JP2020028819A - Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same - Google Patents

Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same Download PDF

Info

Publication number
JP2020028819A
JP2020028819A JP2018154114A JP2018154114A JP2020028819A JP 2020028819 A JP2020028819 A JP 2020028819A JP 2018154114 A JP2018154114 A JP 2018154114A JP 2018154114 A JP2018154114 A JP 2018154114A JP 2020028819 A JP2020028819 A JP 2020028819A
Authority
JP
Japan
Prior art keywords
membrane
module
primary
flow path
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018154114A
Other languages
Japanese (ja)
Inventor
征一 真鍋
Seiichi Manabe
征一 真鍋
健児 佐々木
Kenji Sasaki
健児 佐々木
保武 中川
Yasutake Nakagawa
保武 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Special Membrane Dev Co Ltd
Nihon Special Membrane Development Co Ltd
Original Assignee
Nihon Special Membrane Dev Co Ltd
Nihon Special Membrane Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Special Membrane Dev Co Ltd, Nihon Special Membrane Development Co Ltd filed Critical Nihon Special Membrane Dev Co Ltd
Priority to JP2018154114A priority Critical patent/JP2020028819A/en
Publication of JP2020028819A publication Critical patent/JP2020028819A/en
Pending legal-status Critical Current

Links

Abstract

To provide a design of a pore diffusion membrane module embodying performances predicted by pore diffusion membrane separation techniques and to provide a device taking advantages of the module.MEANS FOR SOLVING THE PROBLEM: A module where a primary side flow passage is designed so that dynamic pressure loaded to a porous membrane constituting the wall part of the primary side flow passage of a pore diffusion membrane module becomes zero (a design such that a cloth-like material showing the roll of a valve in a flow passage in which a liquid is flown from a laminar flow preparation region to a pore diffusion region is added, and the like) and the laminar flow preparation region and the pore diffusion region are connected from the lower part of the flow passage in series and a device stably applying hydrostatic pressure to the module as transmembrane pressure difference are provided.SELECTED DRAWING: Figure 1

Description

本発明モジュールおよび同モジュールを適用した本発明の膜分離装置は流動分別
効果を最大限に生かし、水溶液中に溶解あるいは分散している高分子物質および微生物を
含めた微粒子成分を分離・分画・除去・濃縮する膜モジュールと膜分離装置に関する。本
発明における流動分別とは、平滑な膜表面に沿って水溶液を層流状態で流す場合に、水溶液
中に存在する粒子成分がその大きさに依存して流れの中心部に向っては分布することを意
味する。この現象は(a)膜面との衝突による膜からの抗力(非特許文献1参照,そこ
では膜壁との衝突による立体因子と表現されている)と(b)粒子の流体中の回転に伴なう
揚力の作用の結果生じる層流内部での粒子の流れの中心部に向かう軸集中効果と、粒子の
拡散に伴なう粒子密度分布の均一化の効果(非特許文献1ではこれらの効果をまとめて流
動分別因子と表現されている)で説明される。
The module of the present invention and the membrane separation device of the present invention to which the module is applied make the most of the flow separation effect and separate / fractionate / particulate components including macromolecules and microorganisms dissolved or dispersed in an aqueous solution. The present invention relates to a membrane module for removing and concentrating and a membrane separation device. Flow separation in the present invention means that when an aqueous solution flows in a laminar state along a smooth membrane surface, the particle components present in the aqueous solution are distributed toward the center of the flow depending on the size thereof. Means that. This phenomenon is caused by (a) drag from the membrane due to collision with the membrane surface (see Non-Patent Document 1, where it is expressed as a steric factor due to collision with the membrane wall) and (b) rotation of particles in the fluid. The effect of the axial concentration toward the center of the flow of the particles inside the laminar flow resulting from the action of the accompanying lift, and the effect of the uniformization of the particle density distribution accompanying the diffusion of the particles (Non-Patent Document 1 discloses these effects) The effects are collectively expressed as flow fractionation factors).

本発明で目的とする孔拡散平膜分離モジュールとは孔拡散膜分離を起こさせるため
の下記の必要条件を満足している膜分離モジュールであり、膜としては中空糸膜やチュー
ブラ状の膜ではない平面形状を持つ多孔性膜を意味する。多孔性膜とは平均孔径が10 nm
以上、空孔率30 %以上でエタノール中でのバブルポイントが0.1気圧以上で、透過型電子
顕微鏡により孔の存在が確認できる膜を意味する。モジュールが孔拡散を実現するため一
次側の流路の形状の必要条件とは以下の内容である。モジュール内の一次側流路の形状と
して一次側流路内の液体(これを以降一次側液体と略称)の流れが層状となるように流路を
形成する壁面が平滑で、壁面の一部をなす平膜の膜表面の凹凸が10 μ以下である。流路が
描く流線は滑らかな直線あるいは緩やかな曲線である。一次側流路は液体の入口、次いで層
流準備域と孔拡散領域と連なる。層流準備域と孔拡散領域との長さ(L)は50 mm以上で
1500 mm以下で該流路の厚さ(D)は4mm以下1mm以上である。
The pore diffusion flat membrane separation module intended in the present invention is a membrane separation module that satisfies the following requirements for causing pore diffusion membrane separation, and the membrane is a hollow fiber membrane or a tubular membrane. Means a porous membrane with no planar shape. Porous membrane has an average pore size of 10 nm
As described above, it means a film having a porosity of 30% or more, a bubble point in ethanol of 0.1 atm or more, and the presence of pores can be confirmed by a transmission electron microscope. The necessary conditions for the shape of the primary side flow path in order for the module to realize hole diffusion are as follows. The primary side flow path in the module has a smooth wall that forms a flow path such that the flow of the liquid in the primary side flow path (hereinafter, abbreviated as the primary side liquid) is laminar. The unevenness of the film surface of the formed flat film is 10 μm or less. The flow line drawn by the flow path is a smooth straight line or a gentle curve. The primary flow path is connected to the liquid inlet, and then to the laminar flow preparation area and the hole diffusion area. The length (L) between the laminar flow preparation area and the pore diffusion area is 50 mm or more.
When the thickness is 1500 mm or less, the thickness (D) of the flow channel is 4 mm or less and 1 mm or more.

本発明で目的とする孔拡散平膜分離モジュールに装填できる平膜は以下の必要条件
を満足していなくてはならない。すなわち外膜の膜表面(一次側流路を形成する膜面を膜表
面と定義する)の平滑度は10μm以下で、モジュール内の平膜には10μm以上の径のピン
ホールは存在しないことである。膜表面の平滑度の要求は膜表面を流れる一次側液体の膜
表面での流れが層流であることを確実にするためである。ピンホールの存在の否定は、膜表
面に衝突する粒子成分の衝突角の乱れを防止するためである。またエタノール中でのバブ
ルポイントの要求は孔拡散膜分離処理事に負荷される膜間差圧の最大値0.1気圧において
も平膜の孔構造が破壊されないことを確実にする。
The flat membrane that can be loaded into the pore diffusion flat membrane separation module intended in the present invention must satisfy the following requirements. That is, the smoothness of the membrane surface of the outer membrane (the membrane surface forming the primary channel is defined as the membrane surface) is 10 μm or less, and the flat membrane in the module has no pinhole with a diameter of 10 μm or more. is there. The requirement for the smoothness of the film surface is to ensure that the flow of the primary liquid flowing on the film surface on the film surface is laminar. The denial of the existence of the pinhole is to prevent disturbance of the collision angle of the particle component colliding with the film surface. The requirement of a bubble point in ethanol also ensures that the pore structure of the flat membrane is not destroyed even at the maximum transmembrane pressure of 0.1 atm applied to the pore diffusion membrane separation process.

本発明で目的とする孔拡散平膜モジュールを適用した膜分離装置では下記の運転条
件が可能なモジュールの環境であることが必要である。すなわちモジュール内の平膜の全
域にわたって膜間差圧は運転時には常に0.2気圧以内である。この条件は運転開始時あるい
は停止時にも満足させなくてはならない。通常の運転では膜間差圧は0.1気圧以下であり、
膜表面での一次側液体のひずみ速度が10/秒以上となり、同時に層流となる。さらにこれら
の運転条件が同時に必要条件を満足しているのを確認するには該平膜を通過する一次側液
体の速度と該一次側液体の流れ速度との比が0.2以下であることも必要である。
In the membrane separation apparatus to which the pore diffusion flat membrane module intended in the present invention is applied, it is necessary that the environment of the module can be operated under the following operating conditions. In other words, the transmembrane pressure is always within 0.2 atm during operation over the entire flat membrane in the module. This condition must be satisfied when starting or stopping operation. In normal operation, the transmembrane pressure is 0.1 atm or less,
The strain rate of the primary liquid on the membrane surface becomes 10 / sec or more, and at the same time, it becomes laminar. Furthermore, in order to confirm that these operating conditions simultaneously satisfy the necessary conditions, the ratio of the velocity of the primary liquid passing through the flat membrane to the flow velocity of the primary liquid also needs to be 0.2 or less. It is.

