JP2018020286A - Pore diffusion membrane separation module for fractionation of component molecules in high molecule solution - Google Patents

Pore diffusion membrane separation module for fractionation of component molecules in high molecule solution Download PDF

Info

Publication number
JP2018020286A
JP2018020286A JP2016152927A JP2016152927A JP2018020286A JP 2018020286 A JP2018020286 A JP 2018020286A JP 2016152927 A JP2016152927 A JP 2016152927A JP 2016152927 A JP2016152927 A JP 2016152927A JP 2018020286 A JP2018020286 A JP 2018020286A
Authority
JP
Japan
Prior art keywords
membrane
module
liquid
polymer
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016152927A
Other languages
Japanese (ja)
Other versions
JP6534068B2 (en
Inventor
健児 佐々木
Kenji Sasaki
健児 佐々木
征一 真鍋
Seiichi Manabe
征一 真鍋
保武 中川
Yasutake Nakagawa
保武 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Special Membrane Dev Co Ltd
Nihon Special Membrane Development Co Ltd
Original Assignee
Nihon Special Membrane Dev Co Ltd
Nihon Special Membrane Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Special Membrane Dev Co Ltd, Nihon Special Membrane Development Co Ltd filed Critical Nihon Special Membrane Dev Co Ltd
Priority to JP2016152927A priority Critical patent/JP6534068B2/en
Publication of JP2018020286A publication Critical patent/JP2018020286A/en
Application granted granted Critical
Publication of JP6534068B2 publication Critical patent/JP6534068B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pore diffusion membrane separation module, in which there is enhanced a fluid fractionation effect capable of fractionating the dissolved component molecules of high molecular weight, and in which the film used is a flat porous one.MEANS FOR SOLVING THE PROBLEM: A pore diffusion membrane separation module is characterized: in that a hydrophilic macromolecule porous film having an average pore diameter of 3 times or more than the high molecule to be fractionated is charged; in that the wall portion of the primary side passage of said porous film contacts the smooth film surface exceeds the length of 50 cm; and in that the take-out port of the recovery liquid to be carried through said film to the secondary side is provided in a plurality at a predetermined length.SELECTED DRAWING: Figure 2

Description

本発明モジュールは流動分別効果を最大限に生かして、溶液中に溶解している高分子物質を孔拡散膜分離法で分画するモジュールに関する。本発明中、孔拡散膜分離とは(1)膜を介しての物質輸送において、膜内部の孔を透過する媒体である水以外の物質の透過速度が拡散機構によって支配される、(2)媒体である水分子の膜透過が膜間差圧を駆動力としている、(3)膜間差圧が0.1気圧以下で、(4)膜を透過する物質の拡散の活性化エネルギーが5 kcal/mole以下である、の膜透過機構の特性を持つ拡散機構を利用した分離を意味する。流動分別型孔拡散膜分離とは上記の孔拡散膜分離において特に流動分別効果を強調した膜分離で、(5)膜表面での被処理液体のひずみ速度が10/秒以上で、(6)被処理液体の膜表面上の流れが層流である条件下での孔拡散膜分離を意味する。また膜分画とは、多成分の混合溶液より、膜分離技術を利用して、成分物質を特定の分子特性値にもとづいて3種以上を連続的に分画分取する物質の分離精製法である。膜分離用モジュールとは、分離用膜と、該膜を介して1次側の処理対象液を充填する空間部と処理後の膜を通過した溶液を回収するための空間部とを有し、これらの部分を利用して膜分離を実施する一組の装置の構成単位を意味する。       The module of the present invention relates to a module for fractionating a polymer substance dissolved in a solution by a pore diffusion membrane separation method by making the best use of the flow fractionation effect. In the present invention, pore diffusion membrane separation is (1) in mass transport through a membrane, the permeation rate of substances other than water, which is a medium that permeates pores inside the membrane, is governed by the diffusion mechanism. Membrane permeation of water molecules as the driving force uses transmembrane pressure as the driving force. (3) Transmembrane pressure is less than 0.1 atm. (4) The activation energy of diffusion of the substance that permeates the membrane is 5 kcal / It means separation using a diffusion mechanism having the characteristics of a membrane permeation mechanism of less than mole. Flow separation type pore diffusion membrane separation is a membrane separation that emphasizes the flow separation effect in the above-mentioned pore diffusion membrane separation. (5) The strain rate of the liquid to be treated on the membrane surface is 10 / second or more. (6) It means pore diffusion membrane separation under the condition that the flow of the liquid to be treated on the membrane surface is laminar. Membrane fractionation is a method for separating and purifying substances from multi-component mixed solutions using membrane separation technology to fractionate three or more constituent substances continuously based on specific molecular property values. It is. The membrane separation module has a separation membrane, a space portion filled with the liquid to be treated on the primary side through the membrane, and a space portion for recovering the solution that has passed through the treated membrane, It means a structural unit of a set of apparatuses that perform membrane separation using these parts.

さらに詳しくは、本発明の膜分離用モジュールでは、通常0.1気圧以下の低い膜間差圧が膜の全面に均等に負荷され、かつ膜処理対象液が層流で該膜表面上に流れ、この流れによって生じる流動分別効果の反映である粒子(あるいは分子)の流れの中心に向かう運動(揚力)を利用する。この運動と粒子が持つブラウン運動に基づく拡散とのバランスにより粒子をその大きさに対応する膜表面からの距離に局在化させる。この局在化の存在が粒子径による分別が行われていることを意味する。すなわち流動分別により分別と濃縮、除去、隔離が膜の目詰まりなく実行できる。膜内部での物質の輸送機構は液媒体(水、油などの液体)についてはろ過機構で溶質の輸送は主として膜中の孔を満たしている媒体中の拡散機構(孔内拡散機構)である。従来技術において流動分別効果を強調した孔拡散膜分離技術を想定することはほとんど不可能である。実際、孔拡散を利用した膜分離技術の実用化例が5年前より提案されはじめた(特許文献1)       More specifically, in the membrane separation module of the present invention, a low transmembrane pressure difference of usually 0.1 atm or less is uniformly applied to the entire surface of the membrane, and the liquid to be membrane-treated flows on the membrane surface in a laminar flow. The movement (lift) toward the center of the flow of particles (or molecules), which is a reflection of the flow separation effect generated by this flow, is used. The particle is localized at a distance from the film surface corresponding to its size by a balance between this motion and diffusion based on the Brownian motion of the particle. The presence of this localization means that sorting is performed based on the particle size. That is, separation, concentration, removal, and separation can be performed without clogging of the membrane by flow separation. The transport mechanism of substances inside the membrane is a filtration mechanism for liquid media (liquids such as water and oil), and the transport mechanism of solutes is mainly the diffusion mechanism in the medium that fills the pores in the membrane (intrapore diffusion mechanism). . It is almost impossible to assume a pore diffusion membrane separation technique that emphasizes the flow separation effect in the prior art. Actually, practical examples of membrane separation technology using pore diffusion have been proposed five years ago (Patent Document 1).

