JP6422032B2 - Flow separation type pore diffusion membrane separation module for concentration - Google Patents

Flow separation type pore diffusion membrane separation module for concentration Download PDF

Info

Publication number
JP6422032B2
JP6422032B2 JP2015216581A JP2015216581A JP6422032B2 JP 6422032 B2 JP6422032 B2 JP 6422032B2 JP 2015216581 A JP2015216581 A JP 2015216581A JP 2015216581 A JP2015216581 A JP 2015216581A JP 6422032 B2 JP6422032 B2 JP 6422032B2
Authority
JP
Japan
Prior art keywords
membrane
flow
module
flat
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015216581A
Other languages
Japanese (ja)
Other versions
JP2017087097A (en
Inventor
健児 佐々木
健児 佐々木
征一 真鍋
征一 真鍋
保武 中川
保武 中川
Original Assignee
日本特殊膜開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊膜開発株式会社 filed Critical 日本特殊膜開発株式会社
Priority to JP2015216581A priority Critical patent/JP6422032B2/en
Publication of JP2017087097A publication Critical patent/JP2017087097A/en
Application granted granted Critical
Publication of JP6422032B2 publication Critical patent/JP6422032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は平膜の孔拡散機構を利用して固液の分離を行う孔拡散式平膜分離モジュール、特に流動分別機構が加わった膜分離モジュールで濃縮分野での適用に適する膜モジュールに関する。被処理液体中に分散する粒子に働く壁面から遠ざかるように作用する力(軸集中力)を利用するモジュールに関する。該液体の層流流れに原因して生じる速度勾配が原因で粒子には流れとは垂直方向に生じる力が作用する。その結果として液体中の粒子は壁面を遠ざかる。   The present invention relates to a pore diffusion type flat membrane separation module that performs solid-liquid separation using a pore diffusion mechanism of a flat membrane, and more particularly to a membrane module that is suitable for application in the concentration field by a membrane separation module to which a flow separation mechanism is added. The present invention relates to a module that uses a force (axial concentration force) acting so as to move away from a wall surface acting on particles dispersed in a liquid to be treated. Due to the velocity gradient caused by the laminar flow of the liquid, a force generated in a direction perpendicular to the flow acts on the particles. As a result, the particles in the liquid move away from the wall.

液体中に溶解あるいは分散した物質を分離精製する膜分離用のモジュールには、利用する膜の形状に対応して中空糸膜モジュール,管状膜モジュール、平膜型膜モジュールなどがある。いずれも膜間差圧を1気圧以上負荷し物質の輸送の駆動力は膜間差圧を主とするろ過分離用のモジュールである。そのため膜分離モジュールの機能は、液体中に分散する特定粒子(例えば、細菌やウイルス)あるいは溶解する高分子量物質(例えば、タンパク複合体など)を除去する点にある。さらにこれらのモジュールでは負荷される圧力に耐える構造をさらに液漏れ対策を取らざるをえない。平膜の場合には膜を保持するため、平膜の一部と平膜の支持体とを樹脂などで接着固定している特に有効膜面積が0.1平方メートルを超える場合には、膜間差圧に耐えれる支持体や容器(ハウジング)はステンレス鋼や金属製となりモジュールの形態などの自由度を失う。あるいは中空糸膜の場合のように膜の一部と容器とを樹脂などで接着した円筒型のモジュールとなる。     Membrane separation modules that separate and purify substances dissolved or dispersed in a liquid include hollow fiber membrane modules, tubular membrane modules, and flat membrane membrane modules according to the shape of the membrane to be used. In either case, the pressure difference between the membranes is 1 atm or more, and the driving force for transporting the substance is a module for filtration separation mainly using the transmembrane pressure difference. Therefore, the function of the membrane separation module is to remove specific particles (for example, bacteria and viruses) dispersed in the liquid or high molecular weight substances (for example, protein complexes) to be dissolved. Furthermore, in these modules, a structure that can withstand the applied pressure must be further taken against liquid leakage. In the case of a flat membrane, in order to hold the membrane, a part of the flat membrane and the flat membrane support are bonded and fixed with resin etc. Especially when the effective membrane area exceeds 0.1 square meters, the transmembrane pressure difference Supports and containers (housings) that can withstand heat are made of stainless steel or metal and lose the degree of freedom in the form of modules. Alternatively, as in the case of a hollow fiber membrane, a cylindrical module in which a part of the membrane and the container are bonded with a resin or the like is obtained.

膜ろ過法では、膜間差圧の負荷は不可避であり、この差圧は通常1気圧を超える。平膜モジュールの場合ではこの差圧はモジュールの最外枠で支えられる。そのため最外枠には補強用の材料が加わる。この補強用の材料に加わる張力は少なくとも(膜間差圧・平膜の面積)で該材料は設計上ではこれの数倍の力に耐えなくてはならない。   In the membrane filtration method, the transmembrane pressure differential is unavoidable, and this differential pressure usually exceeds 1 atm. In the case of a flat membrane module, this differential pressure is supported by the outermost frame of the module. Therefore, a reinforcing material is added to the outermost frame. The tension applied to the reinforcing material is at least (transmembrane pressure difference / flat membrane area), and the material must withstand several times the force in design.

膜ろ過法では膜間差圧を駆動力として液体の体積流れを利用する。液体中に溶解あるいは分散して成分を膜の孔で篩効果で膜内部に捕捉する。除去対象物が膜内部の孔に目詰まりするため、膜の再生処理がむつかしくそのため膜ろ過を想定したモジュールはシングルユース(使い捨て)となるのが一般的である。当然、膜内部に濃縮された成分を回収することも難しい。  In the membrane filtration method, the volumetric flow of liquid is used with the transmembrane pressure as the driving force. It dissolves or disperses in the liquid, and the components are trapped inside the membrane by the sieving effect through the pores of the membrane. Since the object to be removed is clogged in the pores in the membrane, the membrane regeneration process is difficult, and therefore a module that assumes membrane filtration is generally single-use (disposable). Of course, it is also difficult to recover the components concentrated in the membrane.

膜ろ過法での粒子除去率では、膜の孔径と除去対象粒子の粒子径との関係に依存しているため、除去すべき粒子の大きさが小さくなると、適用される膜の平均孔径は小さくしなくてはならない。すなわちろ過では除去対象粒子に対応して膜モジュールの膜の平均孔径は選択される。粒子の除去については膜の孔構造を設計することによりその性能を著しく高めることは可能である。この可能性を高めると膜中に捕捉された濃縮した粒子を回収することは不可能となる。すなわち膜濾過法では、粒子除去性能を高めることと粒子の濃縮回収率を高めることとはトレードオフの関係にあった。 Since the particle removal rate in the membrane filtration method depends on the relationship between the pore size of the membrane and the particle size of the particles to be removed, the average pore size of the applied membrane decreases as the size of the particles to be removed decreases. I have to do it. That is, in filtration, the average pore size of the membrane of the membrane module is selected corresponding to the particles to be removed. The performance of particle removal can be significantly enhanced by designing the pore structure of the membrane. Increasing this possibility makes it impossible to recover the concentrated particles trapped in the membrane. That is, in the membrane filtration method, increasing the particle removal performance and increasing the concentration recovery rate of the particles have a trade-off relationship.

濾過用モジュールとしては膜の装填や取り外しが可能な組み立て式の方が望ましいが耐圧性の要求のためモジュールとして複雑でかつ力学的に頑強となる。また膜の孔径には、膜によるふるい効果を利用する膜ろ過法を想定した膜モジュールは膜の平均孔径を固定したモジュールが一般的である。膜モジュールを用いた分子や粒子の濃縮の開発研究は濾過法を前提に検討されてきた。しかし膜濾過法の不可避な現象としての膜ファーリング対策のいずれもが濃縮目的に合わない方法であった。 As the filtration module, an assembly type in which a membrane can be loaded and removed is desirable, but the pressure resistance is required, and the module is complicated and mechanically robust. The membrane pore size of the membrane is generally a module in which a membrane filtration method utilizing the sieving effect of the membrane is assumed, and a module having a fixed average pore size of the membrane. Development research on the concentration of molecules and particles using membrane modules has been studied on the premise of filtration methods. However, none of the measures against membrane furing as an inevitable phenomenon of membrane filtration methods is a method that does not meet the purpose of concentration.

膜ろ過での問題点である膜ファーリングを一部解消する方法として平行ろ過やタンデンシャルフローろ過、クロスフローろ過と呼ばれるろ過法がある。このろ過方式では膜表面に堆積するゲル層(あるいは高分子量物質の濃厚な濃度分極層)を流れの力によってこの層の除去あるいは撹拌効果で分極を抑える方法である。これらの方法でも膜間差圧はろ過として体積流れのろ速を与えるために必要な圧力(通常1気圧以上)が負荷されるので、膜中の孔の目詰まりは常に起こる。ろ過対象液がモジュール内を流動するため通常のデッドエンドのモジュールに比して平行ろ過用モジュールの方がより耐圧性が要求される。膜中の孔の目詰まり成分が濃縮すべき成分であるのでこの場合でも膜による濃縮は回収率の低さと回収コストの高さのため実用化されることはなかった。 There are filtration methods called parallel filtration, tangential flow filtration, and cross flow filtration as a method for partially eliminating membrane furling, which is a problem in membrane filtration. In this filtration method, the gel layer (or a high concentration polarization layer of a high molecular weight substance) deposited on the membrane surface is a method of suppressing polarization by removing the layer or stirring effect by the force of flow. Even in these methods, since the transmembrane pressure is loaded with a pressure (usually 1 atm or more) necessary to give the filtration speed of the volume flow as filtration, clogging of pores in the membrane always occurs. Since the liquid to be filtered flows in the module, the parallel filtration module is required to have higher pressure resistance than a normal dead-end module. Since the clogging component of the pores in the membrane is a component to be concentrated, even in this case, the concentration by the membrane has not been put into practical use due to the low recovery rate and the high recovery cost.

