JP6277346B2 - Hole diffusion membrane separation method - Google Patents

Hole diffusion membrane separation method Download PDF

Info

Publication number
JP6277346B2
JP6277346B2 JP2013245425A JP2013245425A JP6277346B2 JP 6277346 B2 JP6277346 B2 JP 6277346B2 JP 2013245425 A JP2013245425 A JP 2013245425A JP 2013245425 A JP2013245425 A JP 2013245425A JP 6277346 B2 JP6277346 B2 JP 6277346B2
Authority
JP
Japan
Prior art keywords
membrane
stage
separation
primary side
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013245425A
Other languages
Japanese (ja)
Other versions
JP2015100774A (en
Inventor
尾池哲郎
聡 竹下
聡 竹下
真鍋征一
Original Assignee
尾池 哲郎
尾池 哲郎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尾池 哲郎, 尾池 哲郎 filed Critical 尾池 哲郎
Priority to JP2013245425A priority Critical patent/JP6277346B2/en
Publication of JP2015100774A publication Critical patent/JP2015100774A/en
Application granted granted Critical
Publication of JP6277346B2 publication Critical patent/JP6277346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description


本発明は平膜を利用した膜間差圧が0.02MPa以下の低圧力条件下で、分子および粒子の拡散の速度差を主に利用し、さらに物質の孔拡散による分離法、および該分離法に膜間差圧と流速分布によって生じる揚力とを併用した流導分別効果を併用した孔拡散型膜分離法に関する。詳しくは平膜を用いた膜分離方法、あるいは平膜中の孔を介した物質の拡散現象を利用した孔拡散型物質分離精製方法であり、特定の粒径を持つ分子あるいは粒子、たとえば有用な高分子、生理活性物質、ガス成分の分離精製および、有害性微粒子、感染性微生物、イオン等の高度な除去を実現する方法に関する。

The present invention mainly utilizes a difference in diffusion speed of molecules and particles under a low pressure condition using a flat membrane with a transmembrane pressure of 0.02 MPa or less, and further a separation method by pore diffusion of a substance, and the separation The present invention relates to a pore diffusion type membrane separation method using a flow separation effect in combination with a transmembrane differential pressure and a lift generated by a flow velocity distribution. Specifically, it is a membrane separation method using a flat membrane, or a pore diffusion type material separation and purification method that utilizes the diffusion phenomenon of a substance through pores in the flat membrane. The present invention relates to a method for separating and purifying a polymer, a physiologically active substance, and a gas component and highly removing harmful fine particles, infectious microorganisms, ions and the like.


平膜を利用した温和な低圧力条件下で、分子および粒子の拡散の速度差を主に利用した物質の孔拡散による分離法として、特開2012−223704「平膜を利用した温和な低圧力条件下で、分子および粒子の拡散の速度差を主に利用した物質の孔拡散による分離法」が提案されている。この技術は、孔拡散型の膜カートリッジを用い、分離対象溶液を膜表面におけるひずみ速度2/秒以上で200/秒未満で流し、かつ前記膜カートリッジの出口部における静圧表示での膜間差圧が0.05MPa以下となるように、一次側流路に接続したポンプの流量および吐出圧を調節して行う分離法である。この分離法によって、デッドエンド式ろ過によって生じる目詰まりを抑制し、タンジェンシャルフロー式ろ過における流速、膜間差圧の安定性を改善し、精密な分離操作を可能にし、装置の大型化を防ぐことができるとしている。

As a separation method by pore diffusion of a substance mainly utilizing a difference in diffusion speed of molecules and particles under a mild low pressure condition using a flat membrane, JP 2012-223704 A "Low Mild Pressure Using a Flat Membrane" Under the conditions, there has been proposed a “separation method by pore diffusion of a substance mainly utilizing a difference in diffusion rates of molecules and particles”. This technique uses a pore diffusion type membrane cartridge, causes the solution to be separated to flow at a strain rate of 2 / second or more on the membrane surface at a rate of less than 200 / second, and the difference between membranes in the static pressure display at the outlet of the membrane cartridge. In this separation method, the flow rate and discharge pressure of the pump connected to the primary flow path are adjusted so that the pressure is 0.05 MPa or less. This separation method suppresses clogging caused by dead-end filtration, improves the stability of flow rate and transmembrane pressure in tangential flow filtration, enables precise separation operations, and prevents the enlargement of equipment. You can do that.