本発明の膜分離モジュールおよび膜分離装置では、通常の0.1気圧以下の低い静水圧
(位置水頭差)としての膜間差圧が膜の全面にほぼ均等に負荷され、かつ膜処理対象液(一
次側液体を構成)が層流で該膜表面上に流れる。この流れによって生じる粒子の回転運動の
働く揚力はその原因である回転運動と粘度とが粒子径依存性を持つ。そのため流れの中心
に向かった粒子径に依存する揚力の反映である流動分別効果と粒子の持つブラウン運動に
基づく拡散とのバランスにより粒子をその大きさに対応する膜表面からの距離に局在化さ
せる。この局在化に注目して膜を利用して局在化した粒子を順次回収することができれば、
膜による粒子分画が可能となる。すなわち、本発明では従来の膜濾過技術では想像できない
作用効果である流動分別効果を強調した膜分離技術である孔拡散膜分離技術の実用化例と
して膜分離モジュールと膜分離装置とを提供する。
In the membrane separation module and the membrane separation device of the present invention, the transmembrane pressure as a normal low hydrostatic pressure (positional head difference) of 0.1 atm or less is almost evenly applied to the entire surface of the membrane, and the liquid to be treated (primary liquid) Side liquid) flows over the membrane surface in a laminar flow. As for the lift exerted by the rotational motion of the particles generated by this flow, the rotational motion and the viscosity, which are the causes thereof, have a particle size dependence. Therefore, the particles are localized at a distance from the membrane surface corresponding to the size by balancing the flow fractionation effect, which reflects the lift dependent on the particle diameter toward the center of the flow, and the diffusion based on the Brownian motion of the particles. Let it. Focusing on this localization, if it is possible to sequentially recover the localized particles using a membrane,
Particle separation by the membrane becomes possible. That is, the present invention provides a membrane separation module and a membrane separation apparatus as a practical example of a pore diffusion membrane separation technique which is a membrane separation technique emphasizing a flow separation effect which is an operation effect which cannot be imagined by a conventional membrane filtration technique.

膜を利用した物質の分離精製技術の現状は、膜間差圧を駆動力として膜を介した物
質輸送の際に膜内部の孔を利用したふるい機構により物質をその大きさに対応した分離、
すなわち膜濾過が大部分である。膜濾過では熱や化学薬品に対して不安定で変性しやすい
物質を分離精製する固液分離に適する。ただし成分物質の3種以上を連続的に分画分取
する技術には膜濾過法は適さない。分画分取には膜の孔中に除去対象物質を捕捉する機構
を基本とする膜濾過法は適さない。膜濾過法以外にタンパク質や糖タンパク質などの生理
活性物質を分離精製する方法として、遠心分離法、各種クロマトグラフィ、吸着法、透析法、
沈殿・溶解法、非対称フィールドフローフラクショネーション法が存在する。解析目的で
は少量の試料の採取で良いのでこれらの技術で目的は達成される。しかし大量の処理が必
要な場合には沈殿・溶解法以外には対処できない。本発明の膜分離モジュールおよび膜分離
装置では膜の持つふるい機構を利用することなく、それを広い概念で包括される空間的な
寸法効果(Steric factor)を利用する。非特許文献1でこの効果が理論的に予測されている。
空間的な寸法効果は粒子を飛翔体とみなし、この飛翔体に乗って膜の孔や膜表面との衝突
による粒子の運動によって説明される。この空間的な寸法効果とふるい効果との違いの主
な内容を非特許文献1の理論に従ってまとめると以下の2点になる。
1. 膜の孔内に侵入できる粒子の径はふるい効果では孔径と一致するのに対して寸法効果
では孔径の1/5~1/10である。
2. 膜による粒子除去性能はふるい効果ではピンホールの影響は非常に大きいが寸法効果ではほとんど認められない。
上記2点が確認できれば問題とする膜モジュールおよび膜分離装置が本発明の孔拡散であるかあるいは膜濾過であるかの判定が可能である。
The current state of separation and purification technology for substances using membranes is the separation of substances according to their size by a sieving mechanism using pores in the membrane when transporting substances through the membrane using the transmembrane pressure as a driving force.
That is, membrane filtration is the majority. Membrane filtration is suitable for solid-liquid separation, which separates and purifies substances that are unstable and easily denatured by heat and chemicals. However, the membrane filtration method is not suitable for a technique for continuously fractionating and separating three or more component materials. A membrane filtration method based on a mechanism for trapping a substance to be removed in the pores of a membrane is not suitable for fractionation. In addition to membrane filtration, methods for separating and purifying biologically active substances such as proteins and glycoproteins include centrifugation, various types of chromatography, adsorption, dialysis,
Precipitation / dissolution method and asymmetric field flow fractionation method exist. The purpose is achieved by these techniques because a small amount of sample is sufficient for analysis purposes. However, when a large amount of treatment is required, it cannot be dealt with other than the precipitation / dissolution method. In the membrane separation module and the membrane separation apparatus of the present invention, a spatial dimensional effect (Steric factor) that is covered by a broad concept is used without using a sieving mechanism of the membrane. This effect is theoretically predicted in Non-Patent Document 1.
The spatial dimensional effect considers particles as flying objects, and is described by the movement of the particles due to collision with the holes and the surface of the film on the flying objects. The main contents of the difference between the spatial size effect and the sieving effect are summarized in the following two points according to the theory of Non-Patent Document 1.
1. The diameter of the particles that can enter the pores of the membrane is equal to the pore diameter in the sieving effect, but is 1/5 to 1/10 of the pore diameter in the dimensional effect.
2. In the particle removal performance of the film, the effect of the pinhole is very large in the sieving effect, but is hardly recognized in the size effect.
If the above two points can be confirmed, it is possible to determine whether the membrane module and the membrane separation apparatus in question are the pore diffusion of the present invention or the membrane filtration.

膜濾過法が抱える問題点として、孔の目詰まり現象がある。この現象は膜による分離機構としてふるい機構を利用する限り必然的に起る。目詰まりを防止する膜分離法として従来から透析法が採用されていた。該透析法では透過物質の膜への溶解とそれに引き続く膜の実体部での拡散(この拡散を溶解・拡散機構と略称)のみが利用される。溶解・拡散機構では膜内部での拡散係数が極端に小さいため連続化した大量処理には利用されない。孔拡散膜分離は膜の内部の孔内の溶媒(水溶液では通常は水)中での拡散機構を利用した膜透過が行われる。そのため孔拡散膜分離法では低分子物質の膜透過速度は溶解・拡散機構の場合の約1万倍となる(非特許文献2および特許文献1)。本発明は膜濾過法および透析法の上述の欠点を無くする膜分離技術として開発された(特許文献1では流動分別効果が起らない条件下でしかも膜間差圧を零にした場合の孔拡散法で現在では定常孔拡散法と呼称されている)。       A problem with the membrane filtration method is the clogging of pores. This phenomenon necessarily occurs as long as a sieving mechanism is used as a separation mechanism by a membrane. A dialysis method has conventionally been employed as a membrane separation method for preventing clogging. In the dialysis method, only dissolution of a permeated substance in a membrane and subsequent diffusion in a substantial part of the membrane (this diffusion is abbreviated as a dissolution / diffusion mechanism) is used. The dissolution / diffusion mechanism is not used for continuous mass processing because the diffusion coefficient inside the film is extremely small. In the pore diffusion membrane separation, membrane permeation is performed using a diffusion mechanism in a solvent (usually water in an aqueous solution) in pores inside the membrane. Therefore, in the pore diffusion membrane separation method, the membrane permeation rate of the low molecular substance is about 10,000 times that of the dissolution / diffusion mechanism (Non-Patent Document 2 and Patent Document 1). The present invention was developed as a membrane separation technique which eliminates the above-mentioned drawbacks of the membrane filtration method and the dialysis method. The diffusion method is now called the steady hole diffusion method).

