyl chloride in Synthesis Example 1 was changed to pentanoyl chloride (84.1 g).
 なお、以上で得られたセルロース誘導体に対して、セルロースに置換された官能基の種類、及び置換度、並びにMS(アルキレンオキシ基の総モル置換度)は、Cellulose Communication 6,73-79(1999)に記載の方法を利用して、H-NMRにより観測及び決定した。 The cellulose derivatives obtained above were classified into Cellulose Communication 6, 73-79 (1999) with respect to the type and degree of substitution of functional groups substituted with cellulose, and MS (total molar substitution degree of alkyleneoxy groups). ) Was observed and determined by 1 H-NMR using the method described in 1 ).
<セルロース誘導体の分子量測定>
 得られたセルロース誘導体について、数平均分子量(Mn)、質量平均分子量(Mw)、を測定した。これらの測定方法は以下の通りである。
[分子量]
 数平均分子量(Mn)、質量平均分子量(Mw)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いた。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めた。GPC装置は、HLC-8220GPC(東ソー社製)を使用した。
<Measurement of molecular weight of cellulose derivative>
About the obtained cellulose derivative, the number average molecular weight (Mn) and the mass average molecular weight (Mw) were measured. These measuring methods are as follows.
[Molecular weight]
For the measurement of the number average molecular weight (Mn) and the mass average molecular weight (Mw), gel permeation chromatography (GPC) was used. Specifically, N-methylpyrrolidone was used as a solvent, a polystyrene gel was used, and a molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene was used. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) was used.
 数平均分子量(Mn)、質量平均分子量(Mw)、A)アシル基とアルキレンオキシ基とを含む基の置換度とB)アシル基の置換度の和DSa+DSb、水素原子の置換度DSh、末端水酸基のアルコキシ置換度DSc、及びMSをまとめて表1に示す。 Number average molecular weight (Mn), mass average molecular weight (Mw), A) DSa + DSb sum of substitution degree of acyl group and alkyleneoxy group and B) substitution degree of acyl group, substitution degree DSh of hydrogen atom, terminal hydroxyl group Table 1 summarizes the alkoxy substitution degree DSc and MS.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記表中、セルロース誘導体(C-1)、(C-6)~(C-9)、(R-2)、(R-4)における“A)アシル基とアルキレンオキシ基とを含む基”はいずれも下記式(1-1)で表される基を含み、セルロース誘導体(C-2)、(R-1)、(R-3)においてはいずれも下記式(1-2)で表される基を含み、セルロース誘導体(C-3)においては下記一般式(1-3)で表される基を含み、セルロース誘導体(C-4)においては下記式(1-4)で表される基を含み、セルロース誘導体(C-5)においては下記式(1-5)で表される基を含み、セルロース誘導体(R-5)においては下記式(1-6)で表される基を含む。 In the above table, “A) a group containing an acyl group and an alkyleneoxy group in cellulose derivatives (C-1), (C-6) to (C-9), (R-2), and (R-4)” All include a group represented by the following formula (1-1), and in the cellulose derivatives (C-2), (R-1), and (R-3), all are represented by the following formula (1-2). The cellulose derivative (C-3) contains a group represented by the following general formula (1-3), and the cellulose derivative (C-4) represents a group represented by the following formula (1-4). A group represented by the following formula (1-5) in the cellulose derivative (C-5), and a group represented by the following formula (1-6) in the cellulose derivative (R-5). including.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(一般式(1-3)中、RはH又はCH基を表す。) (In the general formula (1-3), R represents H or CH 3 group.)