ここで孔拡散型膜分離法とは、平均孔径と膜間差圧との関係で実現される。平均孔径より大きな流体中の成分の内、その存在量が最も大きい成分が明らかであれば、該成分のブラウン運動の速度が膜間差圧で生じる流体の流れ速度(これを以降、ろ過速度と略称)よりも大きくなるように膜間差圧を定める。具体的な膜間差圧としては0.05MPa以下でありかつ該平膜の平均孔径によって指定される圧力以下であるとしている。また一次側流路の流れによる膜表面のひずみ速度において10/秒以上でかつ100/秒未満であり、20/秒以上で流す場合においてもっとも分離効果を発揮できるとしている。

Here, the pore diffusion membrane separation method is realized by the relationship between the average pore diameter and the transmembrane pressure difference. If the component having the largest abundance among the components in the fluid larger than the average pore diameter is clear, the velocity of the Brownian motion of the component is the fluid flow velocity generated by the transmembrane pressure (hereinafter referred to as the filtration rate). The transmembrane pressure difference is determined to be larger than (abbreviation). A specific transmembrane pressure difference is 0.05 MPa or less and a pressure specified by an average pore diameter of the flat membrane. Further, the strain rate of the membrane surface due to the flow of the primary channel is 10 / second or more and less than 100 / second, and the separation effect can be most exhibited when flowing at 20 / second or more.


主な要件となる膜間差圧を調整する方法としては、流速を制御するためのポンプの吐出圧を用いるか、あるいは一次側流路に連結した流体用タンク内にかかる気体圧を負荷する加圧装置を用いるか、あるいは液体の水頭圧を利用するために該タンクの高さを維持する装置を用いるとしている。すなわち従来はろ過速度を調整するのに膜間差圧を制御している。該膜間差圧は採用する膜の平均孔径によって決定しなくてはならなかった。

The main requirement for adjusting the transmembrane pressure is to use the pump discharge pressure to control the flow rate, or to apply the gas pressure applied to the fluid tank connected to the primary flow path. A pressure device is used, or a device that maintains the height of the tank to utilize the liquid head pressure. That is, conventionally, the transmembrane pressure difference is controlled to adjust the filtration rate. The transmembrane pressure difference had to be determined by the average pore size of the membrane employed.


特開2012−223704JP 2012-223704 A


前記特開2012−223704では、主に膜間差圧を調整して孔拡散型膜分離を実現し、その膜間差圧を調整する方法として、一次側に設置したポンプの吐出圧や、タンクの水頭圧、あるいは気体圧を利用するとしているが、これらの方法では0.01MPa以下の低圧領域(これを以降、超低圧力帯と略称)での膜間差圧調整が難しく、その結果、安定的な孔拡散型膜分離効果が得られなくなる場合があった。

In the above-mentioned JP-A-2012-223704, as a method for adjusting the transmembrane differential pressure by mainly adjusting the transmembrane pressure difference, and adjusting the transmembrane pressure difference, the discharge pressure of the pump installed on the primary side, the tank However, in these methods, it is difficult to adjust the transmembrane pressure difference in a low pressure region of 0.01 MPa or less (hereinafter, abbreviated as an ultra-low pressure zone). In some cases, a stable pore diffusion membrane separation effect cannot be obtained.


ろ過速度を調整する場合、一次側の圧力に依存した操作に限定され、二次側流量の調整範囲に限界が生じていた。特に孔径の大きな平膜での分離操作の場合、一次側流量を確保するために流速を速めると、膜間差圧が大となり、その結果、二次側流量が大きくなりすぎる場合があった。

When adjusting the filtration rate, the operation is limited to the operation depending on the pressure on the primary side, and the adjustment range of the secondary side flow rate is limited. In particular, in the case of a separation operation on a flat membrane having a large pore diameter, if the flow rate is increased in order to secure the primary flow rate, the transmembrane pressure difference increases, and as a result, the secondary flow rate may become too large.


粒子の分離特に除去性能を高くするためには、孔径の小さな多層構造を持つ多孔性平膜を選択することになるが、その場合は二次側の流量が小さくなる。この場合でも膜間差圧を直接制御する方式では実用的には煩雑となるという課題があった。超低圧力帯の必要とする場合は平膜の平均孔径が0.1μmを越える場合に対応する。

In order to improve the separation performance, particularly the removal performance of the particles, a porous flat membrane having a multilayer structure with a small pore diameter is selected. In this case, the flow rate on the secondary side is reduced. Even in this case, there is a problem that the method of directly controlling the transmembrane pressure difference becomes practically complicated. When the ultra-low pressure zone is required, it corresponds to the case where the average pore diameter of the flat membrane exceeds 0.1 μm.