特許文献1および非特許文献2に紹介されている孔拡散法は定常孔拡散法である。この方法では溶液媒体(通常は水)と溶質とのいずれもが孔中で拡散機構で移動する特徴を持ち、大きさにもとずいた溶質分子に原因する孔の目詰まりの問題は完全に解消される。拡散係数の差に基づく物質間の分離速度は溶解・拡散機構の場合の約1万倍となるので分離速度の小さい問題も解消されている。しかし、定常孔拡散法では成分分子の濃縮はできない。定常孔拡散では膜間差圧は事実上零であり、そのために定常孔拡散モジュールでは一次側の流体を流動させるための液送ポンプはモジュールの一次側流体の入口部と出口部との流速をそろえることによって膜濾過が起らない条件を強制的に与える。定常孔拡散では平膜および中空糸膜のいずれもが利用できる。利用される膜が中空糸膜の場合には一次側の液体を中空糸の内部に流動させるために常に入口側の圧力は出口側の圧力以上となり定常孔拡散を30cm以上の長さを有する中空糸膜で実施するのはむつかしい。例えば中空糸膜ではその内径が0.5mmの場合では中空糸長として7 cm以下でないと一次側の液体を流すための圧力による濾過での輸送(粘性流れによる輸送)が全成分の輸送量の10%を越えると目詰まりが進行し、かつ粒子除去性が極端に低下する。       The pore diffusion method introduced in Patent Literature 1 and Non-Patent Literature 2 is a steady pore diffusion method. This method has a feature that both the solution medium (usually water) and the solute move in the pores by a diffusion mechanism, and the problem of pore clogging caused by solute molecules of any size is completely eliminated. Will be resolved. Since the separation speed between substances based on the difference in diffusion coefficient is about 10,000 times that in the case of the dissolution / diffusion mechanism, the problem of low separation speed is also solved. However, the steady pore diffusion method cannot concentrate the component molecules. In steady-state pore diffusion, the transmembrane pressure is practically zero.Therefore, in the steady-pore diffusion module, the liquid feed pump for flowing the primary fluid flows at the inlet and outlet of the primary fluid in the module. The alignment forces the conditions under which membrane filtration does not occur. In steady-state pore diffusion, both flat membranes and hollow fiber membranes can be used. When the membrane used is a hollow fiber membrane, the pressure on the inlet side is always higher than the pressure on the outlet side in order to allow the liquid on the primary side to flow inside the hollow fiber, and the steady hole diffusion is 30 cm or longer. It is difficult to carry out with a thread membrane. For example, in the case of a hollow fiber membrane having an inner diameter of 0.5 mm, if the length of the hollow fiber is not less than 7 cm, the transport by filtration by pressure for flowing the liquid on the primary side (transport by viscous flow) is 10% of the transport amount of all components. %, The clogging proceeds and the particle removability is extremely reduced.

流動分別を利用した孔拡散平膜分離モジュールで特に重要なのは一次側流路の設計である。下記に流路に関連した言語の定義を示す。
一次側;平膜の表面に接する側、二次側;平膜の裏面に接する側。
一次側液体;一次側の流路を満たす液体、
一次側流路;被処理液体が平膜の表面を流路の壁面として持つ回路(一次側回路)に沿って流れるモジュール内の道筋。
一次側回路;一次側液体の流れを定める空間の連続体で、膜分離装置を構成する各種操作部を連結する液体の流れの中でモジュールの一次側流路と直接連結する回路である。
二次側液体、二次側流路、二次側回路;それぞれ一次側で定義された内容を平膜の裏面に接する側で定義される。
Of particular importance in the pore diffusion flat membrane separation module using flow separation is the design of the primary flow path. The definition of the language related to the channel is shown below.
Primary side; side in contact with the surface of the flat membrane; secondary side; side in contact with the back side of the flat membrane.
Primary liquid; liquid filling the primary flow path,
Primary side flow path: A path in a module in which the liquid to be treated flows along a circuit (primary side circuit) having a flat membrane surface as a wall surface of the flow path.
Primary circuit: A continuous body of space that defines the flow of the primary liquid, and is a circuit that is directly connected to the primary flow path of the module in the flow of the liquid that connects the various operation units that constitute the membrane separation device.
Secondary liquid, secondary flow path, and secondary circuit; the contents defined on the primary side are defined on the side in contact with the back surface of the flat membrane.

定常孔拡散膜分離技術の問題点を解消し、被処理液体中の微粒子の除去あるいは微粒子の濃縮を目的とした孔拡散法として流動分別型の孔拡散法が検討され始めた(特許文献2参照)。この技術では一次側の液体を膜表面に沿って平行に流しつつ、わずかに膜間差圧(静水圧差としての差圧)を負荷し、この膜間差圧に原因して膜を介して膜の裏面側に液溶媒を流出させる。この流出する該液溶媒(液体中に分散した粒子成分は存在せず実質的には溶液中の溶媒のみで構成される。回収された二次側液体と定義される。)を粒子除去液体として利用し、処理後の一次側液体を粒子濃縮液体として利用する。この技術の特徴は一次側および二次側の液体の流れ速度を制御することにより、間接的に膜間差圧を0.1気圧以下になるように制御している点にある。この制御方式の有効性は理論的には、非特許文献1において孔内に流入可能な一次側液体の膜表面からの距離yと粒子の膜表面への衝突角αとが、一次側液体の流れ速度(膜透過速度に等しい)と、二次側の液体の膜透過速度の比によって決定されることより明らかにされていた。この技術の優れている点として、膜間差圧を一次側液体の流速ポンプのポンプ圧で制御するのではなく、二次側液体の流れ速度を制御することにより間接的に膜間差圧を制御している。二次側流体の流れ速度をコック等で簡単に制御できるので、この方式での制御は被処理対象液の液量が多い場合に適する。一方、二次側流路が密閉系を形成(二次側流路内の体積が一定)していることがこの方式が機能するのに必要条件である。そのためコック等での操作と膜間差圧の応答との間に時間的な遅れが生じる。流動分別型孔拡散法のモジュールには膜間差圧以外にも共通した必要条件が与えられている。すなわち、一次側液体を層流にすることと二次側液体の流れ速度の確保である。層流化のためには一次側流路の層流化用の独自の設計と二次側液体の流れ速度の確保のために平膜の独自の多孔体の支持体を確保しなくてはならない。       The flow separation type pore diffusion method has begun to be studied as a pore diffusion method for eliminating the problem of the stationary pore diffusion membrane separation technology and removing or concentrating fine particles in the liquid to be treated (see Patent Document 2). ). In this technique, a liquid on the primary side flows in parallel along the membrane surface while applying a slight transmembrane pressure (differential pressure as a hydrostatic pressure difference). The liquid solvent flows out to the back side of the membrane. The outflowing liquid solvent (consisting essentially of the solvent in the solution without any particulate components dispersed in the liquid, defined as the recovered secondary liquid) is defined as the particle-removing liquid. The primary liquid after the treatment is used as the particle concentrated liquid. The feature of this technique is that the transmembrane pressure is indirectly controlled to be 0.1 atm or less by controlling the flow velocity of the liquid on the primary side and the secondary side. Theoretically, the effectiveness of this control method is that the distance y from the film surface of the primary liquid that can flow into the hole and the collision angle α of the particles with the film surface in Non-Patent Document 1 are determined by the primary liquid. It was clarified by being determined by the ratio of the flow velocity (equal to the membrane permeation rate) and the membrane permeation rate of the liquid on the secondary side. The advantage of this technology is that the transmembrane pressure is not controlled by the pump pressure of the primary liquid flow rate pump, but is controlled indirectly by controlling the flow rate of the secondary liquid. Controlling. Since the flow speed of the secondary fluid can be easily controlled with a cock or the like, this type of control is suitable when the amount of the liquid to be processed is large. On the other hand, it is a necessary condition for this system to function that the secondary flow path forms a closed system (the volume in the secondary flow path is constant). Therefore, a time delay occurs between the operation with the cock or the like and the response of the transmembrane pressure difference. Common requirements are given to the modules of the flow separation type pore diffusion method in addition to the transmembrane pressure difference. That is, laminating the primary liquid and securing the flow velocity of the secondary liquid. For laminarization, a unique design for laminarization of the primary flow path and a unique porous support of the flat membrane must be secured to ensure the flow velocity of the secondary liquid .