実用化された膜濃縮法として逆浸透膜を用いて膜間差圧を数十気圧で水分のみを除去して濃縮する方法がある。膜には物理的な孔は観察出来ないいわば非多孔膜が採用され濃縮対象成分の大きさは膜表面のみで捕捉あるいは濃度分極を起す程度の大きさである。この方法では特定成分のみを濃縮することは不可能である。 As a membrane concentration method that has been put to practical use, there is a method of using a reverse osmosis membrane to concentrate only by removing moisture at a transmembrane pressure difference of several tens of atmospheres. So-called non-porous membranes are used so that no physical pores can be observed in the membrane, and the concentration of the concentration target component is such that only the membrane surface is trapped or concentration-polarized. In this method, it is impossible to concentrate only specific components.

本発明でいう平膜とは、膜の厚さは0.2 μm以上で100 μm未満であり、膜平面の面積と膜厚の2乗との比が10000以上である。すなわち本発明モジュールで利用される平膜の形状は紙のような2次元の平面状で近似される。該モジュールでは孔拡散が適用されるため負荷される膜間差圧は低い。
例えば膜間差圧は0.05気圧以下である。そのため膜厚は濾過モジュールに利用される膜に比較して薄い。平膜の膜厚とは平膜の物理的な見掛けの厚さではなく光学顕微鏡や電子顕微鏡で観察される物質の透過性を支配している部分の厚さを意味する。本発明でいう孔拡散モジュールとは膜間差圧が0.05気圧以下で膜表面での被処理液のながれのひずみ速度が2/秒以上の層流下で起る孔内拡散機構を利用した膜分離モジュールを意味する。
The flat film referred to in the present invention has a film thickness of 0.2 μm or more and less than 100 μm, and the ratio of the area of the film plane to the square of the film thickness is 10,000 or more. That is, the shape of the flat film used in the module of the present invention is approximated by a two-dimensional flat shape such as paper. In this module, since the pore diffusion is applied, the transmembrane pressure difference applied is low.
For example, the transmembrane pressure is 0.05 atm or less. Therefore, the film thickness is thinner than the film used for the filtration module. The film thickness of the flat film means not the physical apparent thickness of the flat film but the thickness of the part that controls the permeability of the substance observed with an optical microscope or an electron microscope. The pore diffusion module referred to in the present invention is a membrane separation using a pore diffusion mechanism that occurs under laminar flow where the transmembrane differential pressure is 0.05 atm or less and the strain rate of the flow of liquid to be treated on the membrane surface is 2 / sec or more. Means module.

温和な条件で粒子の除去のみでなく特定物質の分離や濃縮が可能な膜分離は、特にバイオテクノロジー分野での実用化への期待が高い。熱を加えることなく分離するため生理活性が維持できる。熱を掛けない濃縮はバイオ医薬品の製造や化粧品・食品の製造工程での精製工程で不可欠になりつつある。また熱を掛けない濃縮技術として遠心分離に替わる技術としての期待も高い。感染性微粒子の除去技術としてこれらの分野では膜濾過による除去が現在では不可欠となっている。膜濾過と同様に孔拡散膜分離技術は除去のみでなく成分分子の分離あるいは濃縮技術としての実用化が始まっている。   Membrane separation that allows separation and concentration of specific substances as well as removal of particles under mild conditions is highly expected to be put to practical use particularly in the biotechnology field. Physiological activity can be maintained because of separation without applying heat. Concentration without applying heat is becoming indispensable in the manufacturing process of biopharmaceuticals and in the manufacturing process of cosmetics and foods. In addition, there is high expectation as a technology that replaces centrifugation as a concentration technology that does not apply heat. In these fields, removal by membrane filtration is now indispensable as a technique for removing infectious fine particles. Similar to membrane filtration, pore diffusion membrane separation technology has been put into practical use not only as a removal method but also as a separation or concentration technology for component molecules.

本発明中の膜分離技術とは、
(1)膜の表裏面での圧力差(膜間差圧)を物質(流体としての流れを起す)輸送の駆動力とし、流体力学的な流れ(体積流れ)を起し、孔径と粒子径との関係で篩効果で粒子を除去する膜濾過技術と、
(2)膜を介した2種の液体間での濃度差を物質移動の駆動力とし、流体の体積流れは起らずに物質を構成する分子の持つ熱運動性(いわゆるブラウン運動)の差を利用した孔内での拡散速度の差を利用した分離、および膜中の孔の孔径と粒子径との関係で生じる篩効果、さらに膜表面での処理対象液の層流としての流れが原因して起る流動分別効果を利用して分離する孔拡散技術(定常法孔拡散技術)あるいは流体を構成する媒体のみをわずかな膜間差圧で体積流れで流動させながら膜の内部では定常法孔拡散技術を利用する“孔拡散”技術(以降、定常法孔拡散技術と“孔拡散”技術とを区別せずに単に孔拡散技術と略称する)と、
(3)半透膜を隔てた濃度差を物質移動の駆動力として、膜および物質の親和力差と、膜を構成する素材高分子の熱運動性(ミクロブラウン運動)で生じる自由体積の空間部の大きさと、物質の分子の大きさとの差で分子分離する拡散透析技術(従来の透析や逆浸透)と、
を意味する。
What is membrane separation technology in the present invention?
(1) The pressure difference (transmembrane pressure difference) between the front and back surfaces of the membrane is used as the driving force for transporting the substance (flowing as a fluid), and a hydrodynamic flow (volume flow) is generated. Membrane filtration technology to remove particles by sieving effect in relation to
(2) The concentration difference between the two liquids through the membrane is used as the driving force for mass transfer, and the difference in the thermal motility (so-called Brownian motion) of the molecules that make up the material without the fluid volume flow. Caused by separation using the difference in the diffusion rate in the pores using the sieving effect, the sieving effect caused by the relationship between the pore size and the particle size of the pores in the membrane, and the laminar flow of the liquid to be treated on the membrane surface Pore separation technology (steady method pore diffusion technology) that separates by utilizing the flow separation effect that occurs in this way, or the stationary method inside the membrane while only the medium that makes up the fluid flows in a volumetric flow with a slight transmembrane pressure difference “Hole diffusion” technology using pore diffusion technology (hereinafter simply referred to as “hole diffusion technology without distinguishing between steady-state pore diffusion technology and“ hole diffusion ”technology)”;
(3) Free volume space created by the difference in affinity between the membrane and the substance and the thermal motility (micro-Brownian motion) of the material polymer constituting the membrane, using the concentration difference across the semipermeable membrane as the driving force for mass transfer Diffusion dialysis technology (conventional dialysis and reverse osmosis) that separates molecules by the difference between the size of the substance and the size of the molecule of the substance,
Means.

特許公開2006−055780Patent Publication 2006-0555780 特許公開 2014−24064Patent Publication 2014-24064 K. Kamide, S. Manabe, Polymer J., 13(No.5), pp459-479(1981)K. Kamide, S. Manabe, Polymer J., 13 (No. 5), pp459-479 (1981)

本発明では熱エネルギーを必要としない膜による濃縮方法を実現する膜濃縮モジュールを提供する。膜間差圧の負荷が不可欠な膜濾過法を利用せずに(1)孔内拡散(特許文献1)と、(2)膜内の孔によるふるい機構と、(3)被処理対象液の膜表面のひずみ速度が原因で生じる流動分別機構(非特許文献1に定義されている)とを利用する。すなわち孔拡散を実現する流動分別型の濃縮用孔拡散膜分離モジュールを提供することを目的とする。該モジュールを用いることにより、膜の孔の目詰まりを防止しつつ、粒子成分のみでなく溶解する分子の濃縮・回収も可能となる。さらに膜モジュールの再生も可能となる。   The present invention provides a membrane concentration module that realizes a membrane concentration method that does not require thermal energy. Without using a membrane filtration method in which the load of the transmembrane pressure is indispensable, (1) diffusion in the pores (Patent Document 1), (2) a sieving mechanism by the pores in the membrane, and (3) the liquid to be treated A flow separation mechanism (defined in Non-Patent Document 1) caused by the strain rate of the film surface is used. That is, an object is to provide a flow separation type concentrating hole diffusion membrane separation module that realizes pore diffusion. By using the module, it is possible to concentrate and collect not only the particle components but also the dissolved molecules while preventing clogging of the pores of the membrane. Furthermore, the membrane module can be regenerated.