<セルロース誘導体の液晶性の観察>
 上記で得られたセルロース誘導体(C-1)~(C-9)、(R-1)~(R-5)をスライドガラスに取り、偏光顕微鏡(ニコン製ECLIPSE LV100POL)によるTexture観察により、セルロース誘導体の液晶性の確認を行った。加熱にはメトラー(メトラー・トレド製FP82HT)を用いた。結果を表2に示す。
<Observation of liquid crystallinity of cellulose derivative>
The cellulose derivatives (C-1) to (C-9) and (R-1) to (R-5) obtained above are taken on a slide glass, and the cellulose is observed by texture observation with a polarizing microscope (Nikon ECLIPISE LV100POL). The liquid crystallinity of the derivative was confirmed. A METTLER (FP82HT manufactured by METTLER TOLEDO) was used for heating. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2から、MSが5.0と大きいセルロース誘導体(R-3)は液晶性を示し、室温から100℃においてコレステリック液晶に特有の呈色効果が見られたのに対し、MSの小さいセルロース誘導体(C-1)~(C-9)、(R-1)~(R-2)、(R-4)、(R-5)は温度を変えても液晶性を示さないことが分かった。 From Table 2, the cellulose derivative (R-3) having a large MS of 5.0 exhibited liquid crystallinity, and a coloration effect peculiar to cholesteric liquid crystals was observed from room temperature to 100 ° C., whereas a cellulose derivative having a small MS It was found that (C-1) to (C-9), (R-1) to (R-2), (R-4), and (R-5) did not show liquid crystallinity even when the temperature was changed. .
<セルロース誘導体からなる成形体の作製>
[試験片作製]
 上記で得られたセルロース誘導体(C-1)~(C-9)、(R-1)~(R-5)、(R-6)(ダイセル製EP850:ヒドロキシエチルセルロース、MS:1.7)、(R-7)(住友精化製:ヒドロキシエチルセルロース、MS:2.2)を微量成形機((株)井元製作所製、半自動射出成形機)に供給してシリンダー温度140~230℃、射出圧力1.5kgf/cmにて4×10×80mmの多目的試験片(衝撃試験片)の成形を試みた。
<Preparation of a molded body made of a cellulose derivative>
[Test specimen preparation]
Cellulose derivatives (C-1) to (C-9), (R-1) to (R-5), (R-6) obtained above (Daicel EP850: hydroxyethylcellulose, MS: 1.7) , (R-7) (manufactured by Sumitomo Seika: Hydroxyethyl cellulose, MS: 2.2) is supplied to a micro-molding machine (Imoto Seisakusho, semi-automatic injection molding machine) and the cylinder temperature is 140-230 ° C., injection An attempt was made to mold a 4 × 10 × 80 mm multipurpose test piece (impact test piece) at a pressure of 1.5 kgf / cm 2 .
<試験片の物性測定>
 成形片が得られたものについては、下記の方法にしたがってシャルピー衝撃強度を測定した。結果を表3に示す。
[シャルピー衝撃強度]
 ISO179に準拠して、射出成形にて成形した多目的試験片に入射角45±0.5°、先端0.25±0.05mmのノッチを形成し、23℃±2℃、50%±5%RHで48時間以上静置した後、シャルピー衝撃試験機((株)東洋精機製作所製)によってエッジワイズにて衝撃強度を測定した。
<Measurement of physical properties of test piece>
About the thing from which the molded piece was obtained, Charpy impact strength was measured in accordance with the following method. The results are shown in Table 3.
[Charpy impact strength]
In accordance with ISO 179, a multi-purpose test piece molded by injection molding is formed with a notch having an incident angle of 45 ± 0.5 ° and a tip of 0.25 ± 0.05 mm, 23 ° C. ± 2 ° C., 50% ± 5% After standing at RH for 48 hours or more, the impact strength was measured edgewise with a Charpy impact tester (manufactured by Toyo Seiki Seisakusho).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 液晶性を有するMSが5.0であるセルロース誘導体(R-3)、ペンタノイル基を有するセルロース誘導体(R-5)は室温でほぼゴム状態であり、成形用途として適さないことが分かった。