K.Kamide, S.Manabe, “Mechanism of Permselectivity of Porous Polymeric Membranes in Ultrafiltration Process, Polymer J., 13(No.5), pp459-479(1981).K. Kamide, S. Manabe, “Mechanism of Permselectivity of Porous Polymeric Membranes in Ultrafiltration Process, Polymer J., 13 (No. 5), pp459-479 (1981). 藤岡留美子、吉田雅子、吉村知珠、山村知子、真鍋征一、福岡女子大学人間環境学部紀要、29巻、13頁〜20頁、1998年。Rumiko Fujioka, Masako Yoshida, Tomoko Yoshimura, Tomoko Yamamura, Seiichi Manabe, Bulletin of the Faculty of Human Environmental Studies, Fukuoka Women's University, Vol. 29, pp. 13-20, 1998. 特許公開2006-055780Patent publication 2006-055780 特許公開2015-10074Patent publication 2015-10074

流動分別効果が十分に生かされた孔拡散膜分離モジュールでは以下の項が理論的に予測されている(非特許文献1で開示されている)。
(1) 平膜の平均孔径の1/5(ひずみ速度10/秒の場合)〜1/10(ひずみ速度100/秒の場合)以上の径を持つ粒子は流動分別効果のために膜の孔を通過できない。粒子対数除去係数LRVの表示では膜表面における一次側液体のひずみ速度が10/秒の場合にはLRVは2〜3、ひずみ速度が100/秒の場合にはLRVは3〜4となる。
(2) 粒子の膜表面での衝突角度αは一次側液体の平均の流れ速度と膜を介した一次側から二次側への平均の流れ速度(いわゆる膜透過速度)の比と膜の空孔率とによってほぼ一義的に決定される平均値(孔径分布の形に依存しない平均値)の性格を持つ。αを大きくすると(例えば70度以上)粒子径が孔径の1/2以上でも粒子は孔を通過できない。
The following items are theoretically predicted in the pore diffusion membrane separation module in which the flow separation effect is sufficiently utilized (disclosed in Non-Patent Document 1).
(1) Particles having a diameter of 1/5 (at a strain rate of 10 / sec) to 1/10 (at a strain rate of 100 / sec) or more of the average pore diameter of the flat membrane are used for flow separation effects. Can not pass. In the display of the particle logarithm removal coefficient LRV, when the strain rate of the primary liquid on the film surface is 10 / sec, LRV is 2-3, and when the strain rate is 100 / sec, LRV is 3-4.
(2) The collision angle α of the particles on the membrane surface is the ratio of the average flow velocity of the primary liquid to the average flow velocity from the primary side to the secondary side through the membrane (so-called membrane permeation velocity), and the empty space of the membrane. It has the characteristic of an average value (an average value that does not depend on the shape of the pore size distribution) almost uniquely determined by the porosity. If α is increased (for example, 70 degrees or more), particles cannot pass through the pores even if the particle diameter is 1/2 or more of the pore diameter.

有効膜面積0.2平方メートルおよび0.0057平方メートルの孔拡散膜モジュールに再生セルロース多孔膜の2種(平均孔径が500 nmおよび80 nmの二種)のいずれかを装填し、膜間差圧を0.05気圧で膜表面における一次側液体のひずみ速度を10/秒とした場合に以下に示す実験結果が得られた。処理対象液はレトロウイルスを含む培養液であった。
(a) 細菌に対する除去性能(対数除去性能LRVで表示)は平均孔径500 nmの膜では膜面積0.2平方メートルのモジュール(大モジュールと略称)では常にLRV≧6であったが、0.0057平方メートルのモジュール(小モジュール)ではLRV<5のモジュールも存在した。すなわち細菌の除去性能については上述の理論的予測に近い。
(b) ウイルスに対する除去性能(ウイルス種としてはレトロウイルスで径は70 ~ 80 nm)LRVは平均孔径500 nmの平膜を装填した場合には2.0 (大モジュール)〜0.5 (小モジュール)、平均孔径80 nmの平膜では4以上(大モジュール)~ 2.5 (小モジュール)であった。
(a) と(b)との実験結果は理論的予測の(1)と (2)と定性的には一致した結果で
あった。しかし定量的には理論からの乖離は大きく孔拡散膜分離技術の実用化(実用化のためには、この技術の再現性および粒子の分離機構の妥当性について、理論的および経験的に確認できていることが前提となる)には以下の具体的課題を残す。
Either of two types of regenerated cellulose porous membranes (two types with average pore diameters of 500 nm and 80 nm) are loaded into a pore diffusion membrane module with an effective membrane area of 0.2 square meters and 0.0057 square meters, and a transmembrane pressure difference of 0.05 atm is applied. The following experimental results were obtained when the strain rate of the primary liquid on the surface was 10 / sec. The liquid to be treated was a culture containing a retrovirus.
(A) The removal performance against bacteria (expressed as logarithmic removal performance LRV) was always LRV ≧ 6 for a module with a membrane area of 0.2 square meters (abbreviated as a large module) for a membrane with an average pore diameter of 500 nm, but a module of 0.0057 square meters ( (Small module), there was also a module with LRV <5. That is, the performance of removing bacteria is close to the theoretical prediction described above.
(B) Virus removal performance (retrovirus as a virus type, 70 to 80 nm in diameter) LRV is 2.0 (large module) to 0.5 (small module) when a flat membrane with an average pore diameter of 500 nm is loaded, and average For a flat membrane with a pore size of 80 nm, the number was 4 or more (large module) to 2.5 (small module).
The experimental results of (a) and (b) were qualitatively consistent with the theoretical predictions (1) and (2). However, quantitatively, the deviation from the theory is large, and the practical application of the pore diffusion membrane separation technology (for practical use, the reproducibility of this technology and the validity of the particle separation mechanism can be confirmed theoretically and empirically. The following specific issues remain.

本発明で解決すべき課題としては上述の検討より以下のように整理できる。すなわち、(イ)前記(a)および(b)に示したように、実測値からの乖離の原因を明らかにし、その解消法を示す。(ロ)孔拡散膜モジュールとして予測される機能を実現させる一次側流路の設計の基本を明確にすること、(ハ)平膜の裏面側の構造についての適正な設計を行うこと、(ニ)二次側流路の構造の必要条件の基本を示すこと、(ホ)孔拡散膜モジュールの特性を生かす装置を構成する部品を明らかにし、それぞれの部品の連結方式と配置の特徴とを明確にする。       Problems to be solved by the present invention can be summarized as follows from the above examination. That is, (a) As shown in (a) and (b) above, the cause of the deviation from the actually measured value is clarified, and a method for solving the problem is shown. (B) To clarify the basics of the design of the primary flow path that realizes the function expected as the hole diffusion membrane module, (c) To perform an appropriate design for the structure on the back side of the flat membrane, (d) ) To show the basic requirements for the structure of the secondary flow path, (e) To clarify the components that make up the device that makes use of the characteristics of the hole diffusion membrane module, and to clarify the connection method and arrangement characteristics of each component. To

本発明膜モジュールおよび装置の最大の特徴は、孔拡散膜分離の特徴を発揮するように一次側流路の設計を行い、濾過による膜透過現象の寄与を極小化している点にある。同一の孔特性を持つ平膜を有効膜面積を異にする二種の膜モジュールに装填し粒子の除去性能を検討した。その結果、大きな膜面積を持つモジュールの方が、小さなモジュールに比べて粒子除去性能が大きくなるといる膜濾過モジュールの除去性能とは逆の現象が起きる。この逆の現象が起る理由が平膜に負荷される圧力の内の動圧力に原因することが明らかとなった。すなわち平膜に負荷される圧力として、静水圧と動圧力との二種類があり、動圧力の寄与が大きくなるほど粒子の除去性能が小さくなる現象を見い出し本発明に到った。一次側流路の約半分を構成する該平膜のすべての箇所で動圧を事実上零にするように一次側流路が設計されていることが本発明の最大の特徴である。膜表面で動圧が発生している箇所の膜面積は孔拡散膜分離が行われている膜表面の膜面積の一万分の一以下でなくてはならない。       The most significant feature of the membrane module and apparatus of the present invention is that the primary side flow path is designed so as to exhibit the feature of pore diffusion membrane separation, and the contribution of the membrane permeation phenomenon by filtration is minimized. Flat membranes with the same pore characteristics were loaded into two types of membrane modules with different effective membrane areas, and the particle removal performance was examined. As a result, a phenomenon that is opposite to the removal performance of the membrane filtration module, in which a module having a large membrane area has a higher particle removal performance than a small module, occurs. It has been clarified that the reverse phenomenon is caused by the dynamic pressure of the pressure applied to the flat membrane. That is, there are two types of pressure applied to the flat membrane: hydrostatic pressure and dynamic pressure, and the present inventors have found a phenomenon that the greater the contribution of the dynamic pressure, the smaller the particle removal performance becomes. The most important feature of the present invention is that the primary flow path is designed so that the dynamic pressure is substantially zero at all points of the flat membrane constituting about half of the primary flow path. The area of the membrane where the dynamic pressure is generated on the membrane surface must be less than 1 / 10,000 of the membrane area of the membrane surface where the pore diffusion membrane separation is performed.