膜を利用した物質の精製技術の大部分は膜ろ過法による。膜ろ過では膜間差圧を0.5~50気圧を負荷し、これを物質移動の駆動力として、主として篩効果で物質を分離する。この方法は熱や化学薬品に対して不安定で変性しやすい物質を分離精製する方法として、固液分離に適する。しかし前記の膜分画の技術の必要条件である「成分物質の3種以上を連続的に分画分取する技術」にはなりえない。なぜならば膜ろ過により膜の孔は目詰まりするため連続的に分離することは難しいし、3種以上に分離することも難しいし、また3種以上に分取することも難しいからである。膜ろ過法以外にタンパクや糖タンパクなどの生理活性物質を分離精製する方法として、超遠心分離、各種クロマトグラフィ、吸着、透析、沈殿・溶解法などがある。解析目的では少量の処理でよいのでこれらの技術で目的は達成される。しかし、大量の処理が必要な場合には沈殿・溶解法以外はむつかしい。またほとんどがバッチ処理であり連続的なプロセスとして製造ラインに組み込むのがむつかしい。       Much of the purification technology for materials using membranes is based on membrane filtration. In membrane filtration, a transmembrane pressure difference of 0.5 to 50 atm is applied, and this is used as a driving force for mass transfer to separate substances mainly by the sieve effect. This method is suitable for solid-liquid separation as a method for separating and purifying a substance that is unstable to heat and chemicals and easily denatured. However, it cannot be a “technique for continuously fractionating and fractionating three or more kinds of component substances”, which is a necessary condition for the technique of membrane fractionation. This is because the pores of the membrane are clogged by membrane filtration, so that it is difficult to separate them continuously, it is difficult to separate them into three or more types, and it is difficult to separate them into three or more types. In addition to membrane filtration methods, methods for separating and purifying physiologically active substances such as proteins and glycoproteins include ultracentrifugation, various types of chromatography, adsorption, dialysis, precipitation / dissolution methods, and the like. The objectives are achieved with these techniques since a small amount of processing is required for analysis purposes. However, when a large amount of treatment is required, it is difficult except for the precipitation / dissolution method. Most of them are batch processing, and it is difficult to incorporate them into a production line as a continuous process.

膜ろ過法が抱える問題点として上述のように孔の目詰まりする現象がある。この現象は分離機構として篩機構を利用する限り不可避である。目詰まりを防止する膜分離法として従来から透析法が採用
されていた。該透析法では物質の膜への溶解とそれに引き続く膜の実体部での拡散(溶解・拡散機構と略称)が利用される。しかし溶解・拡散機構では拡散係数が極端に小さいため、大量処理を連続的なプロセスで実用化された例はほとんどない。実用化されない最大の理由は分離速度がろ過の場合の1000分の1以下であることによる。溶解・拡散機構のこの欠点を解消した膜分離技術として新たに孔拡散法が提案された(特許文献2および非特許文献1)。
As a problem that the membrane filtration method has, there is a phenomenon in which pores are clogged as described above. This phenomenon is inevitable as long as the sieving mechanism is used as the separation mechanism. A dialysis method has been conventionally employed as a membrane separation method for preventing clogging. In the dialysis method, dissolution of a substance into a membrane and subsequent diffusion in a substantial part of the membrane (abbreviated as dissolution / diffusion mechanism) are used. However, since the diffusion coefficient is extremely small in the dissolution / diffusion mechanism, there are few examples in which large-scale processing has been put to practical use in a continuous process. The biggest reason for not being put to practical use is that the separation rate is 1/1000 or less of that in the case of filtration. A pore diffusion method has been newly proposed as a membrane separation technique that eliminates this drawback of the dissolution / diffusion mechanism (Patent Document 2 and Non-Patent Document 1).

特許文献2および非特許文献1に紹介されている孔拡散は定常孔拡散法であり、媒体(水)と溶質とのいずれもが拡散機構で移動する特徴を持ち、目詰まりの問題は完全に解消され、分離速度は溶解・拡散機構のそれの1000倍となり分離速度の遅さも解消されている。しかし、いずれの溶質もそれらの濃度は低下し、濃縮はできない。 定常孔拡散では膜間差圧は事実上零であり、そのために定常孔拡散モジュールでは一次側の液体を流動させるためのポンプはモジュールの入口と出口との流速が同じにするための連動ポンプが利用される。利用する膜が中空糸膜である場合には、一次側の液体を中空糸内部に流動させるために常に入口側の圧力は出口側の圧力以上となり定常孔拡散を中空糸膜で実施することが難しい。すなわち中空糸膜ではその内径が0.5 mmの場合では糸長として7 cm以下でないと1次側の液体を流すための圧力によりろ過での輸送が支配的となり目詰まりの問題点が現れる。また定常孔拡散では膜を介して2次側の液体をあらかじめ供給しておかなくてはならない。2次側の液体の選択の自由度があるため物質の拡散速度が設定できることの利点はあるが、1次側の液体を処理する目的では、この自由度の存在は条件設定の煩わしさを伴う。定常孔拡散法では2成分を連続的に分離し分画分取することは可能(例えば1次側液体と2次側液体とに分取するなど)であるが成分数が3種以上となると連続的な分離と分取は不可能である。      The hole diffusion introduced in Patent Document 2 and Non-Patent Document 1 is a steady hole diffusion method, and both the medium (water) and the solute move by the diffusion mechanism, and the problem of clogging is completely eliminated. As a result, the separation speed is 1000 times that of the dissolution / diffusion mechanism, and the slow separation speed is eliminated. However, any solute has a reduced concentration and cannot be concentrated. In steady hole diffusion, the transmembrane pressure difference is practically zero. Therefore, in the steady hole diffusion module, the pump for flowing the liquid on the primary side is a linked pump for making the flow velocity at the inlet and outlet of the module the same. Used. When the membrane to be used is a hollow fiber membrane, the pressure on the inlet side is always higher than the pressure on the outlet side in order to cause the liquid on the primary side to flow inside the hollow fiber. difficult. That is, when the inner diameter of the hollow fiber membrane is 0.5 mm, unless the yarn length is 7 cm or less, the transportation by filtration is dominant due to the pressure for flowing the liquid on the primary side, and the problem of clogging appears. In the case of steady hole diffusion, the secondary side liquid must be supplied in advance through the membrane. There is an advantage that the diffusion rate of the substance can be set because there is a degree of freedom in selecting the liquid on the secondary side, but for the purpose of processing the liquid on the primary side, the presence of this degree of freedom is accompanied by annoying setting of conditions. . In the steady-pore diffusion method, it is possible to continuously separate and fractionate two components (for example, fractionate into a primary side liquid and a secondary side liquid), but when the number of components becomes three or more Continuous separation and sorting is not possible.

定常孔拡散の問題点を解消し、微粒子除去を目的とした液体の処理を単純化した孔拡散法として流動分別型の孔拡散が検討され始めた。(特許文献1)1次側の液体を膜表面に平行に流しつつわずかに膜間差圧を負荷し、この膜間差圧に原因して膜を介して膜の裏面側に流出する液体を2次側の液体として利用する技術である。この技術の特徴は1次側および2次側の液体の速度を制御することにより間接的に膜間差圧を0.1気圧になるように制御している点にある。この流動分別型の孔拡散用モジュールとして層流化するための1次側の流路の確保とさらに2次側の液体の流れ速度を制御する流路と膜間差圧に耐えるための平膜の支持体が確保されなくてはならない。また膜分画の定義に示したように3成分以上が混合した溶液より成分物質の3種以上を連続的に分画分取することは出来ない。     Flow separation type hole diffusion has begun to be studied as a hole diffusion method that eliminates the problems of steady hole diffusion and simplifies liquid processing for the purpose of removing fine particles. (Patent Document 1) A slight transmembrane pressure is applied while flowing a primary side liquid parallel to the membrane surface, and the liquid flowing out to the back side of the membrane through the membrane is caused by the transmembrane pressure difference. This is a technique used as a secondary liquid. A feature of this technique is that the transmembrane pressure difference is indirectly controlled to 0.1 atm by controlling the velocity of the liquid on the primary side and the secondary side. Securing the primary flow path for laminarization as a flow separation type hole diffusion module, and further controlling the flow rate of the liquid on the secondary side and a flat film to withstand the transmembrane pressure difference The support for this must be secured. Further, as shown in the definition of membrane fractionation, it is not possible to continuously fractionate three or more kinds of component substances from a solution in which three or more ingredients are mixed.