また、MSが3.2であるセルロース誘導体(R-2)は、成形できたものの、成形体のシャルピー衝撃強度が低かった。また、数平均分子量が9万2千であるセルロース誘導体(R-4)は、成形できたものの、実施例の成形体に比べてシャルピー衝撃強度が低かった。一方でMSが0.3であるセルロース誘導体(R-1)は熱可塑性が不十分であり、温度を上げても溶融せずに分解し、成形用途として適さないことが分かった。またMSがそれぞれ1.7、2.2であるヒドロキシエチルセルロース(R-6)、(R-7)は温度を上げても溶融せずに分解したのに対し、同じMSであってもヒドロキシエチルセルロースをアセチル化したセルロース誘導体(C-1)、(C-7)は、それぞれ175℃、160℃と比較的低温で成形が可能であった。また(C-1)のシャルピー衝撃強度は、MSが同じで分子量が低いセルロース誘導体(R-4)と比べて高い値を有することが分かった。 It was found that the cellulose derivative (R-3) having MS having a liquid crystallinity of 5.0 and the cellulose derivative (R-5) having a pentanoyl group are almost rubbery at room temperature and are not suitable for molding applications. Further, although the cellulose derivative (R-2) having an MS of 3.2 could be molded, the Charpy impact strength of the molded body was low. In addition, although the cellulose derivative (R-4) having a number average molecular weight of 92,000 was able to be molded, the Charpy impact strength was lower than that of the molded body of the example. On the other hand, it was found that cellulose derivative (R-1) having MS of 0.3 has insufficient thermoplasticity and decomposes without melting even when the temperature is raised, and is not suitable for molding applications. In addition, hydroxyethyl cellulose (R-6) and (R-7) having MS of 1.7 and 2.2, respectively, decomposed without melting even when the temperature was raised, whereas hydroxyethyl cellulose with the same MS The acetylated cellulose derivatives (C-1) and (C-7) could be molded at relatively low temperatures of 175 ° C. and 160 ° C., respectively. It was also found that the Charpy impact strength of (C-1) was higher than that of the cellulose derivative (R-4) having the same MS and a low molecular weight.
 本発明のセルロース誘導体は、優れた熱可塑性を有するため、成形体とすることができる。特に本発明のセルロース誘導体は、高分子量体であっても低温で成形することができる。
 また、本発明のセルロース誘導体から作製される成形体は、良好な耐衝撃性を有しており、自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。また、植物由来の樹脂であるため、温暖化防止に貢献できる素材として、従来の石油由来の樹脂に代替できる。
Since the cellulose derivative of the present invention has excellent thermoplasticity, it can be formed into a molded body. In particular, the cellulose derivative of the present invention can be molded at a low temperature even if it is a high molecular weight product.
In addition, the molded body produced from the cellulose derivative of the present invention has good impact resistance, and is suitable as a component part for automobiles, home appliances, electrical and electronic equipment, mechanical parts, housing / building materials, etc. Can be used. Moreover, since it is a plant-derived resin, it can be replaced with a conventional petroleum-derived resin as a material that can contribute to the prevention of global warming.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年4月22日出願の日本特許出願(特願2010-099299)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Apr. 22, 2010 (Japanese Patent Application No. 2010-099299), the contents of which are incorporated herein by reference.