本発明では平膜表面で被処理液体を効率良く層流化させるモジュール内の流路設計が最重要である。膜間差圧を平膜のすべての箇所で0.05気圧以下に維持し、かつ膜平面での被処理液体のひずみ速度を所定の値以上にする構造に設計することである。特に膜濃縮では膜表面を被処理液体は繰り返し流動するので膜表面が経時的に安定でなくてはならない。膜内部あるいは膜表面での不可逆的な孔の目詰まりあるいは膜表面のファーリングを防止する流路設計も必要である。   In the present invention, it is most important to design the flow path in the module that efficiently laminates the liquid to be treated on the flat membrane surface. The design is such that the transmembrane pressure difference is maintained at 0.05 atm or less at all locations on the flat membrane, and the strain rate of the liquid to be treated on the membrane plane is set to a predetermined value or more. In particular, in membrane concentration, the liquid to be treated flows repeatedly on the membrane surface, so that the membrane surface must be stable over time. There is also a need for a flow path design that prevents irreversible clogging of the pores in the membrane or on the membrane surface or furling of the membrane surface.

本発明の第1の特徴は本モジュールでの膜間差圧が0.05気圧以下で安定に操作される条件で使用されることが義務付けられている点である。この条件を満足させるためにはモジュールとして流路の断面積がある値以上であることと流路の長さがこの断面積と被処理液体の粘度と流速によって定められる値以下でなくてはならないこと、および膜間差圧の変動を防止する機構がモジュールの全体の形状に制限を加えていることが前提にある。膜間差圧の変動は膜の目詰まりを加速するという実験事実よりこの圧力の安定条件が設定された。ここで安定した圧力とはたとえ脈動しても膜間差圧は0.1気圧を越えることがないことを意味する。この条件は、モジュールの流路の均質さ、1次側の流路の出口の位置、流路の大気への開放箇所、および流路の断面積と流路の長さとは逆に操作条件(膜間差圧と流速)に制限を与えている。膜間差圧が一時的にでも0.2気圧以上になったりあるいは膜の局所的にも該圧力が0.2気圧以上になる箇所が存在しないように流路の均質さが必要である。不均一な箇所より目詰まりが進行する。       The first feature of the present invention is that it is required to be used under the condition that the transmembrane pressure difference in this module is stably operated at 0.05 atm or less. In order to satisfy this condition, the cross-sectional area of the flow path as a module must be greater than a certain value, and the length of the flow path must be less than or equal to the value determined by the cross-sectional area, the viscosity of the liquid to be treated, and the flow rate. This is based on the premise that the mechanism for preventing the fluctuation of the transmembrane pressure difference limits the overall shape of the module. This pressure stability condition was set based on the experimental fact that the fluctuation of the transmembrane pressure difference accelerated the clogging of the membrane. Here, the stable pressure means that the transmembrane pressure does not exceed 0.1 atm even if pulsating. This condition is the homogeneity of the flow path of the module, the position of the outlet of the flow path on the primary side, the location where the flow path is open to the atmosphere, and the operating conditions ( Limiting the transmembrane pressure and flow rate). The homogeneity of the flow path is required so that there is no portion where the transmembrane pressure difference temporarily becomes 0.2 atmospheres or more, or there is no portion where the pressure is 0.2 atmospheres or more even locally. Clogging progresses from non-uniform locations.

本発明の第二の特徴は膜表面に沿って流れる被処理液体が層流となるように
モジュール内の一次側の流路が設計されている点である。膜を透過して流出する液体を二次側液体と定義し該液体の流路を二次側流路と呼称する。一次側流路を形成する壁はすべて滑らかな固体表面であり、一次側流路内では乱流を発生させる恐れのある窪みや角がない。層流である流れでは処理対象の液体が流れる流路の一部を形成する平膜の表面での液体の流れは重要である。この流れが層流であれば流動分別効果が出現するという発見によって流動分別型の本発明モジュールが生れた。層流の出現は後述する(ア)および(イ)
領域の一次側流路内での液体の流れがレイノルズ数2000以下にすれば可能である。2000以下を関単位実現するには流れの厚さを小さくすれば良い。一次側流路内での(ア)および(イ)領域の流路の幅流路に沿って細分化するのみでも細分後の流路で層流は実現する。
The second feature of the present invention is that the flow path on the primary side in the module is designed so that the liquid to be processed flowing along the membrane surface becomes a laminar flow. The liquid that permeates and flows out of the membrane is defined as a secondary side liquid, and the flow path of the liquid is referred to as a secondary side flow path. The walls forming the primary channel are all smooth solid surfaces, and there are no depressions or corners that can cause turbulence in the primary channel. In a flow that is a laminar flow, the flow of the liquid on the surface of the flat membrane that forms part of the flow path through which the liquid to be processed flows is important. The discovery that the flow separation effect appears if this flow is a laminar flow gave rise to a flow separation type module of the present invention. The appearance of laminar flow will be described later (a) and (b)
This is possible if the liquid flow in the primary flow path of the region is set to a Reynolds number of 2000 or less. In order to realize a function unit of 2000 or less, the flow thickness may be reduced. A laminar flow is realized in the subdivided flow path only by subdividing the width of the flow paths in the (a) and (b) regions in the primary flow path along the flow path .

本発明モジュールの第3の特徴は孔拡散モジュールにおいて、(ア)長さが3cm以上の流路で該被処理液体の1次側の流路と事実上層流を乱すことなく連結する層流化域、(イ)長さが6cm以上の流路で、該流路を形成する4面の壁の内、平行な2面は平滑な固体の板状体で、残りの2面は平膜の膜表面で構成される空間部で、該空間部で流動分別を伴なう孔内拡散域、および(ウ)該平膜の裏平面で構成される構成され空間部とこの空間部を仕切る複数の壁で構成される拡散液の貯留域と、(エ)該流路の複数が一体化する流体の集積域、の少なくとも4種の領域で構成されている点にある。 The third feature of the module according to the present invention is a hole diffusion module, in which (a) a laminar flow in which a channel having a length of 3 cm or more is connected to the primary channel of the liquid to be treated without substantially disturbing the laminar flow. (B) A channel having a length of 6 cm or more, and among the four walls forming the channel, two parallel surfaces are smooth solid plates, and the remaining two surfaces are flat membranes. A space part constituted by a membrane surface, and a diffusion part in a hole accompanied by flow separation in the space part, and (c) a plurality of parts constituted by a back plane of the flat membrane and partitioning the space part. And (d) a fluid accumulation region in which a plurality of the flow paths are integrated, and at least four types of regions.

該4種の領域の詳細は以下の通りである。
(ア) 該液体の層流化域; (イ)の領域に一次側液体がスムースな龍泉で移行できるように設けられた領域でモジュール内への一次側液体の入口と連結している。この領域での流路の長さは3cm以上必要である。長ければ長いほど望ましいが45cm以上にする必要はない。この領域での一次側液体の流路(一次側流路と略称)の断面形状は領域(イ)のそれと同一形状が望ましい。(ア)の一次側流路を形成する壁の材料として領域(イ)で利用されている平膜以外の滑らかな表面を持つ固体(プラスチックス板)が望ましい。(ア)の一部であるモジュール内への一次側流体の層流化域と(イ)の領域とが一体化している場合と(ア)の一部であるモジュール内への一次側液体の入口部が着脱可能な設計にしておくと、(イ)の領域部分のみを使い捨てのサニタリ性を持たせることが容易となる。
Details of the four regions are as follows.
(A) Laminarization region of the liquid; in the region of (a), the region is provided so that the primary side liquid can be transferred by a smooth long spring, and is connected to the inlet of the primary side liquid into the module. The length of the flow path in this region must be 3 cm or more. The longer it is, the better, but it is not necessary to be 45 cm or more. The cross-sectional shape of the primary-side liquid channel (abbreviated as primary-side channel) in this region is preferably the same as that in region (A). (A) A solid (plastics plate) having a smooth surface other than the flat membrane used in the region (b ) is desirable as a material of the wall forming the primary flow path. The case where the laminar flow region of the primary fluid into the module which is part of (a) and the region of (a) are integrated, and the case where the primary side liquid into the module which is part of (a) is integrated. If the entrance portion is designed to be detachable, it becomes easy to give only the sanitary property only to the region (a).

(イ) 膜を介した流動分別を伴なう孔内拡散域;(ア)領域から出た該液体の流れを乱すことなく複数の細流に連結した領域。細流の流路を単位として流路の断面は樽状であり、樽の形状を形成する4面の壁の内、平行な2面は平滑な固体板状体で、他の円弧状の2面の内少なくとも1面は該平膜の膜表面で構成される。該平膜は凸面を形成し、該膜を介して流動分別を伴なう孔内拡散が起る領域である。この領域内で物質の分離、濃縮、除去、隔離の膜分離機能が発揮されるので流路内では流体は層流でなくてはならない。該領域内の流体の流れの平膜表面でのひずみ速度は2/秒以上でなくてはならない。望ましくは20/秒以上でかつ200/秒以下が望ましい。 (A) In-hole diffusion region with flow separation through a membrane; (A) A region connected to a plurality of trickles without disturbing the flow of the liquid coming out of the region. The cross section of the flow path is barrel-shaped in units of trickle flow paths. Of the four walls forming the shape of the barrel, the two parallel surfaces are smooth solid plate-like bodies and the other two arc-shaped surfaces. Of these, at least one surface is constituted by the film surface of the flat film. The flat membrane is a region where a convex surface is formed and through-hole diffusion accompanied by flow separation occurs through the membrane. In this region, the function of separating, concentrating, removing, and isolating substances is exhibited, so the fluid must be laminar in the flow path. The strain rate at the flat membrane surface of the fluid flow in the region should be 2 / sec or more. Desirably, it is 20 / second or more and 200 / second or less.