特許公開2015-100774Patent Publication 2015-100774 特許公開2006-055780Patent Publication 2006-055780 藤岡留美子、吉田雅子、吉村知珠、山村知子、真鍋征一、福岡女子大学人間環境学部紀要、29巻、13頁〜20頁、1998年。Rumiko Fujioka, Masako Yoshida, Chizu Yoshimura, Tomoko Yamamura, Seiichi Manabe, Bulletin of Faculty of Human Environment, Fukuoka Women's University, 29, 13-20, 1998.

流動分別効果によって一次側液体内で実現されている粒子径に対応した分離の状態(粒子径が大きいほど流れの中心部に集中して存在する)をそのまま利用し、かつ定常孔拡散の特徴である孔の目詰まり無しでの物質輸送を生かした膜分画の可能な流動分別型孔拡散膜分離モジュールを提供することが本発明の目的である。流動分別効果を最大限に利用するには、膜表面での一次側液体の流れのひずみ速度が大きくなければならない。たとえば10/秒以上である。該ひずみ速度を大きくすると従来の膜モジュールでは膜間差圧が大きくなる箇所が存在する。例えばモジュール設計において膜の充填度を高めかつモジュール内での残留液量を小さくするように作られる。そのためひずみ速度を大きくするには、一次側の液体の入口と出口との静圧の差を大きくして液体の流れ速度を高めなくてはならない。入口の静圧を高めることに入口付近では膜表面に負荷される圧力が大きくなり膜ろ過による物質輸送の寄与が大きくなり膜の目詰まりが大きくなる。膜間差圧を膜全域にわたって均等に0.1気圧以下、望ましくは0.05気圧以下に維持しつつ所定のひずみ速度を与えることが可能なモジュールであることが必要である。膜への負荷圧力が局所的にも0.1気圧を超える可能性が否定できるモジュール形状が必要である。       Using the state of separation corresponding to the particle size realized in the primary liquid by the flow separation effect (the larger the particle size, the more concentrated it is in the center of the flow) as it is, and the feature of steady pore diffusion It is an object of the present invention to provide a fluid separation type pore diffusion membrane separation module capable of membrane fractionation utilizing mass transport without clogging of certain pores. In order to take full advantage of the flow fractionation effect, the strain rate of the primary liquid flow at the membrane surface must be high. For example, 10 / second or more. When the strain rate is increased, there is a portion where the transmembrane pressure difference increases in the conventional membrane module. For example, the module design can be made to increase the degree of membrane filling and to reduce the amount of liquid remaining in the module. Therefore, in order to increase the strain rate, the flow rate of the liquid must be increased by increasing the difference in static pressure between the inlet and outlet of the primary liquid. Increasing the static pressure at the inlet increases the pressure applied to the membrane surface in the vicinity of the inlet, which contributes to mass transport by membrane filtration and increases clogging of the membrane. It is necessary that the module be capable of giving a predetermined strain rate while maintaining the transmembrane pressure difference uniformly at 0.1 atm or less, desirably 0.05 atm or less throughout the entire film. A module shape that can deny the possibility that the load pressure on the membrane locally exceeds 0.1 atm is required.

孔拡散膜モジュールで高分子物質を対象にした膜分画を可能にする際に処理対象の高分子が変性することのないモジュールでなければならない。処理速度を大きくかつ処理の際に局所的な発熱やひずみの発生等によるタンパク質などの生理活性が失われない工夫、特に1次側の流路の設計が必要である。一次側の流路内での液体の流れを層流化することが膜分画では不可欠である。一定の膜間差圧での処理速度の極大化は、有効膜面積を大きくすることにより原理上は可能であるが、モジュールとしての容積を極小化する工夫が必要でなる。       The polymer to be treated must not be modified when the pore diffusion membrane module enables membrane fractionation for a polymer substance. It is necessary to increase the processing speed and to prevent loss of physiological activity such as protein due to local heat generation or distortion during the processing, in particular, the design of the flow path on the primary side. Laminarization of the liquid flow in the primary channel is essential for membrane fractionation. Although it is possible in principle to maximize the processing speed at a constant transmembrane pressure difference, it is necessary to devise a method for minimizing the module volume.

本発明モジュールの最大の特徴は一次側の液体(被処理液体)の流路を形成する壁面の大部分(30%以上)が特定の孔特性を持つ高分子多孔膜で構成されている点である。特定の孔特性として、該膜の平均孔径が分画対象の高分子の水中での拡がり(慣性半径rp)の6倍以上であり、空孔率が60%以上で膜厚が50μm以上である特性である。分画対象の分子の直径(2 × rp)の3倍以上の孔径の膜によって分子が分画される現象の発見により本発明モジュールの設計が初めて可能になった。従来の膜ろ過での分離では膜の平均孔径とほぼ同等の粒子径の粒子に対して除去性を示すことを考慮すると粒子成分の分画目的での膜の孔径設計には膜ろ過の経験はほとんど役立たないことが明らかである。孔拡散膜分離用のモジュールである前提条件にはモジュールの処理対象液が層流状態で流動していることを意味するので、流動する液体の粒子に対する作用が分画機能を与えていると解釈できる。すなわち孔拡散膜分離での流動分別効果が生かされることによって多孔膜の特定された平均孔径が定まる。分画対象の高分子の慣性半径と多孔膜の平均孔半径rmとは経験的に(1)式の関係が見出された。
rm = 2*(rp)1.1 (1) (ただし、単位はnm)
The greatest feature of the module of the present invention is that the majority (30% or more) of the wall surface forming the flow path for the primary liquid (liquid to be treated) is composed of a polymer porous membrane having specific pore characteristics. is there. As specific pore characteristics, the average pore diameter of the membrane is at least 6 times the expansion of the polymer to be fractionated in water (inertia radius rp), the porosity is 60% or more, and the film thickness is 50 μm or more. It is a characteristic. The discovery of the phenomenon in which molecules are fractionated by a membrane having a pore diameter more than 3 times the diameter (2 × rp) of the molecule to be fractionated made it possible for the first time to design the module of the present invention. Considering that separation by conventional membrane filtration shows removability for particles with a particle size approximately equal to the average pore size of the membrane, membrane filtration experience for the purpose of fractionation of particle components is not It is clear that it is almost useless. The precondition that is a module for pore diffusion membrane separation means that the liquid to be processed in the module flows in a laminar flow state, so it is interpreted that the action of the flowing liquid on the particles gives a fractionation function it can. That is, the specified average pore diameter of the porous membrane is determined by taking advantage of the flow separation effect in pore diffusion membrane separation. The relation of the formula (1) was found empirically between the inertia radius of the polymer to be fractionated and the average pore radius rm of the porous membrane.
rm = 2 * (rp) 1.1 (1) (however, the unit is nm)