前記課題を解決するため、孔拡散型膜分離装置を用いて、流速と流量の調整法、膜カートリッジの形状、圧力源の選定、その他操作方法などに関し、多種多様な手法を試みた。特に、膜表面においてより温和で、均質的な環境を作り出すことが、孔拡散型膜分離にはきわめて重要であることを明らかにした。その結果、前述の孔拡散型膜分離や従来のデッドエンド式ろ過のように直接的な一次側流路内の圧力調整のみで膜間差圧を調節するのではなく、一次側の流量調整機能に加え、二次側にも流量調整機能を加え、流量を調節することによって間接的に膜間差圧を調節することこそが、前記のようなさらに温和な、かつ均質的な孔拡散型膜分離により適した環境を作り出すことができることを発見した。直接的にポンプの吐出圧や流量で膜間差圧を制御するのではなく、一次側と二次側の流量調整機構によって流量を制御して間接的に制御する方式を採用し、流導分別機構による粒子の分離能が完全に制御できることを発見して本発明に至った。

In order to solve the above-mentioned problems, a variety of methods have been tried using a pore diffusion type membrane separation apparatus with regard to a method for adjusting flow velocity and flow rate, a shape of a membrane cartridge, selection of a pressure source, and other operation methods. In particular, it was clarified that creating a milder and more homogeneous environment on the membrane surface is extremely important for pore diffusion membrane separation. As a result, the flow rate adjustment function on the primary side, rather than adjusting the transmembrane differential pressure only by directly adjusting the pressure in the primary side flow path as in the above-mentioned pore diffusion type membrane separation and the conventional dead end type filtration, In addition, the flow control function is added to the secondary side and the transmembrane pressure difference is indirectly adjusted by adjusting the flow rate. We have discovered that a better environment can be created by separation. Rather than directly controlling the transmembrane differential pressure with the pump discharge pressure or flow rate, the flow rate is controlled indirectly by the flow adjustment mechanism on the primary and secondary sides, and the flow separation is adopted. It was discovered that the separation ability of particles by the mechanism can be completely controlled, and the present invention has been achieved.


一次側と二次側の流量調整機能、たとえば開閉弁を調整することで、膜間差圧を0.01MPa以下の超低圧力帯でもより精密な調整が可能となった。その結果、大きな孔径の平膜を使用した場合も、二次側流量が大きくなりすぎることなく使用できるようになり、前記特開2012−223704よりもより安定的に孔拡散型膜分離を行うことができるようになった。

By adjusting the flow rate adjustment function on the primary side and the secondary side, for example, on-off valves, more precise adjustment is possible even in an ultra-low pressure zone where the transmembrane pressure difference is 0.01 MPa or less. As a result, even when a flat membrane having a large pore size is used, the secondary side flow rate can be used without becoming too large, and pore diffusion membrane separation can be performed more stably than in the aforementioned Japanese Patent Application Laid-Open No. 2012-223704. Can now.


二次側の流量調整機構の存在によって、一次側のひずみ速度を一定以上に保ちつつ、二次側の流量の調整が可能となった。その結果、膜表面では、高いひずみ速度のまま温和な条件の維持が達成でき、すなわち拡散現象が起きやすい環境下となる。一定以上の大きさを持つ粒子は平膜の孔径に関わらず、自身の拡散力と、ひずみ速度に対する追随性によって一次側流路のとどまることになり、二次側への流出が起きにくくなった。

Due to the presence of the secondary-side flow rate adjusting mechanism, the secondary-side flow rate can be adjusted while maintaining the primary-side strain rate at a certain level or higher. As a result, mild conditions can be maintained at a high strain rate on the film surface, that is, an environment in which a diffusion phenomenon easily occurs. Regardless of the flat membrane pore size, particles with a size larger than a certain level will remain in the primary flow path due to their own diffusion force and the ability to follow the strain rate, making it less likely to flow out to the secondary side. .