Claims (14)

  1.  セルロースに含まれる水酸基の水素原子が、
     下記A)で置換された基を少なくとも1つ、及び
     下記B)で置換された基を少なくとも1つを有し、
    A)で置換された基に含まれる-C2n-O-基の総モル置換度が0.5以上3.0以下であり、
     かつ数平均分子量が15万以上であるセルロース誘導体。
     A)下記一般式(1)で表される構造を含む基
     B)アシル基:-CO-RB(RBは炭素数1~3の炭化水素基を表す。)
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)中、nは2又は3を表し、Rは炭素数1~3の炭化水素基を表す。)
    The hydrogen atom of the hydroxyl group contained in cellulose
    Having at least one group substituted in A) below and at least one group substituted in B) below,
    The total molar substitution degree of the —C n H 2n —O— group contained in the group substituted with A) is 0.5 or more and 3.0 or less,
    A cellulose derivative having a number average molecular weight of 150,000 or more.
    A) A group containing a structure represented by the following general formula (1) B) Acyl group: —CO—R B (R B represents a hydrocarbon group having 1 to 3 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), n represents 2 or 3, and R A represents a hydrocarbon group having 1 to 3 carbon atoms.)
  2.  前記R及びRが、それぞれ独立に、メチル基、又はエチル基である、請求項1に記載のセルロース誘導体。 The cellulose derivative according to claim 1, wherein R A and R B are each independently a methyl group or an ethyl group.
  3.  前記R及びRがメチル基である、請求項1に記載のセルロース誘導体。 The cellulose derivative according to claim 1, wherein R A and R B are methyl groups.
  4.  前記一般式(1)で表される構造を含む基に含まれる-C2n-O-基の総モル置換度が0.5以上2.5以下である、請求項1~3のいずれか1項に記載のセルロース誘導体。 The total molar substitution degree of the —C n H 2n —O— group contained in the group containing the structure represented by the general formula (1) is 0.5 or more and 2.5 or less. 2. The cellulose derivative according to item 1.
  5.  前記一般式(1)で表される構造を含む基に含まれる-C2n-O-基の総モル置換度が1.0以上2.0以下である、請求項4に記載のセルロース誘導体。 The cellulose according to claim 4, wherein the total molar substitution degree of the -C n H 2n -O- group contained in the group containing the structure represented by the general formula (1) is 1.0 or more and 2.0 or less. Derivative.
  6.  前記数平均分子量が20万以上50万以下である、請求項1~5のいずれか1項に記載のセルロース誘導体。 The cellulose derivative according to any one of claims 1 to 5, wherein the number average molecular weight is 200,000 or more and 500,000 or less.
  7.  前記セルロース誘導体が、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、又はヒドロキシエチルヒドロキシプロピルセルロースをアシル化することにより得られる、請求項1~6のいずれか1項に記載のセルロース誘導体。 The cellulose derivative according to any one of claims 1 to 6, wherein the cellulose derivative is obtained by acylating hydroxyethyl cellulose, hydroxypropyl cellulose, or hydroxyethyl hydroxypropyl cellulose.
  8.  前記セルロース誘導体が、アルコキシ基を実質的に含まない、請求項1~7のいずれか1項に記載のセルロース誘導体。 The cellulose derivative according to any one of claims 1 to 7, wherein the cellulose derivative substantially does not contain an alkoxy group.
  9.  前記セルロース誘導体が非液晶性である、請求項1~8のいずれか1項に記載のセルロース誘導体。 The cellulose derivative according to any one of claims 1 to 8, wherein the cellulose derivative is non-liquid crystalline.
  10.  請求項1~9のいずれか1項に記載のセルロース誘導体を含有する樹脂組成物。 A resin composition containing the cellulose derivative according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載のセルロース誘導体、又は請求項10に記載の樹脂組成物を含有する成形材料。 A molding material containing the cellulose derivative according to any one of claims 1 to 9, or the resin composition according to claim 10.
  12.  請求項1~9のいずれか1項に記載のセルロース誘導体、請求項10に記載の樹脂組成物、又は請求項11に記載の成形材料を成形して得られる成形体。 A molded body obtained by molding the cellulose derivative according to any one of claims 1 to 9, the resin composition according to claim 10, or the molding material according to claim 11.
  13.  請求項1~9のいずれか1項に記載のセルロース誘導体、請求項10に記載の樹脂組成物、又は請求項11に記載の成形材料を加熱し、成形する工程を備えた、成形体の製造方法。 Production of a molded body comprising a step of heating and molding the cellulose derivative according to any one of claims 1 to 9, the resin composition according to claim 10, or the molding material according to claim 11. Method.
  14.  請求項12に記載の成形体から構成される電気電子機器用筐体。 A housing for electrical and electronic equipment comprising the molded body according to claim 12.
PCT/JP2011/059852 2010-04-22 2011-04-21 Cellulose derivative, resin composition, molding material, molded body, method for producing molded body, and housing for electric/electronic device WO2011132745A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-099299 2010-04-22
JP2010099299A JP2011225786A (en) 2010-04-22 2010-04-22 Cellulose derivative, resin composition, molding material, molded body, method for manufacturing molded body, and housing for electric/electronic device