本発明で採用される高分子多孔膜のもう一つの特徴は、膜素材が親水性高分子である点にある。前提とする処理対象液は高分子溶液であり、その溶液中には生理活性を持つ高分子、例えば、たんぱく質、糖タンパク質、糖鎖、核酸(DNAやRNA)が水中に溶解している場合が大部分である。孔壁面を親水性にすることにより高分子の持つ生理活性の消失を防ぐことができる。膜素材が疎水性高分子であっても膜表面のみを親水化処理することも膜素材として親水性高分子とここでは定義される。該親水性高分子多孔膜として乾湿での寸法変化が5%以下であるセルロース不織布か、または膜表面が再生セルロースの多孔膜で裏面側が合成高分子の不織布で構成される多段多層構造膜で乾湿の寸法変化が3%以下である複合膜である。ここで多段多層構造膜とは、多孔膜部分の断面を観察すると厚さ約0.2μmの層の積み重ね状態の多層が観察され層の面は多孔膜面に平行であり、該多層構造膜部分が多段に積重なった構造を持つ膜を意味する。       Another feature of the polymer porous membrane employed in the present invention is that the membrane material is a hydrophilic polymer. The target solution to be treated is a polymer solution, and there are cases in which a polymer having physiological activity, such as protein, glycoprotein, sugar chain, or nucleic acid (DNA or RNA) is dissolved in water. Mostly. By making the pore wall surface hydrophilic, loss of physiological activity of the polymer can be prevented. Even if the membrane material is a hydrophobic polymer, hydrophilic treatment only on the membrane surface is defined as a hydrophilic polymer as a membrane material here. The hydrophilic polymer porous membrane is a cellulose non-woven fabric having a dimensional change of 5% or less when dry or wet, or a multistage multilayer structure membrane composed of a porous membrane made of regenerated cellulose and a synthetic polymer non-woven fabric on the back side. The composite film has a dimensional change of 3% or less. Here, when the cross section of the porous membrane portion is observed, a multi-layered multilayered membrane is observed as a stacked layer of layers having a thickness of about 0.2 μm, and the layer surface is parallel to the porous membrane surface. It means a film with a multi-layered structure.

本発明モジュールの第二の特徴は、一次側の流路が層流での流れが実現されるような流路面を形成している点である。すなわち流路を形成するすべての壁面は平滑でなくてはならない。特に壁面を構成する該高分子多孔膜の表面の凹凸は平均孔径以下でなくてはならない。平滑な表面で形成される一次側の流路によって一次側の流れはレイノルズ数が 以下では層流となる。本モジュール内での層流状態にある一次側流路の長さは50 cm以上必要で、該流路を多数直列的に連結することは可能である。ただし該連結部の回路の断面積は一次側流路の断面積に近いことが望ましい。       The second feature of the module of the present invention is that the flow path on the primary side forms a flow path surface that realizes a laminar flow. That is, all the wall surfaces forming the flow path must be smooth. In particular, the unevenness of the surface of the polymer porous membrane constituting the wall surface must be less than the average pore diameter. Due to the flow path on the primary side formed with a smooth surface, the flow on the primary side is laminar with Reynolds numbers below. The length of the primary flow path in the laminar flow state in the module needs to be 50 cm or more, and a large number of the flow paths can be connected in series. However, it is desirable that the cross-sectional area of the circuit of the connecting portion is close to the cross-sectional area of the primary channel.

一次側流路の断面形状が円形あるいは長方形で、その断面積が0.1 平方cm以上で10平方cm以下であり、流路としては直線の組み合わせで表されることが望ましい。
一次側の液体の円筒状の流路の場合には壁部の一部に少なくとも一個の支持体が存在する。すなわち、該壁部の外表面に密着して流路方向に延びる少なくとも1個の支持体が存在することである。該支持体の形状は短冊状あるいは針金状であり、その長手方向は流路方向に直線的にある。該支持体は孔拡散領域の該流路の全域にわたって壁部の外表面に密着している。該壁部の全面積に占める密着部の面積は1/10以下である。支持体の材質は疎水性高分子でありガラス転移温度が40℃以上の無定形高分子かあるいは融点が100℃以上の結晶性高分子である。支持体の形状が短冊状である場合には、厚さが0.5 mm 以上で4 mm以下、幅1 mm以上で8 mm以下である。この支持体の存在により、一次側流路に液体が充填された際に起こる重力の作用による流路の変形および膜の変形が完全に防止されまた流路内の圧力による流路の断面形状を円形化する変形作用を確実にすることができる。
The cross-sectional shape of the primary flow path is circular or rectangular, the cross-sectional area is 0.1 square cm or more and 10 square cm or less, and the flow path is preferably expressed by a combination of straight lines.
In the case of a cylindrical liquid passage on the primary side, at least one support is present on a part of the wall. That is, there is at least one support that is in close contact with the outer surface of the wall and extends in the flow path direction. The shape of the support is a strip shape or a wire shape, and its longitudinal direction is linear in the flow path direction. The support is in close contact with the outer surface of the wall over the entire flow path of the hole diffusion region. The area of the contact portion occupying the entire area of the wall portion is 1/10 or less. The material of the support is a hydrophobic polymer and is an amorphous polymer having a glass transition temperature of 40 ° C. or higher, or a crystalline polymer having a melting point of 100 ° C. or higher. When the shape of the support is a strip, the thickness is 0.5 mm to 4 mm, and the width is 1 mm to 8 mm. The presence of this support completely prevents the deformation of the flow channel and the deformation of the membrane due to the action of gravity that occurs when the primary flow channel is filled with liquid, and the cross-sectional shape of the flow channel due to the pressure in the flow channel. It is possible to ensure the deforming action of rounding.