平膜表面に負荷される動圧を零にするには、一次側液体の流線が平膜表面に沿って平行でなくてはならない。特にモジュールへの液体の流入口の方向が膜平面に可能な限り平行に設定される必要がある。一次側液体の流れが層流であるのが前提であり、その層流の流線の方向が膜表面に平行であれば動圧は必然的に零となる。動圧が平膜表面のすべての点で零となると、微粒子の除去性能(LRVで表示)は粒子径が該微粒子の十倍の径の粒子での膜濾過の場合のLRVに近くなる。動圧が膜表面のいずれの箇所でも実質的に零にする具体策の一つとして流体を膜状物に垂直に衝突させてその運動エネルギを低下させる方法がある。例えば一次側液体の流線の方向が膜表面で変化する場所があれば、その箇所に不織布のように柔軟な膜状物との衝突で流れ方向の速度を零にする(第1図にこの不織布(図中9)に例示している)。       In order to reduce the dynamic pressure applied to the flat membrane surface to zero, the stream line of the primary liquid must be parallel along the flat membrane surface. In particular, the direction of the liquid inlet to the module must be set as parallel as possible to the membrane plane. It is premised that the flow of the primary liquid is laminar, and if the direction of the streamline of the laminar flow is parallel to the membrane surface, the dynamic pressure is necessarily zero. When the dynamic pressure becomes zero at all points on the surface of the flat membrane, the performance of removing fine particles (indicated by LRV) becomes close to the LRV in the case of membrane filtration using particles having a particle diameter ten times larger than the fine particles. As a specific measure for making the dynamic pressure substantially zero at any point on the membrane surface, there is a method of lowering the kinetic energy of the fluid by vertically colliding the fluid with the membrane. For example, if there is a location where the direction of the streamline of the primary liquid changes on the membrane surface, the velocity in the flow direction is reduced to zero by collision with a flexible membrane such as a nonwoven fabric at that location (see FIG. 1). Nonwoven fabric (illustrated as 9 in the figure)).

本発明の第2の特徴は、膜モジュール内の一次側の流路は、流路に沿って層流準備域、続いて孔拡散領域とが直列的に直接連結している点にある。一次側の流路の一部は平膜の表面で構成されている。該平膜表面は孔拡散領域にのみ存在し層流準備域では物質の膜透過は起らない。膜モジュール内に流入した一次側液体を孔拡散領域へと層流状態で導くのみ層流準備域は重要な役割を持つ。すなわち層流準備域の入口部では液体の」流れの断面形気体状は通常は円形状あるいは楕円形状であるが該準備域の出口部である本発明モジュールの孔拡散領域では、断面形状は帯状である。層流準備域では該断面形状のK変化を行う役割を持つ。層流準備域が該モジュールの入口部と同一の液面レベルあるいはそれ以下の液面レベルを持つように該モジュールを設置すれば、一次側液体の流れの断面形状の変化を重力の影響で同一液面レベルで行うことが可能となる。また該層流準備域の体積は該モジュールの分離と無関係な空間を与えることになるので小さいほど望ましい。       A second feature of the present invention resides in that the flow path on the primary side in the membrane module is directly connected in series with the laminar flow preparation area and subsequently the hole diffusion area along the flow path. A part of the primary-side channel is constituted by the surface of the flat membrane. The flat membrane surface is present only in the pore diffusion region, and no material permeates in the laminar flow preparation region. The laminar flow preparation region plays an important role only in guiding the primary liquid flowing into the membrane module to the pore diffusion region in a laminar flow state. In other words, the cross-sectional shape of the liquid flow at the inlet of the laminar flow preparation region is usually circular or elliptical, but the cross-sectional shape is a band shape in the hole diffusion region of the module of the present invention which is the outlet of the preparation region. It is. In the laminar flow preparation region, it has a role of changing the cross-sectional shape by K. If the module is installed so that the laminar flow preparation area has the same liquid level as the inlet of the module or lower, the change in the cross-sectional shape of the primary liquid flow is the same under the influence of gravity. This can be performed at the liquid level. Also, the volume of the laminar flow preparation area is preferably as small as possible because it provides a space unrelated to the separation of the module.

本発明モジュールの第3の特徴は、平膜の裏面側に独自の流路(すなわち二次側流路)を持つ点にある。二次側流路用の空間部は該平膜の裏面が凹凸を持つ構造であればこの凹凸によって与えられる。あるいは該平膜の裏面を多孔性の平板状の支持体を加えることによって確保される。平膜裏面側の静水圧が膜間差圧を変動させるので、通常は大気圧とすることにより二次側流路の設計は簡単となる。平膜裏面での静水圧を大気圧とすることにより、一次側流路の圧力の制御のみで孔拡散が実施される。一次側の流路の圧力を一次側の静発生を防止できる。     The third feature of the module of the present invention resides in that it has a unique flow path (ie, a secondary flow path) on the back side of the flat membrane. The space for the secondary flow path is provided by the unevenness if the flat film has a structure in which the back surface has unevenness. Alternatively, the back surface of the flat membrane is secured by adding a porous flat support. Since the hydrostatic pressure on the back side of the flat membrane fluctuates the transmembrane pressure, the design of the secondary flow path is usually simplified by setting it to atmospheric pressure. By setting the hydrostatic pressure at the back of the flat membrane to atmospheric pressure, the pore diffusion is performed only by controlling the pressure of the primary flow path. The pressure in the primary flow path can be prevented from generating static on the primary side.

平膜の裏面に凹凸を与える方法として、不織布状を該平膜の裏面の支持体として装填する方法がある。この方法では平膜の静水圧による変形を防止できる。凹凸を与える方法として該平膜裏面側の流路の一部を固体の平板で確保する方法がある。この場合に該平板の表面に凹凸を与えると同時に二次側流路を設計することが可能である。       As a method of providing irregularities on the back surface of the flat film, there is a method of loading a nonwoven fabric as a support on the back surface of the flat film. With this method, deformation of the flat membrane due to hydrostatic pressure can be prevented. As a method of providing the unevenness, there is a method of securing a part of the flow path on the back side of the flat membrane with a solid flat plate. In this case, it is possible to design the secondary channel at the same time as providing the surface of the flat plate with irregularities.

本発明の第4の特徴は、本発明モジュールを組込み装置化する際に膜モジュールの持つ孔拡散膜分離特性を発揮するための部品と該部品の組み合せで構成される装置によって孔拡散膜分離が再現性良く、また回収液の特性が予測される装置になる点にある。すなわち、一次側回路用の部品として、(イ)該モジュールの一次側流路の入口あるいは出口に連結して液面レベル制御部、(ロ)被処理液の位置水頭差を与える液体輸送部、(ハ)一次側液体を貯留する受槽部、(ニ)該モジュールの一次側流路の出口へ連結する。膜の裏面側を通過する二次側回路は(ホ)モジュール内の二次側流路の出口、その一部は(ヘ)除菌または除ウイルス膜を介して大気へ開放し、その他部は(ト)平膜を透過した液体の回収槽へつらなる。       A fourth feature of the present invention is that, when the module of the present invention is incorporated into an apparatus, a component for exhibiting the pore diffusion membrane separation characteristics of the membrane module and an apparatus composed of a combination of the components make the pore diffusion membrane separation possible. The point is that the apparatus has good reproducibility and the properties of the recovered liquid are predicted. That is, as components for the primary circuit, (a) a liquid level control unit connected to an inlet or an outlet of the primary channel of the module, (b) a liquid transport unit for giving a position head difference of the liquid to be treated, (C) a receiving tank for storing the primary liquid, and (d) connecting to the outlet of the primary flow path of the module. The secondary side circuit passing through the back side of the membrane is (e) the outlet of the secondary side flow path in the module, a part of which is open to the atmosphere through (f) the sterilization or virus removal membrane, and the other part is (G) The liquid is passed to the recovery tank for the liquid that has passed through the flat membrane.

上述の液面レベル制御部は一次側回路で設定される。要求される高さにおいて大気に開放される部分を設けることによって液面レベルが制御される。ただし、膜モジュール内制御部の体積は該膜モジュール内の一次側流路の体積の1/2以下に設定することにより、液体輸送部が故障等のトラブル下でも膜濾過が起らないで、孔拡散膜分離が自動的に停止する。また大気に開放される部分では除菌または除ウイルス膜を介してのみ大気と通じる。受槽部にある被処理液を該モジュールの一次側流路の入口へ送液する。液体輸送部としては送液ポンプを利用する。あるいは他の物理的手段(人力を含め)で受槽部の液体を液面レベル制御部へ輸送させ、その後該モジュールの一次側流路の入口部を連結することも可能である。液面レベル制御部より該モジュール入口部への輸送は重力が利用される。       The above liquid level control unit is set in the primary circuit. The liquid level is controlled by providing a part that is open to the atmosphere at the required height. However, by setting the volume of the control unit in the membrane module to 以下 or less of the volume of the primary side channel in the membrane module, membrane filtration does not occur even under troubles such as failure of the liquid transport unit. The pore diffusion membrane separation automatically stops. In addition, the portion that is open to the atmosphere communicates with the atmosphere only through a sterilization or virus removal membrane. The liquid to be treated in the receiving tank is sent to the inlet of the primary flow path of the module. A liquid pump is used as the liquid transport unit. Alternatively, the liquid in the receiving tank section can be transported to the liquid level control section by other physical means (including human power), and then the inlet section of the primary flow path of the module can be connected. Gravity is used for transportation from the liquid level control unit to the module entrance.