Publications (1)

Publication Number Publication Date
WO2011132745A1 true WO2011132745A1 (en) 2011-10-27

Family

ID=44834261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059852 WO2011132745A1 (en) 2010-04-22 2011-04-21 Cellulose derivative, resin composition, molding material, molded body, method for producing molded body, and housing for electric/electronic device

Country Status (2)

Country Link
JP (1) JP2011225786A (en)
WO (1) WO2011132745A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384830A (en) * 2015-12-14 2016-03-09 山东一滕新材料股份有限公司 Hydroxypropyl hydroxyethyl cellulose ether and preparation method thereof
WO2019244831A1 (en) * 2018-06-20 2019-12-26 株式会社ダイセル Cellulose derivative and molded body of same
EP3985057A4 (en) * 2019-06-14 2022-08-17 NEC Corporation Cellulose resin composition, molded body and product using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019117316A1 (en) * 2017-12-15 2019-06-20 日本電気株式会社 Cellulose-based resin composition, molded body, and product obtained using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3435027A (en) * 1965-12-13 1969-03-25 Hercules Inc Cellulose ether-esters and process
US3824085A (en) * 1972-02-01 1974-07-16 Anheuser Busch Esters of polymeric hydroxypropyl carbohydrates and method of using same as gelling agent for organic solvents
JPS5223186A (en) * 1975-08-14 1977-02-21 Asahi Chem Ind Co Ltd Process for preparing a thermoplastic cellulose ester
JPS621403A (en) * 1985-06-25 1987-01-07 Asahi Chem Ind Co Ltd Cuprammonium cellulose porous membrane with good dimensional stability
JPH0632801A (en) * 1992-05-26 1994-02-08 Eastman Kodak Co Preparation of cellulose ester
JP2002275379A (en) * 2001-03-16 2002-09-25 Canon Inc Resin composition and its molding method, and recycling method of resin composition
JP2004163452A (en) * 2002-11-08 2004-06-10 Nippon Kayaku Co Ltd Liquid crystalline blended composition and optical retardation film obtained by using it
JP2006133341A (en) * 2004-11-04 2006-05-25 Sharp Corp Liquid crystal display device
WO2010001864A1 (en) * 2008-06-30 2010-01-07 富士フイルム株式会社 Cellulose derivative and process for production thereof, cellulose resin composition, molded article and method for production thereof, and housing for electrochemical device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3435027A (en) * 1965-12-13 1969-03-25 Hercules Inc Cellulose ether-esters and process
US3824085A (en) * 1972-02-01 1974-07-16 Anheuser Busch Esters of polymeric hydroxypropyl carbohydrates and method of using same as gelling agent for organic solvents
JPS5223186A (en) * 1975-08-14 1977-02-21 Asahi Chem Ind Co Ltd Process for preparing a thermoplastic cellulose ester
JPS621403A (en) * 1985-06-25 1987-01-07 Asahi Chem Ind Co Ltd Cuprammonium cellulose porous membrane with good dimensional stability
JPH0632801A (en) * 1992-05-26 1994-02-08 Eastman Kodak Co Preparation of cellulose ester
JP2002275379A (en) * 2001-03-16 2002-09-25 Canon Inc Resin composition and its molding method, and recycling method of resin composition
JP2004163452A (en) * 2002-11-08 2004-06-10 Nippon Kayaku Co Ltd Liquid crystalline blended composition and optical retardation film obtained by using it
JP2006133341A (en) * 2004-11-04 2006-05-25 Sharp Corp Liquid crystal display device
WO2010001864A1 (en) * 2008-06-30 2010-01-07 富士フイルム株式会社 Cellulose derivative and process for production thereof, cellulose resin composition, molded article and method for production thereof, and housing for electrochemical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105384830A (en) * 2015-12-14 2016-03-09 山东一滕新材料股份有限公司 Hydroxypropyl hydroxyethyl cellulose ether and preparation method thereof
WO2019244831A1 (en) * 2018-06-20 2019-12-26 株式会社ダイセル Cellulose derivative and molded body of same
EP3985057A4 (en) * 2019-06-14 2022-08-17 NEC Corporation Cellulose resin composition, molded body and product using same

Also Published As

Publication number Publication date
JP2011225786A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
JP5470032B2 (en) Cellulose derivative, thermoforming material, molded body, method for producing the same, and casing for electric and electronic equipment
JP5757681B2 (en) CELLULOSE DERIVATIVE, RESIN COMPOSITION, MOLDED BODY, PROCESS FOR PRODUCING THE SAME, AND CASE FOR ELECTRICAL / Electronic Equipment
WO2010047351A1 (en) Cellulose derivative, resin composition, molded body obtained from cellulose derivative, and case configured of the molded body for use in electrical/electronic device
WO2011132745A1 (en) Cellulose derivative, resin composition, molding material, molded body, method for producing molded body, and housing for electric/electronic device
JP2011006643A (en) Cellulose resin composition, molded article, and casing for electric and electronic equipment
JP2011132443A (en) Molding material, molding, and method for producing the same, and housing for electric and electronic equipment
JP2010241848A (en) Cellulose resin composition, molded article and housing for electric and electronic equipment
WO2012073661A1 (en) Molding material, molded body, method for producing same, and electrical and electronic equipment housing
WO2012108234A1 (en) Cellulose derivative, resin composition, molded article and process for production thereof, and housing for electric/electronic devices
JP5470031B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5486918B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP2011132445A (en) Molding material, molded article, production method of the same, and chassis for electric and electronic equipment
WO2011078282A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP2011132454A (en) Molding material, molding, and method for producing the same, and housing for electric and electronic equipment
WO2010038711A1 (en) Cellulose derivative and process for production thereof, resin composition, molded article and process for production thereof, and housing for electronic device
WO2011078283A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078277A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078284A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078278A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078281A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2012073689A1 (en) Molding material, molded body, method for producing same, and electrical and electronic equipment housing
JP2011132452A (en) Molding material, molded article, production method of the same, and chassis for electric and electronic equipment
WO2011078289A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP2011132456A (en) Molding material, molded body and manufacturing method therefor, and housing for electrical and electronic equipment
JP2011132442A (en) Molding material, molded body and manufacturing method therefor, and housing for electrical and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11772077

Country of ref document: EP

Kind code of ref document: A1