本発明モジュールの第三の特徴は、高分子多孔膜を介して2次側へ輸送された回収液の取り出し口が一次側流路に沿って所定の長さごとに複数個設けられていることである。すなわち処理対象の液は一次側の流路を該膜表面でのひずみ速度として例えば100/秒で流れる。該膜表面の流れに沿って所定の長さを経過するごとに該膜を介して回収される処理後の液ごとに定められた取り出し口よりモジュール外に個別に回収される。ただし本発明モジュールとは流動分別型の孔拡散膜分離部が繰り返し直列的に複数連結した部分で構成され、連結部での一次側液体の流れが孔拡散膜分離部の流れと事実上同等の層流流れとみなされる場合には該一体化された連結体も本発明モジュールと定義する。この場合には取り出し口は複数個あり、分画数に対応して取り出し口の個数は設定される。高分子水溶液を本発明の一次側流路に沿って層流状態で流動させわずかな膜間差圧を加えて膜を介しての回収液の組成を測定した結果、取り出し口が1次側液体の入口に近いほど回収液中の分子量が低く、また一次側を流れる残留液の分子量は時間とともに増加する現象を発見して本発明モジュールの一次側流路設計と2次側の回収液の取り出し口の設計とに到達した。取り出し口の間隔は20 cm以上で60 cm以下が望ましく、この間隔は分画される溶液中の成分の分離性に影響する。       The third feature of the module of the present invention is that a plurality of outlets for the recovered liquid transported to the secondary side through the polymer porous membrane are provided for each predetermined length along the primary channel. It is. That is, the liquid to be treated flows at a rate of, for example, 100 / second through the primary flow path as the strain rate on the membrane surface. Each time a predetermined length passes along the flow on the surface of the membrane, it is individually recovered out of the module through a take-out port determined for each processed liquid recovered through the membrane. However, the module of the present invention is composed of a plurality of serially connected flow separation type pore diffusion membrane separation portions, and the flow of the primary side liquid at the connection portion is substantially equivalent to the flow of the pore diffusion membrane separation portion. When considered as a laminar flow, the integrated connector is also defined as the module of the present invention. In this case, there are a plurality of outlets, and the number of outlets is set corresponding to the number of fractions. As a result of measuring the composition of the recovered liquid through the membrane by flowing the aqueous polymer solution in a laminar flow state along the primary flow path of the present invention and applying a slight transmembrane pressure difference, the take-out port was the primary liquid. The phenomenon that the molecular weight in the recovered liquid is lower as it is closer to the inlet, and the molecular weight of the residual liquid flowing on the primary side increases with time, and the primary side channel design of the module of the present invention and the extraction of the secondary side recovered liquid are found. Mouth design and reached. The distance between the outlets is preferably 20 cm or more and 60 cm or less, and this distance affects the separability of the components in the fractionated solution.

平膜を用いて本発明のモジュールを作製する際、流路の断面形状が長方形の場合には、流路を形成する一対の平行な壁面をプラスチック製の板で作製すれば、これが高分子多孔膜の支持体の役割も果たすので該多孔膜を装着するのは容易である。一次側の流路の断面形状が円である場合には以下のような困難な点が内在している。すなわち、(1)平膜を壁面にして円形断面を持つ支持体を用いずに円形断面に変形する方法、(2)流路内に液体が充填された際に発生する重力と力学的に釣り合う張力を分担する支持体と膜との接着方法が従来のモジュールでは付加できない。モジュール作製でのこの問題を以下のように解決した。まず平膜の幅を[(一次側の流路の直径)x (円周率) + 短冊状の支持体の幅x2]とし長さを流路長さに切りだす。切り出された平膜の両端面の裏面に2本の短冊状の支持体を密着させて接着する。該流路の棒に該平膜を巻き付け円形断面の形状を記憶させつつ2本の支持体を接着剤を用いて密着させることにより一本の短冊状の支持体が作製される。 When producing a module of the present invention using a flat membrane, if the cross-sectional shape of the flow path is rectangular, if a pair of parallel wall surfaces forming the flow path is made of a plastic plate, this is Since it also serves as a membrane support, it is easy to mount the porous membrane. When the cross-sectional shape of the flow path on the primary side is a circle, the following difficult points are inherent. That is, (1) A method of deforming into a circular cross section without using a support having a circular cross section with a flat membrane as a wall surface, and (2) Dynamically balancing with gravity generated when a liquid is filled in the flow path. The conventional module cannot add a method of bonding the support and the membrane sharing the tension. We solved this problem in module fabrication as follows. First, the width of the flat membrane is [(the diameter of the primary channel) x (circumference) + the width of the strip-shaped support x2], and the length is cut into the channel length. Two strip-shaped supports are adhered to and adhered to the back surfaces of both end faces of the cut flat membrane. A strip-shaped support is manufactured by winding the flat membrane around the rod of the flow path and keeping the shape of the circular cross-section in close contact with each other using an adhesive.

本発明の孔拡散膜分離用モジュールを孔拡散を実現する操作条件で使用することが膜分画を実現するのに必要である。すなわち、膜間差圧を0.05気圧以下に本モジュール内で物質輸送に寄与する平膜のすべての場所で維持することと一次側流体の流れ速度を膜表面でのひずみ速度が2/秒以上、望ましくは100/秒で維持させる。この2条件が満足されていれば、媒体(通常、水)の輸送を除いて膜ろ過の寄与をほぼ零にすることができるので孔拡散膜モジュールを利用する場合には目詰まりの進行を無視することが可能となる。該膜間差圧は液体媒体を構成する分子(通常水)のみが膜の孔中を体積流で通過するのを実現するための最重要操作条件である。       It is necessary to realize the membrane fractionation by using the pore diffusion membrane separation module of the present invention under the operating conditions for realizing the pore diffusion. That is, the transmembrane pressure difference is maintained at 0.05 atm or less in all locations of the flat membrane that contribute to mass transport within this module, and the flow rate of the primary fluid is greater than 2 / sec. Preferably it is maintained at 100 / sec. If these two conditions are satisfied, the contribution of membrane filtration can be made almost zero except for the transport of the medium (usually water), so the progress of clogging is ignored when using a pore diffusion membrane module. It becomes possible to do. The transmembrane pressure difference is the most important operating condition for realizing that only molecules (usually water) constituting the liquid medium pass through the pores of the membrane in a volume flow.

膜を利用した高分子物質の分画が本発明モジュールを孔拡散モジュールとしての操作条件で運転することで可能となった。すなわち、2次側の回収液の取り出し口では一次側の流体の入口側に近いほど分子量の小さい高分子物質が分画回収され、成分中の最大の分子量を持つ成分の高分子は一次側の濃縮溶液として回収される。また処理中での膜の目詰まりは完全に防止される。高分子量の成分の一部は分画の過程中で会合体を作る場合もあり、その場合は濃縮側で回収される。       Fractionation of a polymer material using a membrane was made possible by operating the module of the present invention under the operating conditions as a hole diffusion module. That is, at the outlet of the recovery liquid on the secondary side, a polymer substance having a lower molecular weight is fractionated and recovered closer to the inlet side of the fluid on the primary side. Collected as a concentrated solution. Also, clogging of the film during processing is completely prevented. Some high molecular weight components may form aggregates during the fractionation process, in which case they are recovered on the concentration side.

高分子物質がタンパク質のように生理活性を持つ分子である場合には特に本発明モジュールの有益さが顕著となる。すなわち、本発明モジュールを孔拡散膜分離モジュールとして適用することで、生理活性物質を多種類含む生物原料(例えば、血液やリンパ液などの体液、細胞内液、細胞外液)より生理活性を維持したまま多数の分子を分画回収できる。すなわち、バイオプロセスでの分画工程に本発明モジュールは適用可能である。本発明モジュールは有効な平膜の面積当たりの体積および重量は極小化可能である。そのため本モジュールを組み込んだ装置の設置が容易である。本モジュールを組み込んだ膜濃縮装置、微粒子除去装置、高分子分画装置、など分離・精製工程に適用できる。特に分離・除去・濃縮の対象となる物質と媒体との密度差が小さい場合には、本発明モジュールの適用によって初めて分画・分離・除去・濃縮が可能となる。具体的には水溶液中で粒子径を異にして分散しているエマルジョンなどに対しては本発明モジュールでは粒子径に対応して分画回収され、本発明モジュールの有効性が顕著である。       The benefits of the module of the present invention are particularly significant when the polymer substance is a molecule having physiological activity such as protein. That is, by applying the module of the present invention as a pore diffusion membrane separation module, biological activity is maintained from biological materials containing many kinds of physiologically active substances (for example, body fluids such as blood and lymph, intracellular fluids, extracellular fluids). Many molecules can be fractionated. That is, the module of the present invention can be applied to a fractionation process in a bioprocess. The module of the present invention can minimize the volume and weight per effective area of the flat membrane. Therefore, it is easy to install a device incorporating this module. It can be applied to separation / purification processes such as membrane concentrators, particulate removers, and polymer fractionators incorporating this module. In particular, when the density difference between the substance to be separated / removed / concentrated and the medium is small, fractionation / separation / removal / concentration is possible only by applying the module of the present invention. Specifically, for the emulsion dispersed in the aqueous solution with different particle diameters, the module of the present invention fractionates and collects corresponding to the particle diameter, and the effectiveness of the module of the present invention is remarkable.