本発明のモジュールおよび装置を用いると水溶液中のウイルスや細菌等の感染性微生物を除去して生理活性を維持した状態で高分子物質を回収することが可能となる。除去対象の微生物としてウイルス、マイコプラズマ、細菌等がある。また細胞や複数の細胞の会合体の除去も可能である。モジュールに装填する高分子多孔膜の平均孔径を除去対象に応じて決定することにより特定の感染性微生物のみを除去することが可能となる。除去の際の平均孔径は対象の微生物の大きさの約5倍に設定される。この微生物の除去は膜濾過法の場合と異なり、膜の孔により微生物を捕捉する機構(この機構は膜濾過法の場合に当てはまる)ではない。孔拡散法では除去対象粒子は膜の孔を目詰まりさせることなく除去される。すなわち、膜の目詰まりをすることなく粒子を除去する分離技術である。除去対象粒子は濃縮対象粒子でもある。本発明法は膜濾過法とは異なる文字通りの膜分離法を与え、孔拡散法の原理上の特徴を具現化している。膜の孔の目詰まりがないので処理容量は膜濾過法と比較して2倍以上となる。       The use of the module and the device of the present invention makes it possible to remove infectious microorganisms such as viruses and bacteria in an aqueous solution and to recover a polymer substance while maintaining physiological activity. Microorganisms to be removed include viruses, mycoplasmas, and bacteria. It is also possible to remove cells or aggregates of a plurality of cells. By determining the average pore size of the polymer porous membrane loaded in the module according to the object to be removed, it becomes possible to remove only specific infectious microorganisms. The average pore size upon removal is set to about 5 times the size of the microorganism of interest. Unlike the case of the membrane filtration method, the removal of the microorganisms is not a mechanism of capturing the microorganisms by the pores of the membrane (this mechanism is applied to the case of the membrane filtration method). In the pore diffusion method, particles to be removed are removed without clogging pores of the membrane. That is, this is a separation technique for removing particles without clogging the membrane. The particles to be removed are also particles to be concentrated. The method of the present invention provides a literal membrane separation method different from the membrane filtration method, and embodies the principle features of the pore diffusion method. Since there is no clogging of the pores of the membrane, the processing capacity is more than twice that of the membrane filtration method.

本発明法は感染性微生物の除去のみに限らず分離・濃縮および分画も可能である。分離対象溶液として生理活性物質を多種類含む生物原料(例えば、血液やリンパ液などの体液、細胞内液、細胞外液、プラセンタ等)より感染性微生物のみを除去した生の状態で医薬品原料、化粧品原料、食品原料等が作製できる。       The method of the present invention enables not only removal of infectious microorganisms but also separation, concentration and fractionation. Pharmaceutical raw materials and cosmetics in a raw state in which only infectious microorganisms are removed from biological raw materials containing many types of physiologically active substances (eg, body fluids such as blood and lymph, intracellular fluids, extracellular fluids, placenta, etc.) as the solution to be separated Raw materials, food raw materials, etc. can be produced.

再生医療等製品の製造における安全対策の基本技術として本技術は感染性微生物除去用として将来適用されるであろう。細胞の分離/精製用さらにエクソソームの精製/濃縮/除去用に利用可能であり、分離対象は広い範囲の粒子径にわたる。分離に要する圧力が0.1気圧以下であり省エネルギー下での分離である。そのため従来の抽出分離、吸着分離、クロマトグラフィ等の親和力に基づく分離技術に代替可能な技術ともいえる。例えば親和力に基づく分離を取り入れた例として膜素材と粒子との親和力を利用した孔拡散分離あるいは分離目標物質と親和力の大きな物質を添加することにより該目標物質を大粒子化することで孔拡散膜分離法の分離対象粒子にすることが可能である。例えば、水溶液に溶解しているヒ素化合物に水酸化第二鉄コロイド粒子を添加することでヒ素化合物を大粒子化できる。この粒子は孔拡散膜分離法で除去可能である。       This technology will be applied in the future for removing infectious microorganisms as a basic technology for safety measures in the production of products such as regenerative medicine. It can be used for cell separation / purification and also for exosome purification / concentration / removal, and can be separated over a wide range of particle sizes. The pressure required for separation is 0.1 atm or less, which means separation under energy saving. Therefore, it can be said that it can be replaced with a conventional separation technique based on affinity, such as extraction separation, adsorption separation, and chromatography. For example, pore diffusion separation using the affinity between a membrane material and particles as an example incorporating separation based on affinity or separation of a target substance into a large particle by adding a substance having a high affinity with a target substance to be separated to form a pore diffusion membrane. It can be used as particles to be separated in the separation method. For example, the arsenic compound can be made larger by adding ferric hydroxide colloid particles to the arsenic compound dissolved in the aqueous solution. These particles can be removed by a pore diffusion membrane separation method.

本発明モジュールに装填される平膜として平均孔径370 nmのセルロースの不織布を用いる。該不織布では膜厚100 μm、空孔率70 %、不織布の表面の凹凸は200 nm以下
(この面を平膜表面とする)、裏面の凹凸は50μm、水に浸漬した際の寸法変化は2%以下である。該不織布は第1図中の1で示されるように2枚の板状の支持体(図中の2と7)間に0リング状のパッキング材(図中の11)で該支持体に密着する。二種の支持体板(それぞれの支持体の面内には0リング用の溝2本と一次側流路用溝あるいは二次側流路用の溝と層流準備域の流路あるいは二次側流路から回収槽への回路へ連なる出口を持つ)二種の支持体板ご該平膜1の空間部2と6とが液体の流路となる。該流路内を一次側液体4と二次側液体5が流れる。一次側液体4の流れは層流で流すために空間部6の壁面はいずれも平滑である。平膜1の膜表面は一次側液体と接する面であると定義される。
A cellulose nonwoven fabric having an average pore size of 370 nm is used as the flat membrane loaded in the module of the present invention. The nonwoven fabric has a thickness of 100 μm, a porosity of 70%, the surface of the nonwoven fabric has a roughness of 200 nm or less (this surface is defined as a flat film surface), the roughness of the back surface is 50 μm, and the dimensional change when immersed in water is 2 μm. % Or less. The nonwoven fabric is tightly adhered to the support by a 0-ring packing material (11 in the figure) between two plate-like supports (2 and 7 in the figure) as indicated by 1 in FIG. I do. Two types of support plates (each support has two O-ring grooves and a primary flow channel or a secondary flow channel and a laminar flow preparation area flow channel or secondary The space portions 2 and 6 of the flat membrane 1 which have an outlet connected to the circuit from the side flow path to the recovery tank) serve as a liquid flow path. The primary liquid 4 and the secondary liquid 5 flow in the flow path. Since the flow of the primary liquid 4 flows in a laminar flow, the wall surfaces of the space 6 are all smooth. The film surface of the flat film 1 is defined as a surface in contact with the primary liquid.

第1図には板状の支持体として二種類が示されている。その一種は図中の7に示されるように、層流準備域となる円形断面を持つ一次側流路8を持ち、8より弁の役割を持つ布状物9を押し上げて一次側液体を一次側流路6に導く。該流路8はモジュールの一次側流路の入口に連結している。該支持体の素材として、ポリプロピレン製、ポリカーボネート製、アクリル樹脂製が良い。支持体にはいずれも一次側流路あるいは二次側流路となるよう良い。この支持体が与える流路は二次側流路3である。弁の役割を行う布状物9が支持体に融着している。該布状物としてはナイロンやポリエステル等の不織布が適する。これらの不織布を支持体上の所定の場所に融着させる。二種類の支持体はプラスチックの板状体より切削加工によって作製するか、あるいは金型を利用した射出成型法で作製される。       FIG. 1 shows two types of plate-shaped supports. One of them has a primary flow path 8 having a circular cross-section serving as a laminar flow preparation area as shown in FIG. It is guided to the side channel 6. The channel 8 is connected to the inlet of the primary channel of the module. The support is preferably made of polypropylene, polycarbonate, or acrylic resin. Each of the supports may be a primary channel or a secondary channel. The channel provided by this support is the secondary channel 3. Cloth 9 acting as a valve is fused to the support. As the cloth-like material, a non-woven fabric such as nylon or polyester is suitable. These nonwoven fabrics are fused at predetermined positions on the support. The two types of supports are manufactured by cutting a plastic plate or by an injection molding method using a mold.