(イ)の領域を形成する平膜は該膜表面の平均孔径が裏面のそれより小さく、平膜の膜表面平滑度は10μm以下で物理的な見掛けの厚さは100μm以下で平膜の濾過速度法での平均孔径は10μm以下で10 nm以上で、空孔率は60 %以上であり、水中でのバブルポイントが0.1気圧以上であり、かつ平膜は親水性素材で作製された不織布または高分子多孔膜が望ましい。特に濃縮用モジュールでは該膜表面での粒子の捕捉性能を示す層の厚さが100 nm以上で20 μm以下であることがさらに望ましい。   The flat membrane forming the region (a) has an average pore diameter of the membrane surface smaller than that of the back surface, the membrane surface smoothness of the membrane is 10 μm or less, and the physical apparent thickness is 100 μm or less. The average pore diameter in the velocity method is 10 μm or less, 10 nm or more, the porosity is 60% or more, the bubble point in water is 0.1 atmosphere or more, and the flat membrane is a nonwoven fabric made of a hydrophilic material or A polymer porous membrane is desirable. In particular, in the concentration module, it is more desirable that the thickness of the layer showing the ability to capture particles on the membrane surface is 100 nm or more and 20 μm or less.

(イ)の流路を構成する基本単位の断面形状が高さ2 mm以上10 mm未満の平行な2枚の壁と、幅2 mm以上40 mm未満で円弧状の対をなす2枚の平膜で作られる凸面の壁とで表現される樽形状であることが望ましい。この断面形状は(ア)の層流化流路域の流路の形状と大きさとを類似にすることにより(ア)と(イ)との連結部でのスムースな流れが確保できる。平行な2枚の壁の存在により、該連結部でのスムースな流れの確保が容易になる。(イ)の流路の長さが該幅の10倍以上で700 mm未満である。流路の長さが700mmを越えると膜間差圧を安定に0.05気圧以下に維持するのがむつかしい。   (B) The cross-sectional shape of the basic unit constituting the flow path is two parallel walls with a height of 2 mm or more and less than 10 mm, and two flat plates that form a pair of arcs with a width of 2 mm or more and less than 40 mm. It is desirable to have a barrel shape expressed by a convex wall made of a film. By making the cross-sectional shape similar to the shape and size of the channel in the laminar flow channel region of (a), a smooth flow can be ensured at the connecting portion between (a) and (b). Due to the presence of the two parallel walls, it is easy to ensure a smooth flow at the connecting portion. The length of the flow path of (a) is not less than 700 mm and not less than 700 mm. When the length of the flow path exceeds 700 mm, it is difficult to stably maintain the transmembrane pressure difference at 0.05 atmospheric pressure or less.

(ウ) 該平膜の裏表面で構成される空間域;(ウ)の貯留域の空間部には(イ)の平行な壁部と該平膜を鏡面として対称に存在する壁部も設けることにより(イ)の流路の断面形状が維持できる。(イ)に示される流路を構成する平行な壁部と平膜を介して同一の壁部が存在することにより、膜間差圧を安定に維持できる。本領域の壁部は拡散液の流路と該平膜の支持体の役割を果す。また拡散液の貯溜域の役割を該空間域は果す。該空間部に拡散液を誘導するための壁を設けてもよい。誘導するための壁を平膜の支持体の役割をもたせることによって、膜表面でのひずみ速度を100 /秒以上にしても該膜が振動することを防止可能となる。(イ)と(ウ)の領域での平膜を介しての鏡面対称の関係にある平行な壁部の存在により、水中に浸漬した際の平膜の膨潤による変形や膜間差圧に原因した平膜の力学的な膜の変形による膜表面での凹凸の出現を防止できる。     (C) A space area constituted by the back surface of the flat membrane; (c) a parallel wall part of (a) and a wall part that exists symmetrically with the flat film as a mirror surface are provided in the space part of the storage area of (c) Thus, the cross-sectional shape of the flow path (A) can be maintained. The transmembrane pressure difference can be stably maintained by the presence of the same wall portion through the flat wall and the parallel wall portion constituting the flow path shown in (a). The wall in this region serves as a flow path for the diffusion liquid and a support for the flat membrane. The space region also serves as a reservoir for the diffusion liquid. A wall for guiding the diffusion liquid may be provided in the space. By providing the guiding wall with the role of a flat membrane support, it is possible to prevent the membrane from vibrating even when the strain rate on the membrane surface is 100 / sec or more. Caused by deformation and transmembrane pressure due to swelling of the flat membrane when immersed in water due to the presence of parallel walls in a mirror-symmetrical relationship through the flat membrane in the areas (a) and (c) The appearance of irregularities on the film surface due to the mechanical deformation of the flat film can be prevented.

層流化する流路域(ア)の存在により平膜の表面上を流体は滑らかの流線を描きつつ膜表面を流れる。膜表面で流線が複雑な図形を描くと該膜の孔への目詰まりが進行し、膜間差圧を駆動力として溶質の膜内部への侵入が起こる事実の発見により本発明の(ア)の領域の必要性に至った。(ア)の領域の流路の長さが3 cm以上になることにより(イ)領域での該膜表面の層流の流れにより流動分別、すなわち分子量(あるいは粒子の直径)が大きいほど膜表面より離れて流動する現象(これを流動分別効果という)が顕著となる。(ア)で実現した層流を安定に(イ)領域で維持するのに(イ)の流路を形成する壁面が平滑であることが必要である。また流路の断面積は(イ)の領域の流路内では均一であることが望ましい。流路を形成する壁面の一面あるいは平行する2面は該平膜の膜表面で構成される。(ウ)の層流維持域の存在は本モジュールを直列に連結する際には不可欠であり、連結しない場合でも該モジュールの出入り口と滑らかな流線で連結するのに必要である。(エ)の膜の裏面で構成される空間部には(イ)域での流路を構成する板状体と類似の板状体が流路の方向とは交差する角度で該平膜を力学的に支持し、かつ拡散液の流路を形成する。拡散液の流路の断面積は(イ)の流路の断面積の2倍以上であり、拡散液の流れを制御する役割りはない。       Due to the existence of the laminar flow channel area (a), the fluid flows on the surface of the flat membrane while drawing smooth streamlines on the surface of the flat membrane. By drawing complex figures of streamlines on the membrane surface, clogging of the pores of the membrane progresses, and the discovery of the fact that solute intrudes into the membrane using the transmembrane pressure as a driving force (A) of the present invention. ) Led to the need for an area. When the length of the flow path in the area (a) is 3 cm or more, the flow separation by the laminar flow on the film surface in the area (a), that is, the larger the molecular weight (or particle diameter), the larger the membrane surface. The phenomenon of flowing away (this is called the flow separation effect) becomes remarkable. In order to stably maintain the laminar flow realized in (a) in the (b) region, the wall surface forming the flow path of (b) needs to be smooth. Further, it is desirable that the cross-sectional area of the flow path is uniform within the flow path in the region (a). One surface of the wall surface forming the flow path or two parallel surfaces are constituted by the film surface of the flat film. The existence of the laminar flow maintaining zone in (c) is indispensable when the modules are connected in series, and even when not connected, it is necessary for connecting with the inlet / outlet of the module with smooth streamlines. In the space formed by the back surface of the membrane in (d), the flat membrane is placed at an angle at which a plate-like body similar to the plate-like body constituting the channel in (a) intersects the direction of the channel. Dynamically supports and forms a flow path for the diffusion liquid. The cross-sectional area of the flow path of the diffusion liquid is more than twice the cross-sectional area of the flow path of (A), and does not play a role in controlling the flow of the diffusion liquid.

本発明の第4の特徴は(ア)、(イ)および(ウ)の3領域は共通の同一平面で連結し、該流路内の液体の流れと該平膜表面とが実質的に平行である点にある。すなわち(ア)と(イ)領域はほぼ同一高さで直列的に連結し、(ウ)の領域は(イ)の領域の該平膜を介して平行に並列的に配列している。この連結により(イ)領域の層流が安定に維持できる。   The fourth feature of the present invention is that the three regions (a), (b) and (c) are connected by a common common plane, and the liquid flow in the flow path and the flat membrane surface are substantially parallel. In that point. That is, the regions (a) and (a) are connected in series at substantially the same height, and the region (c) is arranged in parallel in parallel through the flat membrane of the region (a). By this connection, the laminar flow in the (a) region can be stably maintained.