第1図に本発明の孔拡散膜分離用モジュールを2台を直列的に連結し処理対象溶液Aを一次側液体として該液体中の成分を3種(Aの残液、回収液F1とF2)に分画する装置の概略図を示す。図中のM1とM2で示される本発明の流動分別型孔拡散膜分離モジュールに装着したセルロース系多孔膜膜の平均孔径をタンパク系の水溶液を処理する際には約70 nm に設定する。孔拡散分離膜は極細糸で作製されたポリエステルの不織布(目付け15 g/平方メートル)上にミクロ相分離法で製膜された再生セルロース多孔膜を作製することにより膜厚100 μmの平膜として利用される。多数本のチューブ(図中tで表示)はその内壁部の断面積は共通で、該モジュール内の一次側流路の断面積とほぼ同一である。エッダーHには外部の大気と気体が自由に出入りするフィルター部Fと多数のチューブtとくみ上げポンプPと連結するチューブTで構成されヘッダー部には常に処理対象液Aが補充されその水柱頭(静水圧)は一定に保たれる。それぞれのモジュールでの膜間差圧は静水圧差(すなわちヘッド差)で与えられ、膜面でのひずみ速度は一次側の流路の入口と出口でのヘッド差によって制御される。       In FIG. 1, two modules for separating pore diffusion membranes of the present invention are connected in series, the solution A to be treated is the primary liquid, and the components in the liquid are classified into three types (residual liquid A, recovered liquids F1 and F2). ) Shows a schematic diagram of an apparatus for fractionation. The average pore size of the cellulosic porous membrane membrane attached to the flow separation type pore diffusion membrane separation module of the present invention indicated by M1 and M2 in the figure is set to about 70 nm when the protein aqueous solution is treated. The pore diffusion separation membrane can be used as a flat membrane with a thickness of 100 μm by producing a regenerated cellulose porous membrane formed by microphase separation on a polyester nonwoven fabric (weight per unit of 15 g / sq.m.) Made of ultrafine yarn. Is done. A large number of tubes (indicated by t in the figure) have the same inner wall cross-sectional area, and are substantially the same as the cross-sectional area of the primary flow path in the module. The edder H is composed of a filter part F through which external air and gas can freely enter and exit, a number of tubes t, and a tube T connected to the pumping pump P. (Hydrostatic pressure) is kept constant. The transmembrane pressure difference in each module is given by the hydrostatic pressure difference (that is, the head difference), and the strain rate at the membrane surface is controlled by the head difference between the inlet and outlet of the primary channel.

本発明の流動分別型孔拡散膜分離用モジュールを多数直列的に連結することにより、膜による処理長さを設定できる。処理後の液組成は該処理長さに依存して系統的に変化する。処理後の膜を介して流出する液をそれぞれのモジュールからの出口より回収される。2個(M1とM2)直列的に連結装填した孔拡散分離装置の概略図が図1でありこの場合の処理後の回収液がF1およびF2である。回収液F1の組成はF2の組成に比較して分子量の小さい成分が豊富に存在する。M1とM2とを連結したモジュールを作製することは可能であり、該モジュールでは回収液の出口の個数は2個である。該2種のモジュールで使用される平膜の平均孔径は同一の場合、あるいは流路に沿って順次大きくする場合がある。膜間差圧は静水圧で与えられる。静水圧は装置上での高さで制御され流路の断面積が均等であるため常に一定である。静水圧を与える駆動力は図中のポンプPである。膜を介して拡散してくる溶液はF1およびF2で回収される。一次側の液体の流速は一次側流路の入口と出口のヘット差によって制御される。流路を形成する平膜は平均孔径が80 nmの場合には膜厚は100 μmで空孔率は75 %でありあらかじめ水中でのバブルポイントが0.2気圧以上であることが確認されている。モジュールとしてのバブルポイントは0.1気圧以上でなくてはならない。   By connecting a number of flow separation type pore diffusion membrane separation modules of the present invention in series, the treatment length by the membrane can be set. The liquid composition after the treatment changes systematically depending on the treatment length. The liquid flowing out through the membrane after the treatment is collected from the outlet from each module. FIG. 1 is a schematic view of a pore diffusion separation apparatus in which two (M1 and M2) are connected in series, and the recovered liquid after treatment in this case is F1 and F2. The composition of the recovered liquid F1 is rich in components having a small molecular weight compared to the composition of F2. It is possible to produce a module in which M1 and M2 are connected. In this module, the number of outlets of the recovered liquid is two. The average pore diameter of the flat membranes used in the two types of modules may be the same or may increase sequentially along the flow path. Transmembrane pressure is given by hydrostatic pressure. The hydrostatic pressure is always constant since it is controlled by the height on the apparatus and the cross-sectional area of the flow path is uniform. The driving force that gives the hydrostatic pressure is the pump P in the figure. The solution that diffuses through the membrane is collected at F1 and F2. The flow rate of the primary liquid is controlled by the head difference between the inlet and outlet of the primary channel. When the average pore diameter is 80 nm, the flat membrane forming the channel has a thickness of 100 μm and a porosity of 75%, and it has been confirmed in advance that the bubble point in water is 0.2 atm or higher. The bubble point as a module must be above 0.1 atm.