さらに第二の発見として、より低圧力帯での孔拡散型膜分離が実現できるようになり、分離操作を繰り返した結果、0.01MPa以下の圧力帯における孔拡散型膜分離では、孔径以下の粒子に対する除去性が得られることを見出した。平膜の孔径以下の粒子の挙動が、より定常孔拡散型に近づき、その結果二次側流路への流出が少なくなり、平膜の孔径の1/2〜1/5以下の粒子の分離が可能であることを発見した。

Furthermore, as a second discovery, pore diffusion membrane separation in a lower pressure zone can be realized, and as a result of repeating the separation operation, in pore diffusion membrane separation in a pressure zone of 0.01 MPa or less, It has been found that removability to particles can be obtained. The behavior of particles below the pore size of the flat membrane is closer to the steady-pore diffusion type, resulting in less outflow to the secondary channel and separation of particles less than 1/2 to 1/5 of the pore size of the flat membrane Found that is possible.


このように、膜間差圧が0.01MPa以下で、2/秒以上のひずみ速度を維持し、膜表面を均質な環境下に保ちつつ、なおかつ大きな孔径の平膜を使用できることを発見したことで、さらに膜へ親和力等の弱い力を付加することでも孔拡散型膜分離をより高度に機能させることができるのではないかとの発想に至った。すなわち、高い膜間差圧下で膜の変形を伴うデッドエンド式ろ過や、激しい乱流を伴うタンジェンシャルフロー式ろ過では、膜表面の特性はほぼ無視される程の流れが生じ、その結果、平膜の物理的な孔径のみが分離性能を決定する因子となってしまっていた。しかし上記のとおり、温和で高度な条件が整った孔拡散型膜分離の場合は、膜と粒子との親和力が生かせる可能性があることを発見した。

Thus, it was discovered that a transmembrane differential pressure is 0.01 MPa or less, a strain rate of 2 / sec or more is maintained, a flat membrane having a large pore diameter can be used while maintaining the membrane surface in a homogeneous environment. Thus, the inventors have come up with the idea that pore diffusion membrane separation can be made to function to a higher degree by further adding a weak force such as affinity to the membrane. In other words, dead-end filtration with membrane deformation under high transmembrane pressure and tangential flow filtration with severe turbulence produce a flow that is almost negligible on the membrane surface. Only the physical pore size of the membrane was a factor determining the separation performance. However, as described above, in the case of pore diffusion membrane separation with mild and advanced conditions, it was discovered that the affinity between the membrane and the particles could be utilized.


たとえばイオンなど極めて小さな粒子を分離する場合は、孔径10nm〜100μmの平膜を用いた孔拡散型膜分離法に、親和力を用いた分離メカニズムを併用する必要がある。たとえば陽イオン粒子を分離する場合に、該粒子に対して親和力を有する物質を平膜に担持させることによって、該粒子の膜中での拡散係数は著しく減少する。ここで親和力とは、電荷によるクーロン力、双極子モーメントによるファンデルワールス力、極性の3つの力のことである。これらの3つの力によって発生する引きあう力あるいは反発しあう力を、ここで親和力と呼ぶ。

For example, when separating extremely small particles such as ions, it is necessary to use a separation mechanism using affinity in combination with a pore diffusion membrane separation method using a flat membrane having a pore diameter of 10 nm to 100 μm. For example, when separating cation particles, the diffusion coefficient of the particles in the membrane is significantly reduced by supporting a substance having an affinity for the particles on a flat membrane. Here, affinity means three forces: Coulomb force due to electric charge, van der Waals force due to dipole moment, and polarity. The pulling force or the repulsive force generated by these three forces is referred to herein as affinity.


具体的には、分離対象物質が陽イオンの場合は、プラスに帯電している鉄コロイド粒子を担持させることで、大きな孔径の平膜をもちいても分離できることを発見し、またセシウムイオンに対しては、高い親和力を持つ鉄シアン錯体を担持させることで、分離が可能であることを実験的に見出した。さらにセルロース平膜をもちいる際に、セルロース中の水酸基をカルボキシル基に酸化することで、陽イオンに対する選択的イオン交換性を持たせ、陽イオンへの分離性能が得られることを見出した。その他に、アミノ基、スルホ基についてもセルロースに対する付加が容易であり、孔拡散型の温和な環境下で様々なイオンの分離ができることを発見した。

Specifically, when the substance to be separated is a cation, we discovered that it can be separated even by using a flat membrane with a large pore size by supporting positively charged iron colloidal particles. In particular, it was experimentally found that separation is possible by supporting an iron cyanide complex having high affinity. Furthermore, when using a cellulose flat membrane, it discovered that the selective ion exchange property with respect to a cation was given by oxidizing the hydroxyl group in a cellulose into a carboxyl group, and the separation performance to a cation was obtained. In addition, it was discovered that amino groups and sulfo groups can be easily added to cellulose, and various ions can be separated in a pore diffusion type mild environment.