第2図に本発明の孔拡散膜モジュールの機能を発揮させるための装置の例を示す。一次側液体の平膜表面でのひずみ速度を送液ポンプで制御する方式(A図)とひずみ速度を静水圧差で制御する方式(B図)の二方式が採用される。膜表面に負荷される膜間差圧において図1のモジュールを用いると動圧力は零となる。静水圧差としては0.05気圧以下で運転する。該ひずみ速度は10 ~ 100/秒の一定条件下で運転する。A図においては大気に開放されているのが受槽部(開放のためのフィルターF3と連結)と孔拡散膜モジュールMの二次側流路(F2)と液面レベルL(F1フィルターを介して開放)である。この方式では液体輸送部での安定な運転が重要である。一方、B図の方式では液面レベルLの設定によって安定的に膜間差圧とひずみ速度が制御できる。       FIG. 2 shows an example of an apparatus for exerting the function of the hole diffusion membrane module of the present invention. Two methods are adopted: a method in which the strain rate of the primary liquid on the flat membrane surface is controlled by the liquid feed pump (Figure A) and a method in which the strain rate is controlled by the hydrostatic pressure difference (Figure B). When the module of FIG. 1 is used for the transmembrane pressure applied to the membrane surface, the dynamic pressure becomes zero. Operate at a hydrostatic pressure difference of 0.05 atm or less. The strain rate is operated under a constant condition of 10 to 100 / sec. In Fig. A, the tank is open to the atmosphere (connected to the filter F3 for opening), the secondary side flow path (F2) of the pore diffusion membrane module M, and the liquid level L (through the F1 filter). Open). In this method, stable operation in the liquid transport section is important. On the other hand, in the method shown in FIG. B, the transmembrane pressure and the strain rate can be controlled stably by setting the liquid level L.

平均孔径300 nmの再生セルロース多孔膜(膜厚;150 μm、空孔率;80 %)を装填した孔拡散膜モジュールを組み立てた。有効膜面積は140 cm2で第1図と同様に3枚の板状支持体の間に2枚の多孔膜を挟むように膜モジュールを作製した。一次側流路の断面形状は厚さ3mm帯状であり二次側流路には銅安法再生セルロース不織布を該多孔膜の裏面側に装着した。該モジュールを用いて第2図のB図の装置を組み立てた。発泡ポリスチレ
ンの市販品を20℃の水中でミキサーで粉砕し薄片状(厚さ約10μm)の種々の面積を持つ
分散物水溶液を作製した。この水溶液に粒子径50 nmの水酸化第二鉄コロイド粒子が分散した水溶液(pH=2.7、粒子濃度1000 ppm)を混合してpH=4の水溶液を調製した。この水溶液をウイルス/細菌/細胞の混合物を分散する水溶液のモデル試験液とした。この試験液を下記の条件でB図の装置で孔拡散処理を行った。
平均の膜間差圧;0.05 気圧、膜表面でのひずみ速度;50/秒
処理速度は1.5 LMH(リットル/平方メートル/時間)で回収液中にはポリスチレン細片および水酸化第二鉄コロイド粒子の濃度はいずれも検出限界以下(すなわち1ppm以下)であった。処理速度は経時的にわずかに減少したが24時間近似的には一定であった。
A pore diffusion membrane module loaded with a regenerated cellulose porous membrane having an average pore diameter of 300 nm (film thickness: 150 μm, porosity: 80%) was assembled. An effective membrane area was 140 cm 2, and a membrane module was produced so that two porous membranes were sandwiched between three plate-like supports as in FIG. The cross-sectional shape of the primary flow path was a 3 mm-thick strip, and the secondary flow path was provided with a copper regenerated cellulose nonwoven fabric on the back side of the porous membrane. Using the module, the apparatus shown in FIG. 2B was assembled. A commercially available expanded polystyrene product was pulverized with a mixer in water at 20 ° C. to prepare a flaky (about 10 μm thick) aqueous dispersion solution having various areas. An aqueous solution (pH = 2.7, particle concentration: 1000 ppm) in which ferric hydroxide colloid particles having a particle size of 50 nm were dispersed was mixed with this aqueous solution to prepare an aqueous solution having a pH of 4. This aqueous solution was used as a model test solution for an aqueous solution in which a mixture of virus / bacteria / cells was dispersed. The test solution was subjected to a pore diffusion treatment in the apparatus shown in FIG.
Average transmembrane pressure: 0.05 atm, strain rate on membrane surface; 50 / sec treatment rate: 1.5 LMH (liter / square meter / hour). All concentrations were below the detection limit (ie, 1 ppm or less). The treatment rate decreased slightly over time but remained approximately constant for 24 hours.

加熱することなく分子や粒子を分離、除去、濃縮、分画する技術として広い分野での適用が可能である。典型的にはバイオ医薬品の製造の際の安全対策用(例えばウイルス除去・不活化のプロセスバリデーション用)や再生医療等製品の製造の際の安全対策用等、感染性粒子の除去対策に利用できる。安全対策用としてその他健康食品製造、化粧品の製造に利用される。安全対策分野で今後適用が検討される分野として環境産業(例、リサイクル産業の例として水のリサイクルなど)がある。       It can be applied in a wide range of fields as a technique for separating, removing, concentrating, and fractionating molecules and particles without heating. Typically, it can be used for safety measures in the manufacture of biopharmaceuticals (for example, for process validation of virus removal and inactivation) and for safety measures in the manufacture of products such as regenerative medicine. . Used as a safety measure in the manufacture of other health foods and cosmetics. In the field of safety measures, the environmental industry (eg, water recycling as an example of the recycling industry) is a field to be considered for application in the future.

孔拡散膜分離技術の特徴は膜を利用して成分を分離する点にある。膜内部に粒子等の大きなサイズの成分を捕捉する篩効果を利用する膜濾過法との原理上の差がある。そのため本発明技術は従来の膜濾過技術では適用不可能な分野にも利用可能となる。例えば血漿分画工程あるいは体液の成分の分画回収工程など生物資源より生理活性を持つ成分の分画回収工程での適用が考えられる。農業における新鮮な成分などの濃縮・回収用あるいは液体肥料中の成分濃縮や長期保存用などの分野でも適用される。醗酵業での加熱滅菌に代替する微生物除去に適用し、新しい生製品の製造(例、生プラセンタの製造)に利用できる。       The feature of the hole diffusion membrane separation technology is that components are separated using a membrane. There is a difference in principle from a membrane filtration method that uses a sieving effect to capture a large-sized component such as particles inside the membrane. Therefore, the technology of the present invention can be used in fields where conventional membrane filtration technology cannot be applied. For example, application to a fractionation and recovery step of a component having biological activity from biological resources such as a plasma fractionation step or a fractionation and recovery step of a body fluid component is considered. It is also applied to fields such as concentration and recovery of fresh ingredients in agriculture, and ingredient concentration and long-term storage in liquid fertilizers. It can be applied to the removal of microorganisms instead of heat sterilization in the fermentation industry, and can be used for the production of new raw products (eg, production of raw placenta).

2枚の平膜を装填した孔拡散膜モジュールの下部の断面図:層流準備域および孔拡散域の存在する部分を示す。Sectional view of the lower part of the hole diffusion membrane module loaded with two flat membranes: the laminar flow preparation area and the part where the hole diffusion area is present. 孔拡散膜モジュールの特徴を生かす装置の例:装置。B;ひずみ速度を静水圧差で制御する方式の装置。Example of a device that makes use of the features of the hole diffusion membrane module: device. B: An apparatus of a system for controlling the strain rate by the hydrostatic pressure difference.

1;平膜 2;モジュールの骨格を構成する支持板
3;モジュール内の二次側流路 4;一次側流路を層流状態で流れる被処理液体の流れ方向、 5;二次側流路を流れる膜透過液の流れ方向
6;モジュール内の一次側流路 7;層流準備域を内蔵している支持板
8;支持板の内部に存在する層流準備域 9;動圧を零にするための弁の役割を持つ布状物
10;膜透過液のモジュールの出口に向かう液体の流入口
11:平膜と支持体とを密着させるためのOリング状のパッキング
M;本発明の孔拡散膜モジュール T;受槽部
L;液面レベル制御部 R;回収槽
P;液体輸送ポンプ G;圧力計
F1/F2/F3;大気へ開放するための空気の出入口、出入口に設置された除菌あるいは除ウイルスフィルタ




















DESCRIPTION OF SYMBOLS 1: Flat membrane 2: Support plate which constitutes a skeleton of module 3: Secondary flow path in module 4: Flow direction of liquid to be treated flowing in primary flow path in laminar flow state, 5: Secondary flow path Flow direction of membrane permeate flowing through the membrane 6; primary flow path in module 7; support plate with built-in laminar flow preparation area
8: Laminar flow preparation area existing inside the support plate 9; Cloth-like material having a role of a valve for reducing dynamic pressure to zero 10; Liquid inlet 11 toward the outlet of module for membrane permeate 11: Flat membrane O-ring-shaped packing M for bringing the substrate and the support into close contact with each other; a hole diffusion membrane module T of the present invention T; a receiving tank section L; a liquid level control section R; a collecting tank P; a liquid transport pump G; a pressure gauge F1 / F2. / F3: Air inlet / outlet for opening to the atmosphere, sterilization or virus removal filter installed at the entrance / exit




