本発明の第5の特徴は(イ)領域の流路を形成する平膜が親水性の素材で作製されている点である。
濃縮用のモジュールの場合には特に親水性の高いセルロースで構成されているのが望ましい。本発明モジュールを構成する平膜は物質の輸送特性を支配する最も重要な役割を持つ。そのため平膜としての特性は下記の諸特性を持っていることが望ましい。
すなわち
(1) 濾過速度法で算出された平均孔径は10 nm以上で10μm未満である。
モジュールとしての処理速度は平膜の孔特性のみで決まるのではなく主として膜間差圧と膜表面でのひずみ速度とが支配する。したがって該平均孔径への要求は処理により濃縮すべき物質で定められる。たとえばウイルス濃縮では平均孔径は60 nm、細菌濃縮では700 nm、プリオン濃縮では25 nmなどである。
(2)空孔率は60 %以上である。
孔拡散による物質輸送速度は空孔率に比例するので空孔率は大きければ大きいほど望ましい。膜濾過と異なり膜に負荷する力学的な応力(膜間差圧)は小さいため空孔率への上限の設定の必要性は少ない。
(3)平膜の膜表面での平滑度は10 μm以下である。
該平滑度は該平膜を構成する基本の構造体(不織布の場合には繊維、多孔膜の場合には表面の平均孔径またはミクロ相分離法での製膜では2次粒子)の大きさの3倍と定義される。この平滑度は膜表面での層流の厚さ設定の目安となる。
(4)平膜の物理的な見掛けの膜厚は100 μm以下である。
平膜が2種以上の構造体で形成されている場合には該見掛けの膜厚は物質輸送に支配的でない部分も厚さに寄与している。この部分を含めて平膜の物理的な見掛けの膜厚と定義する。孔拡散では濃度勾配が物質輸送で重要な駆動力となるため見掛けの膜厚は薄ければ薄いほど望ましい。特に濃縮を目的とするモジュールでは除去用に較べてより薄い方が望ましい。
The fifth feature of the present invention is that (a) the flat membrane forming the flow path in the region is made of a hydrophilic material.
In the case of the module for concentration, it is desirable that the module is made of cellulose having particularly high hydrophilicity. The flat membrane constituting the module of the present invention has the most important role in governing the transport properties of materials. Therefore, it is desirable that the characteristics as a flat film have the following characteristics.
That is, (1) The average pore diameter calculated by the filtration rate method is 10 nm or more and less than 10 μm.
The processing speed as a module is not determined only by the pore characteristics of the flat membrane, but mainly by the transmembrane pressure difference and the strain rate on the membrane surface. Therefore, the demand for the average pore size is determined by the substance to be concentrated by processing. For example, the average pore size is 60 nm for virus concentration, 700 nm for bacterial concentration, and 25 nm for prion concentration.
(2) The porosity is 60% or more.
Since the mass transport rate by pore diffusion is proportional to the porosity, the larger the porosity, the better. Unlike membrane filtration, the mechanical stress (transmembrane differential pressure) applied to the membrane is small, so there is little need to set an upper limit for the porosity.
(3) The smoothness of the flat film surface is 10 μm or less.
The smoothness is the size of the basic structure constituting the flat membrane (fibers in the case of non-woven fabrics, average pore diameter of the surface in the case of porous membranes or secondary particles in the case of membrane formation by the microphase separation method). It is defined as 3 times. This smoothness is a measure for setting the thickness of the laminar flow on the film surface.
(4) The physical apparent film thickness of the flat film is 100 μm or less.
In the case where the flat film is formed of two or more kinds of structures, the apparent film thickness contributes to the thickness even in a portion that is not dominant in mass transport. Including this part, it is defined as the physical apparent film thickness of the flat film. In pore diffusion, since the concentration gradient becomes an important driving force in mass transport, the apparent film thickness is preferably as thin as possible. In particular, it is desirable that the module intended for concentration is thinner than that for removal.

(ア)および(イ)領域の流路は複数の細流で形成されている。一つの細流の流路(単位流路)の断面形状が直方体、または樽状が望ましい。高さが2mm以上で10 mm未満にすることにより液体の流れにともなった平膜表面での流れのひずみ速度を2/秒以上に容易に達成可能である。ひずみ速度を大きくすると流動分別効果が高まることが実験的に明らかにされた。ひずみ速度を大きくすると膜間差圧が大きくなり、また流路内での圧力勾配も大きくなる。これらの膜間差圧を高める要因は流路の断面積が小さくなると顕著である。流路の幅は2mm以上で40 mm未満である。該幅を大きくしすぎると流れのショートカットが起りやすく流動分別効果が現われにくい。該流路の長さは幅以上で700 mm未満であることが望ましい。平膜のすべての面で膜間差圧を0.05気圧以下に維持するには流路長さを短くすることが必要である。   The flow paths in the areas (a) and (b) are formed by a plurality of trickles. The cross-sectional shape of one trickle channel (unit channel) is preferably a rectangular parallelepiped or barrel. By setting the height to 2 mm or more and less than 10 mm, the strain rate of the flow on the flat membrane surface accompanying the liquid flow can be easily achieved to 2 / second or more. It has been experimentally clarified that increasing the strain rate increases the flow separation effect. When the strain rate is increased, the transmembrane pressure difference increases, and the pressure gradient in the flow path also increases. These factors that increase the transmembrane pressure are significant when the cross-sectional area of the flow path is reduced. The width of the flow path is 2 mm or more and less than 40 mm. If the width is too large, a flow shortcut is likely to occur, and the flow separation effect is difficult to appear. The length of the flow path is preferably not less than the width and less than 700 mm. It is necessary to shorten the channel length in order to maintain the transmembrane pressure difference below 0.05 atm on all sides of the flat membrane.

本発明で膜間差圧を0.05気圧以下に平膜のすべての点で維持されていることが膜濾過の寄与を零にするために必要不可欠である。該膜間差圧は液体媒体を構成する分子(通常水)のみが膜の孔中を体積流で通過するのを実現するための最重要操作条件である。膜ろ過が起こると膜の孔の目詰まりが生じ、一般に長期運転が必要な濃縮用としてのモジュールとして望ましくない。そのため(イ)領域の流路での層流が実現し、所定のひずみ速度が達成した後に膜間差圧を与える。逆に膜間差圧を負荷した後にひずみ速度を与える操作は膜の目詰まりが起こるので避けなければならない。この目詰まり現象を発見したことにより、(ア)の領域の必要性を見出した。   In the present invention, the transmembrane pressure difference is maintained at 0.05 atm or less at all points of the flat membrane, which is indispensable to make the contribution of membrane filtration zero. The transmembrane pressure difference is the most important operating condition for realizing that only molecules (usually water) constituting the liquid medium pass through the pores of the membrane in a volume flow. When membrane filtration occurs, the pores of the membrane are clogged, and it is generally not desirable as a module for concentration that requires long-term operation. For this reason, laminar flow in the flow path in the region (a) is realized, and a transmembrane pressure difference is applied after a predetermined strain rate is achieved. On the contrary, the operation of giving the strain rate after applying the transmembrane pressure must be avoided because the membrane is clogged. By discovering this clogging phenomenon, the necessity of the area (a) was found.

本発明モジュールにより孔拡散膜分離が再現性良くかつ簡単に実施可能となる。孔拡散膜分離の特徴である分離・濃縮・除去・隔離の効果が実験室規模から実用化規模にいたる連続したスケーラブルに実証可能となる。本発明モジュールでは孔拡散膜分離後の拡散液側からは成分組成を異にする一連の溶液を連続的に回収可能でかつ特定成分が所定倍率で濃縮された溶液も同時に回収可能となる。本モジュールでは長期に安定した運転が可能で、濃縮用モジュールに最適である。該モジュールでは負荷圧力が低い特徴を生かして耐圧性の部材が加わっていない。そのためモジュール作製に必要な部材として耐圧性は要求されず、軽量で有効膜面積当たりのモジュール重量は従来の膜ろ過用の平膜モジュールの1/2以下にすることも容易である。また完全性試験として、プレッシャホールド法が採用できその際の負荷圧力は0.1気圧である。         The module of the present invention enables pore diffusion membrane separation to be easily performed with good reproducibility. The effect of separation, concentration, removal and sequestration, which is a feature of pore diffusion membrane separation, can be demonstrated in a continuous and scalable manner from the laboratory scale to the practical scale. In the module of the present invention, a series of solutions having different component compositions can be continuously recovered from the side of the diffusion solution after separation of the pore diffusion membrane, and a solution in which a specific component is concentrated at a predetermined magnification can be simultaneously recovered. This module can be operated stably over a long period of time, and is optimal for a concentration module. In the module, a pressure-resistant member is not added by taking advantage of the low load pressure. Therefore, pressure resistance is not required as a member necessary for module production, and the module weight per effective membrane area can be easily reduced to 1/2 or less that of a conventional membrane module for membrane filtration. As a completeness test, the pressure hold method can be adopted, and the load pressure at that time is 0.1 atm.

本発明モジュールを運転するのに必要な動力は0.05気圧の加圧源と層流で流すための流速源でありいずれもそれらの消費エネルギーは膜ろ過に比して少ない。さらに、モジュールからの液漏れの可能性は少ないため自由な流路設計も可能である。本発明モジュールを複数個、直列的あるいは並列的に連結することも容易なため実用化に必要な大きな膜面積のシステムを組むのも容易である。         The power required to operate the module of the present invention is a 0.05 atm pressure source and a flow rate source for laminar flow, both of which consume less energy than membrane filtration. Furthermore, since there is little possibility of liquid leakage from the module, a free flow path design is possible. Since it is easy to connect a plurality of modules of the present invention in series or in parallel, it is easy to build a system having a large membrane area necessary for practical use.