平均孔径70 nmのセルロース製不織布(厚さ80 μm)平膜を用いて幅4mm高さ3mmの長方形形断面の一次側液体の流路で上下の平行な壁面を該平膜で、左右の平行な壁面を膜の支持体としてポリカーボネート製の短冊状(厚さ0.5 mm、幅3 mm)で長さ100 cmに設計する。図2のように流動分別効果を強調した孔拡散膜モジュール2台を直結に組み入れて一体化した本発明モジュールを組み込んだ装置を作製した。ただし該モジュールは2種の連結ではなく1種のモジュールでの回路上で一体化され回収液の取り出し口は2個あった。処理用の液体として牛の胸腺のDNA(SIGMA-ALDRICH社製、分子量約2000万)を10 mM Tris-HCl緩衝液に0.16 wt%で溶解した水溶液(15℃)と卵白アルブミン1wt%混合溶解した溶液を採用した。膜間差圧0.01気圧、膜面におけるひずみ速度100/秒、処理速度LMH=0.15であった。本モジュールの処理による膜処理後のF1のDNA濃度は0.01wt%アルブミン濃度は0.15wt%,F2の組成はDNAの濃度で0.05wt%、アルブミン濃度は0.12wt%であった。処理を継続するとそれぞれの成分の濃度は徐々に増加し、最終的にはF1の組成でDNAは0.02wt%、アルブミン濃度は0.3wt%にF2の組成ではDNAは0.15wt%、アルブミンは0.18wt%となった。残液(濃縮液)中のDNAは最終的には1.8wt%、アルブミン濃度は0.3wt%に達していた。
ほぼ同一の孔特性を持つ平膜M1、M2を組み入れた孔拡散膜モジュールが1次側液体の下部から上部へ向かう流れ(図中の右から左へ向かうソウリュ)によって流動分別効果が(株)のM1と上部のM2とで異なった効果をもたらす。この効果により回収液F1の組成中の低分子量の高分子物質の濃度がF2からの回収液中の濃度より高い。処理後の液体(濃縮液)は濃縮槽に戻り再びポンプPでヘッダーH内に揚げられる。一次側液体の流れ速度はヘッダーの水位とモジュールの一次側の流路の大気圧への開放部での推移の差Δhによって決定される。回収液F1とF2との速度の和と処理前の液体の流れ速度Jiとが一致するば定常状態で連続的に高分子量成分の濃縮が進む。
Cellulose non-woven fabric (thickness 80 μm) with average pore diameter of 70 nm is used, and the upper and lower parallel walls are parallel to the left and right parallel with the flow path of the primary side liquid in the rectangular cross section with a width of 4 mm and a height of 3 mm. With a simple wall as a membrane support, a polycarbonate strip (thickness 0.5 mm, width 3 mm) is designed to be 100 cm long. As shown in FIG. 2, a device incorporating the module of the present invention in which two pore diffusion membrane modules emphasizing the flow separation effect were integrated by direct connection was produced. However, the module was integrated on the circuit of one type of module instead of two types of connection, and there were two recovery liquid outlets. As a treatment liquid, bovine thymus DNA (manufactured by SIGMA-ALDRICH, molecular weight of about 20 million) dissolved in 10 mM Tris-HCl buffer solution at 0.16 wt% (15 ° C) and ovalbumin 1 wt% were mixed and dissolved. The solution was adopted. The transmembrane pressure difference was 0.01 atm, the strain rate on the membrane surface was 100 / sec, and the treatment rate was LMH = 0.15. The F1 DNA concentration after membrane treatment by this module treatment was 0.01 wt% albumin concentration 0.15 wt%, F2 composition was DNA concentration 0.05 wt%, and albumin concentration 0.12 wt%. When the treatment is continued, the concentration of each component gradually increases. Finally, the composition of F1 is 0.02 wt% for DNA, the albumin concentration is 0.3 wt%, and the composition of F2 is 0.15 wt% for DNA and 0.18 wt% for albumin %. The DNA in the remaining liquid (concentrated liquid) finally reached 1.8 wt% and the albumin concentration reached 0.3 wt%.
A pore diffusion membrane module incorporating flat membranes M1 and M2, which have almost the same pore characteristics, has a flow separation effect due to the flow from the lower side to the upper side of the primary liquid (from right to left in the figure). Different M1 and upper M2 have different effects. Due to this effect, the concentration of the low molecular weight polymer substance in the composition of the recovered liquid F1 is higher than the concentration in the recovered liquid from F2. The treated liquid (concentrated liquid) returns to the concentration tank and is again pumped into the header H by the pump P. The flow rate of the primary liquid is determined by the difference Δh between the header water level and the transition of the module on the primary side flow path to the atmospheric pressure. When the sum of the velocities of the recovered liquids F1 and F2 matches the liquid flow speed Ji before the treatment, the high molecular weight component is continuously concentrated in a steady state.

膜を利用した分離、濃縮、除去、隔離の機能を要求される産業で、成分を分画回収されている産業で利用できる。典型的には血漿分画工程あるいは体液の分画工程に適用される。農業での濃縮、例えば肥料(液体)成分中での微粒子成分の濃縮による長期安定する飼糧の製造にも利用できる。醗酵業での加熱滅菌に代替する微生物除去に適用し、新しい生製品の製造(例、生プラセンタの製造)に利用できる。大きさに基づく分離。分画用途に利用した、リサイクル分野(例、絶縁油のリサイクル、天ぷら油のリサイクル)に利用できる。天然資源の有効利用のための有害物の除去と分離(例、雪解け水より精製水の製造、地下水からのヒ素除去など)など一般産業分野での省資源化のための基本技術を提供できる。       It can be used in industries where separation, concentration, removal and sequestration functions using membranes are required, and in industries where components are fractionated. Typically, it is applied to a plasma fractionation process or a body fluid fractionation process. It can also be used for the production of stable feeds for a long period of time by concentration in agriculture, for example, concentration of particulate components in fertilizer (liquid) components. It can be applied to the removal of microorganisms as an alternative to heat sterilization in the fermentation industry, and can be used for the production of new raw products (eg, production of raw placenta). Separation based on size. It can be used in the recycling field (eg, insulating oil recycling, tempura oil recycling) used for fractionation. It can provide basic technology for resource saving in general industrial fields such as removal and separation of harmful substances for effective use of natural resources (eg, production of purified water from snowmelt, arsenic removal from groundwater, etc.).

2個のモジュールを直列的に連結した組み込みモジュールを利用した分画用分離装置の概略図。The schematic diagram of the separation apparatus for fractionation using the built-in module which connected two modules in series. 一次側液体の流路の長さを100 cm以上に長くした本発明モジュールを組み込んだ分画用分離装置の典型例Typical example of a separation apparatus for fractionation incorporating the module of the present invention in which the length of the flow path of the primary liquid is increased to 100 cm or more

A;孔拡散処理対象液、C;濃縮液貯留槽、f;大気と通じる出口部に設置された除菌フィルター、F1;2次側の液体(膜を透過した液体成分)の第一画分回収口、F2;2次側の液体(膜を透過した液体成分)の第二画分回収口、H;一次側の液体の流れと膜間差圧を与えるヘッダー、Δh;一段目の分画工程でのモジュールM1を流れる液体の流動の駆動力となる水位差でヘッダ内の水位とモジュール内一次側流れの出口部での水位との差、Ji;被処理液体の濃縮液貯留槽への流入速度、M1;1段目の分画工程で使用されるモジュール、図2では1次側液体は下部より上部に向かって流動する、M2;2段目の分画工程で使用されるモジュール、P;濃縮用タンク内の被処理溶液をヘッダーHに輸送するためのポンプ。t;一次側液体の流れを形成するチューブ(図1)でその内径は一次側流路の断面積とほぼ等しい断面を与えるように設計されている。


A: pore diffusion treatment target liquid, C: concentrate storage tank, f: sterilization filter installed at the outlet communicating with the atmosphere, F1: first fraction of secondary side liquid (liquid component that has passed through the membrane) Recovery port, F2; secondary fraction recovery port for liquid on the secondary side (liquid component that has passed through the membrane), H; header that gives the flow of the primary side liquid and transmembrane pressure difference, Δh; first-stage fractionation The difference between the water level in the header and the water level at the outlet of the primary flow in the module due to the water level difference that becomes the driving force of the flow of the liquid flowing through the module M1 in the process, Ji; Inflow velocity, M1; module used in the first-stage fractionation process, in FIG. 2, the primary liquid flows from the lower part toward the upper part, M2; module used in the second-stage fractionation process, P: A pump for transporting the solution to be treated in the concentration tank to the header H. t: A tube (FIG. 1) that forms the flow of the primary liquid, and the inner diameter thereof is designed to give a cross section approximately equal to the cross sectional area of the primary flow path.