Claims (3)

平膜分離モジュールにおいて、一次側流路の壁部を構成する多孔性平膜に負荷される動圧が該膜のすべての場所で実質的に零となるように一次側流路が設計されていることと被処理液体の入口部より一次側流路が膜表面に沿って平行でありかつ膜を介して透過した回収液の流路である二次側流路には、該流路の空間部を与える多孔性の平板状の支持体が存在するかあるいは該流路の壁部となる該平膜の裏面が凹凸を持つことで空間部を与えることを特徴とするモジュールであり、かつ一次側の流路は下部より層流準備域と次いで孔拡散領域とが直列的に直結連結していることとの特徴を持つ孔拡散型平膜分離モジュール。       In the flat membrane separation module, the primary flow path is designed such that the dynamic pressure applied to the porous flat membrane constituting the wall of the primary flow path is substantially zero at all places of the membrane. And the secondary flow path, which is a flow path of the recovered liquid permeated through the membrane and whose primary flow path is parallel to the membrane surface from the inlet of the liquid to be treated, has a space of the flow path. A module having a porous flat plate-shaped support that provides a space portion, or a space portion provided by providing an unevenness on the back surface of the flat membrane serving as a wall portion of the flow channel, and A pore diffusion type flat membrane separation module characterized in that a laminar flow preparation area and a pore diffusion area are directly connected in series from the lower side of the flow path. 請求項1に示す膜分離モジュールが持つ孔拡散膜分離機構がすべて発現させるために必須とする部品で組立られる装置において、(1)該モジュール内に装填している多孔性平膜の膜表面が垂直になるように該モジュールが設置され、(2)該モジュールの一次側流路の入口に連結して液面レベル制御部、(3)位置水頭差を与える液体輸送部、および(4)一次側液体を貯留する受槽部、および(5)該モジュールの一次側流路の出口へと連結する一次側回路を有し、かつ該モジュールの二次側流路の出口とそれに連結して一部は、(6)除菌または除ウイルス膜を介して大気への開放部と(7)他部は回収槽とに連なる二次側回路とを有することを特徴とする孔拡散膜分離装置。       2. An apparatus which is assembled with parts essential to realize all the pore diffusion membrane separation mechanisms of the membrane separation module according to claim 1, wherein (1) the membrane surface of the porous flat membrane loaded in the module is The module is installed vertically, (2) a liquid level control unit connected to the inlet of the primary side flow path of the module, (3) a liquid transport unit for giving a head difference, and (4) a primary unit. And (5) a primary circuit connected to an outlet of a primary channel of the module, and an outlet of a secondary channel of the module and a part connected to the primary circuit. A pore diffusion membrane separation device comprising: (6) a part to be released to the atmosphere via a bacteria-eliminating or virus-eliminating membrane; and (7) a secondary circuit connected to a recovery tank at the other part. 請求項1あるいは2において、孔拡散型平膜分離モジュールにおいて層流準備域が該モジュールの入口部と同一の液面レベルあるいはそれ以下の液面レベルを持ち、該準備域の体積が孔拡散域の体積以下であることを特徴とするモジュール及び装置。











3. The pore diffusion type flat membrane separation module according to claim 1, wherein the laminar flow preparation area has a liquid level equal to or lower than the inlet level of the module, and the volume of the preparation area is the pore diffusion area. Module and device having a volume of not more than.











JP2018154114A 2018-08-20 2018-08-20 Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same Pending JP2020028819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018154114A JP2020028819A (en) 2018-08-20 2018-08-20 Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018154114A JP2020028819A (en) 2018-08-20 2018-08-20 Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same

Publications (1)

Publication Number Publication Date
JP2020028819A true JP2020028819A (en) 2020-02-27

Family

ID=69623369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018154114A Pending JP2020028819A (en) 2018-08-20 2018-08-20 Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same

Country Status (1)

Country Link
JP (1) JP2020028819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151689A (en) * 2019-03-22 2020-09-24 旭化成株式会社 Pore diffusion membrane separation module using nonwoven fabric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102427A1 (en) * 2006-03-02 2007-09-13 Sei-Ichi Manabe Porous diffusion type flat-film separating device, flat-film condensing device, regenerated cellulose porous film for porous diffusion, and non-destructive type flat-film inspecting method
CN101084054A (en) * 2004-10-06 2007-12-05 俄勒冈州,由高等教育州委员会代表俄勒冈州立大学 Mecs dialyzer
JP2010269258A (en) * 2009-05-22 2010-12-02 Sepa Sigma Inc Separation method by flat membrane pore diffusion and apparatus therefor
JP2012148240A (en) * 2011-01-19 2012-08-09 Sepa Sigma Inc Membrane separator and method of separation utilizing flat membrane
JP2017000922A (en) * 2015-06-05 2017-01-05 日本特殊膜開発株式会社 Fluid sorting type pore diffusion membrane separation module
JP2017087097A (en) * 2015-11-04 2017-05-25 日本特殊膜開発株式会社 Flow fractionation type pore diffusion membrane separation module for concentration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084054A (en) * 2004-10-06 2007-12-05 俄勒冈州,由高等教育州委员会代表俄勒冈州立大学 Mecs dialyzer
WO2007102427A1 (en) * 2006-03-02 2007-09-13 Sei-Ichi Manabe Porous diffusion type flat-film separating device, flat-film condensing device, regenerated cellulose porous film for porous diffusion, and non-destructive type flat-film inspecting method
JP2010269258A (en) * 2009-05-22 2010-12-02 Sepa Sigma Inc Separation method by flat membrane pore diffusion and apparatus therefor
JP2012148240A (en) * 2011-01-19 2012-08-09 Sepa Sigma Inc Membrane separator and method of separation utilizing flat membrane
JP2017000922A (en) * 2015-06-05 2017-01-05 日本特殊膜開発株式会社 Fluid sorting type pore diffusion membrane separation module
JP2017087097A (en) * 2015-11-04 2017-05-25 日本特殊膜開発株式会社 Flow fractionation type pore diffusion membrane separation module for concentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020151689A (en) * 2019-03-22 2020-09-24 旭化成株式会社 Pore diffusion membrane separation module using nonwoven fabric
JP7184687B2 (en) 2019-03-22 2022-12-06 旭化成株式会社 Pore diffusion membrane separation module using non-woven fabric

Similar Documents

Publication Publication Date Title
KR101892214B1 (en) The composition containing exsome for continuous separating organic molecule and process for separating using the same
AU2007223448B2 (en) Pore diffusion type flat membrane separating apparatus, flat membrane concentrating apparatus, regenerated cellulose porous membrane for pore diffusion, and method of non-destructive inspection of flat membrane
Gençal et al. Preparation of patterned microfiltration membranes and their performance in crossflow yeast filtration
JP2018183150A (en) Method of concentrating component of fluid circulated through cell growth chamber
CN111315861B (en) System for cell enrichment using cross-flow filtration
JP2003519005A (en) Cross flow filtration device
CN109996596B (en) Device and method for continuous flow separation of particles by gas dissolution
JP2014223621A (en) High throughput membrane with rough surface
JP2014237125A (en) High throughput membrane
Kellenberger et al. Roll-to-roll preparation of mesoporous membranes by nanoparticle template removal
JPH02152525A (en) Micro-filtration device
JP6343589B2 (en) Flow separation type pore diffusion membrane separation module
Belfort et al. Toward an inductive understanding of membrane fouling
JP2013237016A (en) Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
JP6422032B2 (en) Flow separation type pore diffusion membrane separation module for concentration
JP2020028819A (en) Pore diffusion flat membrane separation module using fluidizing fractionation and membrane separation device applied with the same
Bowen Understanding flux patterns in membrane processing of protein solutions and suspensions
Amar et al. Erythrocyte fouling on micro-engineered membranes
US20140318230A1 (en) Stirrer cell module and method of using
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
Pellegrino Filtration and ultrafiltration equipment and techniques
Yeh et al. Membrane ultrafiltration in hollow-fiber module with the consideration of pressure declination along the fibers
JP6534068B2 (en) Module for pore diffusion membrane separation to fractionate component molecules in polymer solution
WO2024024336A1 (en) Purifying and concentrating device for liquid comprising minute useful substance and method for producing purified and concentrated liquid of minute useful substance using same
Sarbatly Membrane Technology for Water and Wastewater Treatment in Rural Regions

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180918

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200623