第1図に本発明モジュールの一例を示す。最上部の図1aには本発明モジュールを構成する5枚のシート(図1でシート1,2,3,4,5)の概略図を示す。最も重要な部分(シート3)を図1aの中央部に示している。(ア)の層流化する流路域で長さとして4.5 cm、(ア)の該流路と直結する(イ)の長さ18 cmの複数(図1では9本)の流路で構成される流動分別を伴う孔内拡散域と(エ)の流体の集積域(図1では複数の流路がモジュールの出口で外系へ連なり一体化する)とが同一平面内で連結する。(ア)、(イ)、(ウ)、(エ)の領域の壁部は平膜1以外はポリカーボネートで作製されている。         FIG. 1 shows an example of the module of the present invention. FIG. 1a at the top shows a schematic diagram of five sheets (sheets 1, 2, 3, 4, and 5 in FIG. 1) constituting the module of the present invention. The most important part (sheet 3) is shown in the center of FIG. 1a. It is composed of a plurality of (9 in FIG. 1) channels (4.5) in length in the laminar flow channel region (a) and 4.5 cm in length (a) directly connected to the channel (a). The in-hole diffusion region accompanied by the flow separation and the fluid accumulation region (d) (in FIG. 1, a plurality of flow paths are connected to and integrated with the external system at the outlet of the module) are connected in the same plane. The walls of the regions (a), (b), (c), and (d) are made of polycarbonate except for the flat membrane 1.

第1図の(イ)で示される領域では、流体は層流で流れ、流れの中で流動分別が起こり平膜内部では孔内拡散が起こっている。領域(イ)の流路の断面図は図1cに与えられる。該流路はこの断面図に示すようにその断面形状では流体が流れている際には、膜間差圧による膜の変形のため樽状となる。
流路高さは4 mm流路幅は5 mmである。流路を形成する平行な2枚の板状体はポリカーボネート製でその厚さは0.5 mmである。該流路の長さは18 cmである。該流路の入口側にある領域(ア)内には領域(イ)での流路と連結する9本の流路がありその断面形状は4 mm x 5 mmの長方形である。この流路の入口部は内径4.5 mm、外径6.0 mmのウレタンチューブ(CHIYODA製)5と連結する。連結部はシリコン系接着剤で領域(ア)の流路のポリカーボネート性の壁部と5のチューブとが密着している。
In the region shown in FIG. 1 (a), the fluid flows in a laminar flow, flow separation occurs in the flow, and diffusion in the pores occurs in the flat membrane. A cross-sectional view of the flow path in region (A) is given in FIG. As shown in this cross-sectional view, when the fluid is flowing in the cross-sectional shape, the flow path has a barrel shape due to the deformation of the film due to the transmembrane pressure difference.
The channel height is 4 mm and the channel width is 5 mm. The two parallel plate-like bodies forming the flow path are made of polycarbonate and have a thickness of 0.5 mm. The length of the channel is 18 cm. In the area (A) on the inlet side of the flow path, there are nine flow paths connected to the flow path in the area (A), and the cross-sectional shape is a rectangle of 4 mm × 5 mm. The inlet of this channel is connected to a urethane tube (made by CHIYODA) 5 having an inner diameter of 4.5 mm and an outer diameter of 6.0 mm. The connecting portion is made of a silicon-based adhesive, and the polycarbonate wall of the flow path in the region (A) and the tube 5 are in close contact with each other.

図1の1で示されるシートは多孔性平膜である。ミクロ相分離法で製膜した平均孔径80 nm、膜厚100μmの再生セルロース膜である。表面と裏面との孔径比(電子顕微鏡で測定)は1/3である。図中1の2枚のシート(平膜)の平均孔径は同一である。シート3の表裏面の2面に接する側に平膜の表面がくるように平膜はセットされる。すなわち、平膜表面は(イ)の流路中を流れる液体と接する。平膜1とシート3とは接着剤によって密着させるかグリースなどで密着させる。接着剤としてシート3の素材がポリカーボネート、平膜1の素材が再生セルロースの場合にはウレタン系の接着剤を利用する。
平膜1とシート3との密着にはパッキングなどの圧着方の物理的な密着法を採用してもよい。中央部のシート3には被処理液体の入口5があり、領域(エ)への連結口へ直結する。入口5を通った液体は領域(ア)(流路の断面形状が図1cの断面c−cに示されている)で層流となり、領域(ア)の流路内を通過し、領域(エ)を通過後出口6を抜けてモジュール外へ通じる。シート2および4は厚さ0.5 mmのポリカーボネート製の薄い板の2枚を3~5 mmの一定間隔で積層させて製造される。該積層段状体(いわゆるポリダン状板状体)により領域(ウ)の貯流域が形成される。すなわち、2枚の薄い板状体が積層される際に両板状体を支える役割を持つ平行に配列された壁面を構成する短冊状物と成型融着されている。この平行な壁面は領域(イ)の平行な壁面と平膜1を鏡面として対称に存在する。該対称な壁部がシート2と3の空間を形成するため図1cの断面a-aと断面b−bを与える。シート2および4は直方体の空間部を持つ2段積層体であるため図1cの断面図のように長方形の空間部が用意されている。
The sheet indicated by 1 in FIG. 1 is a porous flat membrane. This is a regenerated cellulose membrane having an average pore diameter of 80 nm and a thickness of 100 μm formed by a microphase separation method. The hole diameter ratio between the front and back surfaces (measured with an electron microscope) is 1/3. The average pore diameter of the two sheets (flat membranes) 1 in the figure is the same. The flat membrane is set so that the surface of the flat membrane comes to the side of the sheet 3 that is in contact with the two front and back surfaces. That is, the flat membrane surface is in contact with the liquid flowing in the flow path (A). The flat membrane 1 and the sheet 3 are brought into close contact with an adhesive or in contact with grease or the like. When the material of the sheet 3 is polycarbonate and the material of the flat membrane 1 is regenerated cellulose as the adhesive, a urethane adhesive is used.
For the adhesion between the flat membrane 1 and the sheet 3, a physical adhesion method such as packing may be employed. The central sheet 3 has an inlet 5 for the liquid to be processed and is directly connected to the connection port to the region (d). The liquid that has passed through the inlet 5 becomes a laminar flow in the region (a) (the cross-sectional shape of the channel is shown in the section cc in FIG. 1c), passes through the channel in the region (a), After passing through (d), exit the exit 6 and lead out of the module. Sheets 2 and 4 are manufactured by laminating two thin polycarbonate plates having a thickness of 0.5 mm at regular intervals of 3 to 5 mm. A storage area of the region (c) is formed by the stacked stepped body (so-called polydan plate-like body). That is, when two thin plate-like bodies are laminated, they are molded and fused with a strip-like object constituting a wall surface arranged in parallel to support both plate-like bodies. This parallel wall surface exists symmetrically with the parallel wall surface of the region (a) and the flat membrane 1 as a mirror surface. The symmetrical wall forms the space between the sheets 2 and 3, giving the section aa and the section bb in FIG. Since the sheets 2 and 4 are two-tiered laminates having a rectangular space, rectangular spaces are prepared as shown in the sectional view of FIG. 1c.

図1の平膜1としてミクロ相分離法で作製された酢酸セルロース多孔膜や再生セルロース多孔膜あるいは長繊維を積層した不織布を用いる。平膜の平均孔径が0.5μmの場合には細菌を除去した回収液(膜透過液に当たる)が得られ、一次側の液には細菌が濃縮される。平均孔径が80 nmの再生セルロース多孔膜では一次側の液にはウイルスも濃縮される。図1bにはモジュールの立面図を示す。a-a面、b−b面、c−c面での断面図を図1cに示す。       As the flat membrane 1 in FIG. 1, a cellulose acetate porous membrane or a regenerated cellulose porous membrane produced by a microphase separation method or a nonwoven fabric laminated with long fibers is used. When the average pore diameter of the flat membrane is 0.5 μm, a collected liquid from which bacteria have been removed (corresponding to the membrane permeate) is obtained, and the bacteria are concentrated in the primary liquid. In a regenerated cellulose porous membrane having an average pore size of 80 nm, viruses are also concentrated in the primary side liquid. FIG. 1b shows an elevation view of the module. FIG. 1c shows cross-sectional views along the aa, bb, and cc planes.