Claims (3)

高分子溶液中に溶解している成分の中での高分子物質を大きさに基づいて分離する孔拡散膜分離モジュールにおいて、膜分画可能なモジュールで、
(1) 平均孔径が分画対象の高分子の水中での拡がり(慣性半径rp)の6倍以上で空孔率が60%以上、膜厚が50μm以上の高分子多孔膜が装填され、
(2) 該多孔膜が膜モジュールの一次側の流路の一部または全部を構成し、該多孔膜の表面の凹凸は平均孔径以下であり、該モジュール内での該流路の長さは50 cm以上であり、かつ
(3) 膜を介して2次側へ輸送された回収液の取り出し口が、一次側の流路に沿って計測された所定の長さの該膜ごとに設定され、取り出し口の相互は独立し、かつ複数個存在することを特徴とする高分子を分画する孔拡散膜分離用モジュール。
In the pore diffusion membrane separation module that separates the polymer substance in the components dissolved in the polymer solution based on the size, a module capable of membrane fractionation,
(1) A polymer porous membrane having an average pore diameter of 6 times or more of the polymer to be fractionated in water (inertia radius rp), a porosity of 60% or more, and a film thickness of 50 μm or more is loaded.
(2) The porous membrane constitutes part or all of the flow path on the primary side of the membrane module, the irregularities on the surface of the porous film are less than the average pore diameter, and the length of the flow path in the module is (3) An outlet for the recovered liquid transported to the secondary side through the membrane is set for each membrane of a predetermined length measured along the flow path on the primary side. A pore diffusion membrane separation module for fractionating a polymer, characterized in that a plurality of outlets are independent from each other and a plurality of outlets are present.
請求項1において平膜は親水性高分子多孔膜あるいは親水性高分子繊維の不織布であり、乾湿での寸法変化が5%以下であるセルロース不織布か、または再生セルロースが50%以上の素材で構成されかつ該寸法変化が10%以下である多段多層構造膜であることを特徴とするモジュール。       2. The flat membrane according to claim 1 is a hydrophilic polymer porous membrane or a nonwoven fabric of hydrophilic polymer fibers, and is composed of a cellulose nonwoven fabric whose dimensional change by drying and wetting is 5% or less, or a material containing 50% or more of regenerated cellulose. And a module having a multistage multilayer structure film, the dimensional change of which is 10% or less. 請求項1あるいは2において、一次側流路の断面形状が円形状あるいは長方形でその断面積が0.1平方センチメートル以上、10平方センチメートル未満であり、該流路の所定の長さが20 cm以上で60 cm未満であることを特徴とするモジュール。

3. The primary channel according to claim 1 or 2, wherein the cross-sectional shape of the primary channel is circular or rectangular, the cross-sectional area is 0.1 square centimeter or more and less than 10 square centimeters, and the predetermined length of the channel is 20 cm or more and less than 60 cm. A module characterized by being.

JP2016152927A 2016-08-03 2016-08-03 Module for pore diffusion membrane separation to fractionate component molecules in polymer solution Active JP6534068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016152927A JP6534068B2 (en) 2016-08-03 2016-08-03 Module for pore diffusion membrane separation to fractionate component molecules in polymer solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016152927A JP6534068B2 (en) 2016-08-03 2016-08-03 Module for pore diffusion membrane separation to fractionate component molecules in polymer solution

Publications (2)

Publication Number Publication Date
JP2018020286A true JP2018020286A (en) 2018-02-08
JP6534068B2 JP6534068B2 (en) 2019-06-26

Family

ID=61165060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016152927A Active JP6534068B2 (en) 2016-08-03 2016-08-03 Module for pore diffusion membrane separation to fractionate component molecules in polymer solution

Country Status (1)

Country Link
JP (1) JP6534068B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138504A (en) * 1984-12-10 1986-06-26 Toyo Roshi Kk Membrane filter comprising regenerated cellulose
JPS61296112A (en) * 1985-06-25 1986-12-26 Asahi Chem Ind Co Ltd Cuprammonium cellulose hollow yarn membrane
JPS621403A (en) * 1985-06-25 1987-01-07 Asahi Chem Ind Co Ltd Cuprammonium cellulose porous membrane with good dimensional stability
JP2008260001A (en) * 2007-04-14 2008-10-30 Seiichi Manabe Method for membrane isolation, membrane removal and membrane concentration of fifteen nanometer or smaller particulate
JP2016013501A (en) * 2014-07-01 2016-01-28 聡 竹下 PD membrane separation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138504A (en) * 1984-12-10 1986-06-26 Toyo Roshi Kk Membrane filter comprising regenerated cellulose
JPS61296112A (en) * 1985-06-25 1986-12-26 Asahi Chem Ind Co Ltd Cuprammonium cellulose hollow yarn membrane
JPS621403A (en) * 1985-06-25 1987-01-07 Asahi Chem Ind Co Ltd Cuprammonium cellulose porous membrane with good dimensional stability
JP2008260001A (en) * 2007-04-14 2008-10-30 Seiichi Manabe Method for membrane isolation, membrane removal and membrane concentration of fifteen nanometer or smaller particulate
JP2016013501A (en) * 2014-07-01 2016-01-28 聡 竹下 PD membrane separation device

Also Published As

Publication number Publication date
JP6534068B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
Mohammad et al. Ultrafiltration in food processing industry: review on application, membrane fouling, and fouling control
Cui et al. Fundamentals of pressure-driven membrane separation processes
JP7432511B2 (en) Tangential flow depth filtration system and filtration method using the same
Cui et al. The use of gas bubbling to enhance membrane processes
EP2092974B1 (en) A method and apparatus for membrane separation applying concentration polarization
US5846427A (en) Extra-lumenal crossflow plasmapheresis devices and method of use thereof
AU2020343312B2 (en) Scale-down tangential flow depth filtration systems and methods of filtration using same
JP6343589B2 (en) Flow separation type pore diffusion membrane separation module
JP2013237016A (en) Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
US20240238731A1 (en) Tangential flow filtration systems and methods
Rios et al. Basic transport mechanism of ultrafiltration in the presence of fluidized particles
JP6422032B2 (en) Flow separation type pore diffusion membrane separation module for concentration
Ripperger Microfiltration
JP6534068B2 (en) Module for pore diffusion membrane separation to fractionate component molecules in polymer solution
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP6452049B2 (en) A flow separation type pore diffusion membrane separation module comprising a flow path having a circular cross section.
JP2022182361A (en) Separating/purifying method and separating/purifying apparatus of micro useful substance
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
JP2020028819A (en) Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same
Amar et al. Erythrocyte fouling on micro-engineered membranes
WO2024024336A1 (en) Purifying and concentrating device for liquid comprising minute useful substance and method for producing purified and concentrated liquid of minute useful substance using same
JP2009136744A (en) Hole diffusion-filtering module mounted with multistaged multilayered structure membrane
JP2013252478A (en) Treatment method and treatment device of oil component-containing drainage
Gupta et al. Membrane Process for the Water Purification CFD Approach
JP2009095702A (en) Membrane separation method based on pore diffusion and filtration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190516

R150 Certificate of patent or registration of utility model

Ref document number: 6534068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250