図1に示される孔拡散のモジュールを作製する。モジュールの組み立てに必要な部品は平膜1が2枚(両者は同一の平均孔径を持つ膜の場合と異なった平均孔径の膜の組み合せも可能であるが、本実施例では同一の膜の場合を示す)、図1と同様な一次側流路が設けられたシート平膜1の変形を抑えるための支持体で形成された膜透過液の二次側液体の流路を与えるシート2、およびシート4とがそれぞれ1枚である。シート2,3および4
のいずれもが市販のプラダンシート(プラスチックスの溶融成型で作製されたダンボール状シート)を切削して作製される。シート3にはウレタンチューブ5が装着されている。平膜シート1にはミクロ相分離法で作製された(上出健二ら、高分子論文集、34巻、205頁(1977年))。この方法で作製されたアセテート多孔膜の膜厚は80μm、水の濾過速度法での平均孔径は80 nm、空孔率は80%であった。電子顕微鏡観察より表裏面の孔径の比は1対3であった。シート2,3および4の切削加工前の基材として市販のプラダンシートから切削によりシート3には領域(イ)の流路である9個に細分化された基本単位の流路(厚さ4 mm、幅4 mm、長さ100 mm)を作製し、切削加工をすることなく領域(ア)の流路を残した。該流路の数は9個である。流路を形成する壁部の板状体は平膜シート1を支持する役割を持つ。該板状体と平膜シート1とはウレタン系接着剤で接着固定されている。板状体の厚さは0.5 mmであった。平膜1の2枚の膜表面とシート3の壁部である板状体の端部とが密着するように2液性のウレタン樹脂で接着した。シート3の領域(ア)には図1の5の内径4.5 mm外形6.0 mmのウレタンチューブ(CHITODA製)が9個埋め込まれている。シート2および4の壁部を形成する板状体は液体を流路内に流す際に生じる平膜1の変形を図1cのB−B切断断面図に示す。平膜1が凸状に変形し、壁部平面が直線を示す直方形に近い型断面形状となる。
Preparing a module hole diffusion method shown in FIG. The parts required for the assembly of the module are two flat membranes 1 (both of them can be combined with membranes having different average pore sizes from those having the same average pore size, but in this embodiment, the same membrane is used. shown), FIG. 1 and similar sheet 2 primary flow path is provided, sheet 2 to provide a flow path for the secondary liquid membrane permeate formed in the support body for suppressing deformation of the flat membrane 1 , And one sheet 4 each. Sheets 2, 3 and 4
All of these are manufactured by cutting a commercially available plastic cardboard sheet (corrugated cardboard sheet manufactured by melt molding of plastics). A urethane tube 5 is attached to the sheet 3. The flat membrane sheet 1 was produced by a microphase separation method (Kenji Kende et al., Polymer Journal, 34, 205 (1977)). The film thickness of the porous acetate membrane produced by this method was 80 μm, the average pore size by the water filtration method was 80 nm, and the porosity was 80%. From observation with an electron microscope, the ratio of the hole diameters on the front and back surfaces was 1: 3. The basic unit channels (thickness 4) subdivided into nine (9 ) channels (regions) in the sheet 3 by cutting from a commercially available Pradan sheet as a base material before the cutting of the sheets 2, 3 and 4 mm, width 4 mm, length 100 mm), and the flow path in the region (a) was left without cutting. The number of the flow paths is nine. The plate-like body of the wall forming the flow path has a role of supporting the flat membrane sheet 1. The plate-like body and the flat membrane sheet 1 are bonded and fixed with a urethane-based adhesive. The thickness of the plate was 0.5 mm. The two membrane surfaces of the flat membrane 1 and the end portion of the plate-like body that is the wall portion of the sheet 3 were bonded with a two-component urethane resin. In the region (a) of the sheet 3, nine urethane tubes (made by CHITODA) having an inner diameter of 4.5 mm and an outer diameter of 6.0 mm shown in FIG. The plate-like body forming the walls of the sheets 2 and 4 shows the deformation of the flat membrane 1 that occurs when the liquid flows in the flow path in the sectional view taken along the line BB in FIG. 1c . Flat membrane 1 is deformed in a convex shape, the wall portion plane is a barrel-shaped cross section shape closer to the rectangular shape showing a straight line.

2枚の平膜を接着したシート3の上下にシート2と4とを接着する。この際接着部は領域(イ)の流路を形成している平膜1以外の部分で、該流路を流れる液体がモジュール外に濾出しないように埋め込まれる。該流路の入口5および該流路の出口6とに外系との連結用にパイプまたはチューブを埋め込むことによって本発明のモジュールが完成する。シート2および4の出入り口7および8は拡散液の取り出し口となるため出入り口の個数は目的に応じて適宜選定される。拡散液の取り出し口には流量調節用のコックを設けて拡散液の流出速度を制御する場合もある。この場合として平膜の平均孔径が100 nm以上でかつ膜厚が100μm以下あるいは膜間差圧が0.03気圧を超える場合である。       The sheets 2 and 4 are bonded to the upper and lower sides of the sheet 3 to which two flat films are bonded. At this time, the adhesive portion is a portion other than the flat membrane 1 forming the flow path of the region (A), and is embedded so that the liquid flowing through the flow path does not flow out of the module. The module of the present invention is completed by embedding pipes or tubes for connection with an external system at the inlet 5 and the outlet 6 of the flow path. Since the entrances 7 and 8 of the sheets 2 and 4 serve as the exit for the diffusion liquid, the number of entrances is appropriately selected according to the purpose. In some cases, the diffusion liquid outlet is provided with a flow rate adjusting cock to control the flow rate of the diffusion liquid. In this case, the average pore diameter of the flat membrane is 100 nm or more and the film thickness is 100 μm or less, or the transmembrane pressure difference exceeds 0.03 atm.

該モジュールに対して最大の膜間差圧として0.03気圧となるようにシート3の出口部6を大気圧下に開放し、入口部5での水頭圧差を水柱30 cm頭以下になるように送液回路を作製し、この回路を用いて平均孔径30 nmの水酸化第二鉄kロイドを2000 ppm含む水溶液の流動分別を伴う孔拡散を実施した。流路内部での被処理液体の平均速度Uは5.7 cm/s で流れ厚さは0.3 cmであった。したがって膜表面でのひずみ速度は76 sec-1であった。 The outlet 6 of the seat 3 is opened to atmospheric pressure so that the maximum transmembrane pressure for the module is 0.03 atm, and the water head pressure difference at the inlet 5 is less than 30 cm head of water column. A liquid circuit was prepared, and pore diffusion accompanied by flow fractionation of an aqueous solution containing 2000 ppm of ferric hydroxide kloid having an average pore diameter of 30 nm was performed using this circuit. The average velocity U of the liquid to be treated inside the flow path was 5.7 cm / s and the flow thickness was 0.3 cm. Therefore, the strain rate on the film surface was 76 sec −1 .

膜間差圧が0.005気圧のとき膜ろ過速度は1.0 リットル/m2/hrであり、回収液中の粒子濃度は20 ppm以下で1次側の液中の粒子濃度は3850 ppmであった。粒子の膜透過率は0.01以下であった。したがって本モジュールでの粒子の対数除係数は2以上であった。また粒子の濃縮率は1.92 倍であった。1次側の溶液体積は当初は2.5リットルであったが48時間後には約1.3 リットルであった。 When the transmembrane pressure was 0.005 atm, the membrane filtration rate was 1.0 liter / m 2 / hr, the particle concentration in the recovered liquid was 20 ppm or less, and the particle concentration in the primary liquid was 3850 ppm. The membrane permeability of the particles was 0.01 or less. Therefore, the logarithmic divisor of the particles in this module was 2 or more. The concentration rate of the particles was 1.92 times. The solution volume on the primary side was initially 2.5 liters but was about 1.3 liters after 48 hours.

膜を利用して微粒子を濃縮回収する工程あるいはタンパク室を濃縮する工程を必要とする産業に本発明は利用できる。微粒子として無機微粒子、ウイルス、細胞、細菌、酵母のようにバイオプロセスでの濃縮・除去に利用できる。例えばバイオ医薬品に加えて食品、化粧品の製造工程で、微粒子が酵母であれば醗酵工業でも利用される。今後の進展が期待されているナノテクノロジーにおいても微粒子の濃縮・除去に適用される。       The present invention can be used in industries that require a step of concentrating and collecting fine particles using a membrane or a step of concentrating a protein chamber. It can be used for concentration / removal in bioprocesses such as fine inorganic particles, viruses, cells, bacteria, and yeast. For example, in the production process of food and cosmetics in addition to biopharmaceuticals, if the fine particles are yeast, it is also used in the fermentation industry. It is also applied to the concentration and removal of fine particles in nanotechnology, where future progress is expected.

本発明モジュールの典型的な例Typical example of the module of the present invention

図1a: 本発明モジュールの概略図;3枚のプラダンシートと2枚の多孔性平膜シートで構成される。
図1b: 本発明モジュールの立面図;多孔性平膜シートの断面方向からの観察に相当する図。
図1c: 図1bにおけるA−A,B−B,C−Cの方向の断面図;断面B−Bが領域(イ)の1次側流路の断面形状を示す(長方形に近い樽状)
1;多孔性平膜シート、2;領域(ウ)を持つプラダン状シート、プラダン状シートとはプラスチックス平板2枚が一定間隔で平行に設置され、この間隔の維持のために複数の短冊状プラスチックス細板が直角に平板に融着したダンボール状のシートを意味する。該シートの膜透過液(2次側液体)の流路(2次側流路)の出口7を持つ。3;領域(ア)、領域(イ)、領域(エ)を持つように加工されたプラダン状シート。4;領域(ウ)を持つプラダン状シート、膜透過液の出口8を持つ。5;領域(ア)への入口チューブ、領域(ア)および(イ)の流路の数のチューブ数で構成される。6;シート3の流路の外系への出口でシート3のみに存在する。(ア);領域(ア)を意味し、層流化する流路域でシート3のみに存在する。流路の断面形状は平板による2辺と平膜シートの2辺で構成される長方形状であるが膜間差圧が負荷されると該平膜シートはわずかに上下に変形し樽状となる。(イ);領域(イ)を意味し流動分別を伴う孔内拡散域。(ウ);領域(ウ)を意味し、膜透過液の貯留域で該液の出口7あるいは出口8を有する、シート2および4に存在する領域である。(エ);領域(エ)を意味し、シート3のみに存在する、一次側溶液のモジュールの出口6を有する。
Fig. 1a: Schematic diagram of the module of the present invention; composed of 3 Pradan sheets and 2 porous flat membrane sheets.
FIG. 1b: Elevated view of the module of the present invention; a view corresponding to observation from a cross-sectional direction of the porous flat membrane sheet.
Fig. 1c: Cross-sectional views in the direction of AA, BB, CC in Fig. 1b; cross-section BB shows the cross-sectional shape of the primary flow path in the region (A) (barrel shape close to a rectangle) .
1. Porous flat membrane sheet, 2; Pradan-like sheet with region (c), and Pradan-like sheet are two plastic plates placed in parallel at regular intervals, and a plurality of strips to maintain this interval This means a corrugated sheet in which plastic thin plates are fused at right angles to a flat plate. It has an outlet 7 for the flow path (secondary side flow path) of the membrane permeation liquid (secondary side liquid) of the sheet . 3; Pradan-like sheet processed to have a region (A), a region (A), and a region (D). 4; Pradano-shaped sheet having a region (c), having a membrane permeate outlet 8; 5: It is comprised by the number of tubes of the number of the inlet tube to area | region (a) and the flow path of area | region (a) and (b). 6: Present only in the sheet 3 at the outlet to the outside system of the flow path of the sheet 3. (A) means the region (A), and is present only in the sheet 3 in the flow passage region where laminarization occurs. The cross-sectional shape of the flow path is a rectangular shape composed of two sides of a flat plate and two sides of a flat membrane sheet, but when a transmembrane pressure difference is applied, the flat membrane sheet is slightly deformed up and down to become a barrel shape. . (A): A region (a) meaning a diffusion region in a hole with flow separation. (C) means a region (c), which is a region present in the sheets 2 and 4 having the outlet 7 or the outlet 8 of the liquid in the membrane permeate storage region . (D) means the region (d) and has the outlet 6 of the primary solution module , which is present only in the sheet 3 .

Claims (3)

被処理液体が膜分離媒体の平膜の膜表面に沿って層流で流れる状況下で膜間差圧が安定して0.05気圧以下の条件下で行なわれる膜分離処理で利用される孔拡散膜モジュールは、(ア)長さが3 cm以上の流路で該液体を層流化する流路域と、(イ)該流路域と直接連結する長さ6cm以上の流路で該流路を形成する4面の壁の内、平行な2面は平滑な固体板状体で、残の2面は該平膜の膜表面で構成される流動分別を伴なう孔内拡散域、および(ウ)該平膜の裏平面で構成される空間部で該空間部を仕切る複数の壁部を持つ拡散液の貯溜域と、(エ)該流路の複数が一体化する流体の集積域、の少なくとも4種の領域で構成され、かつ(ア)、(イ)、の2領域は共通の同一平面で連結し該2領域の流路内の液体の流れと該膜表面とが実質的に平行でかつ(イ)と(ウ)とは該平膜を介して相互に隣接し一体化されており、かつ(ア)、(ウ)、(エ)にはそれぞれ外系に連結した少なくとも1個の出入口があることを特徴とする濃縮用孔拡散膜分離モジュール。     Porous diffusion membranes used in membrane separation processing in which the pressure difference between the membranes is 0.05 atmospheres or less under the condition that the liquid to be treated flows in a laminar flow along the membrane surface of the flat membrane of the membrane separation medium The module includes (a) a channel area for laminating the liquid in a channel having a length of 3 cm or more, and (b) a channel having a length of 6 cm or more that is directly connected to the channel area. Of the four walls that form the surface, two parallel surfaces are smooth solid plates, and the remaining two surfaces are in-pore diffusion regions with flow fractionation composed of the membrane surface of the flat membrane, and (C) a storage area for the diffusion liquid having a plurality of wall portions for partitioning the space portion in a space portion constituted by the back surface of the flat membrane; and (d) a fluid accumulation region in which a plurality of the flow paths are integrated. The two regions (a) and (b) are connected on the same common plane so that the liquid flow in the flow path of the two regions and the membrane surface are substantially the same. Parallel to (A) and (c) are adjacent to and integrated with each other through the flat membrane, and (a), (c) and (d) each have at least one connected to the external system. A pore diffusion membrane separation module for concentration, characterized by having an inlet / outlet. 請求項1において(イ)の平膜は該膜表面の平均孔径が裏面のそれより小さく、平膜の膜表面平滑度は10μm以下で物理的な見掛けの厚さは100μm以下で平膜の濾過速度法での平均孔径は10μm以下で10 nm以上で、空孔率は60 %以上であり、水中でのバブルポイントが0.1気圧以上であり、かつ平膜は親水性素材で作製された不織布または高分子多孔膜であり、かつ(ア)と(エ)とは着脱可能であることを特徴とする濃縮用の孔拡散膜分離モジュール。   The flat membrane of (a) according to claim 1 has an average pore diameter of the membrane surface smaller than that of the back surface, the membrane surface smoothness of the membrane is 10 μm or less, and the physical apparent thickness is 100 μm or less. The average pore diameter in the velocity method is 10 μm or less, 10 nm or more, the porosity is 60% or more, the bubble point in water is 0.1 atmosphere or more, and the flat membrane is a nonwoven fabric made of a hydrophilic material or A pore diffusion membrane separation module for concentration, which is a polymer porous membrane, and (a) and (d) are detachable. 請求項1または請求項2または請求項3において(ウ)の貯留域の空間部には(イ)の平行な壁部と該平膜を鏡面として対称に存在する壁部も設けたことを特徴とする孔拡散膜分離モジュール。


The space part of the storage area of (c) according to claim 1, claim 2 or claim 3 is also provided with a parallel wall part of (a) and a wall part that exists symmetrically with the flat membrane as a mirror surface. A pore diffusion membrane separation module.


JP2015216581A 2015-11-04 2015-11-04 Flow separation type pore diffusion membrane separation module for concentration Active JP6422032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015216581A JP6422032B2 (en) 2015-11-04 2015-11-04 Flow separation type pore diffusion membrane separation module for concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015216581A JP6422032B2 (en) 2015-11-04 2015-11-04 Flow separation type pore diffusion membrane separation module for concentration

Publications (2)

Publication Number Publication Date
JP2017087097A JP2017087097A (en) 2017-05-25
JP6422032B2 true JP6422032B2 (en) 2018-11-14

Family

ID=58769780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015216581A Active JP6422032B2 (en) 2015-11-04 2015-11-04 Flow separation type pore diffusion membrane separation module for concentration

Country Status (1)

Country Link
JP (1) JP6422032B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019173752A1 (en) 2018-03-08 2019-09-12 Repligen Corporation Tangential flow depth filtration systems and methods of filtration using same
CA3097195A1 (en) 2018-05-25 2019-11-28 Repligen Corporation Tangential flow depth filtration system and methods
JP2020028819A (en) * 2018-08-20 2020-02-27 日本特殊膜開発株式会社 Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030038081A1 (en) * 2001-08-14 2003-02-27 I-Fan Wang High strength asymmetric cellulosic membrane
JP4803341B2 (en) * 2004-08-20 2011-10-26 征一 真鍋 Flat membrane pore diffusion separator
US8623210B2 (en) * 2006-03-02 2014-01-07 Sei-ichi Manabe Pore diffusion type flat membrane separating apparatus
JP2012148240A (en) * 2011-01-19 2012-08-09 Sepa Sigma Inc Membrane separator and method of separation utilizing flat membrane
JP2012223704A (en) * 2011-04-19 2012-11-15 Sepa Sigma Inc Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP2013237016A (en) * 2012-05-15 2013-11-28 Sepa Sigma Inc Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
WO2014047016A1 (en) * 2012-09-19 2014-03-27 3M Innovative Properties Company Fluid separation unit
JP2014193423A (en) * 2013-03-28 2014-10-09 Sepa Sigma Inc Hole diffusion film separation method using affinity difference
JP6277346B2 (en) * 2013-11-27 2018-02-14 尾池 哲郎 Hole diffusion membrane separation method
JP6343589B2 (en) * 2015-06-05 2018-06-13 日本特殊膜開発株式会社 Flow separation type pore diffusion membrane separation module

Also Published As

Publication number Publication date
JP2017087097A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
Strathmann Introduction to membrane science and technology
US20210346835A1 (en) Tunable nanofiber filter media and filter devices
Shi et al. Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems
US11565215B2 (en) Permeate channel alterations for counter current filtration for use in cross-flow filtration modules useful in osmotic systems
JPS6369503A (en) High flow flux density and low staining tendency permeable membrane
JP6343589B2 (en) Flow separation type pore diffusion membrane separation module
US20150314241A1 (en) Constructions for fluid membrane separation devices
JP6422032B2 (en) Flow separation type pore diffusion membrane separation module for concentration
JP2012148240A (en) Membrane separator and method of separation utilizing flat membrane
US20150343388A1 (en) Constructions for fluid membrane separation devices
JP2013237016A (en) Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
JP2017047417A (en) Separation membrane module, separation membrane element and telescope prevention sheet
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP2010269258A (en) Separation method by flat membrane pore diffusion and apparatus therefor
JP4803341B2 (en) Flat membrane pore diffusion separator
JP2020028819A (en) Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same
Amar et al. Erythrocyte fouling on micro-engineered membranes
Tishchenko et al. Ultrafiltration and microfiltration membranes in latex purification by diafiltration with suction
KR101557544B1 (en) Hollow fiber membrane module
JP6534068B2 (en) Module for pore diffusion membrane separation to fractionate component molecules in polymer solution
Sarbatly Membrane Technology for Water and Wastewater Treatment in Rural Regions
JP2009136744A (en) Hole diffusion-filtering module mounted with multistaged multilayered structure membrane
Amar et al. Co-current crossflow microfiltration in a microchannel
JP6452049B2 (en) A flow separation type pore diffusion membrane separation module comprising a flow path having a circular cross section.
Gupta et al. Membrane Process for the Water Purification CFD Approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6422032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250