細菌、ウイルス、プリオン等の分離対象粒子が小さくなる場合には除去率を高くしなくてはならないので、この場合には多段構造が考えられる。そのため発明者らは多くの形式の中から、孔拡散型膜分離操作に最も適切な多段方式を苦心検討し、設計と試作を繰り返し、実験を行った。その結果、原水中の分離対象物質を濃縮する場合、あるいは希釈する場合は、還流式の多段形式が最も適することが分かった。一方、原水中の分離対象物質を二次側の拡散液中に回収する場合には、対流式の多段形式が最も適する結果を得た。ここで還流式とは、複数の膜分離装置を前段から後段に多段に連結させる際に、前段の一次側出口を後段の一次側入口に連結し、かつ後段の二次側の出口を前段の一次側入口に連結することによって、二次側ろ液を前段の一次側に還流させることを特徴とする多段式孔拡散型膜分離装置の構造のことである。また対流式とは、複数の前記膜分離装置を前段から後段に多段に連結させる際に、前段の一次側出口を後段の一次側入口に連結し、かつ後段の二次側の出口を前段の二次側入口に連結することによって、膜を介して一次側と二次側の流体の流れを対流させることを特徴とする多段式孔拡散型膜分離装置の構造のことである。

Since the removal rate must be increased when the separation target particles such as bacteria, viruses and prions are small, a multi-stage structure is conceivable in this case. For this reason, the inventors struggled to study the most suitable multistage method for pore diffusion membrane separation operation from many formats, and repeated experiments on design and trial production. As a result, it was found that the reflux type multistage format is most suitable when concentrating or diluting the substance to be separated in the raw water. On the other hand, in the case of collecting the separation target substance in the raw water in the secondary side diffusion liquid, the convection type multi-stage format was most suitable. Here, the reflux type means that when a plurality of membrane separators are connected in multiple stages from the front stage to the rear stage, the front side primary outlet is connected to the rear stage primary side inlet, and the rear stage secondary side outlet is connected to the front stage. It is a structure of a multistage pore diffusion membrane separator characterized in that the secondary filtrate is refluxed to the primary side of the previous stage by being connected to the primary side inlet. In the convection type, when the plurality of membrane separation devices are connected in multiple stages from the front stage to the rear stage, the primary outlet at the front stage is connected to the primary inlet at the rear stage, and the secondary outlet at the rear stage is connected to the front stage. It is a structure of a multistage pore diffusion type membrane separation device characterized in that the flow of the fluid on the primary side and the secondary side is convected through the membrane by being connected to the secondary side inlet.


その結果、還流式あるいは対流式の多段構造を持つ膜分離装置を構築することで、分離係数が小さく、かつ二次側流量が小さい場合でも、最終的に得られる処理水量を一定以上に確保することが可能となり、工業的な活用ができるようになった。

As a result, by constructing a membrane separation device having a reflux or convection multi-stage structure, even when the separation factor is small and the secondary flow rate is small, the amount of treated water finally obtained is secured above a certain level. It became possible to use it industrially.


本発明を採用することにより、有用な高分子、生理活性物質、有害性微粒子、感染性微生物、イオン等を分離、除去あるいは精製することが可能となる。熱的、力学的、化学的に不安定な物質の分離精製には膜分離が最適であると考えられていたが、工業的には膜分離には前述のような多くの障害がある。本発明では拡散の持つ最大の欠点であった分離速度の小さい点と処理容量を大きくする点を改善し、孔拡散を利用することにより、広い分子量範囲(粒子径範囲)での分離回収が可能となる。かつ、複雑になりがちであった膜分離装置も、孔拡散法に適した、かつ単純で操作が簡便な装置を発明することで、膜の目詰まりの進行が遅く、かつ再生が容易であり、繰り返し使用できるようになる。さらに装置が簡素化されることで低コスト化、低価格化の効果もある。様々な成分が混ざり合った液体、生活排水や工業排水、塩水に対して本発明方法を適用することにより有用な水質に変換させることが可能になる。

By adopting the present invention, it becomes possible to separate, remove or purify useful polymers, physiologically active substances, harmful fine particles, infectious microorganisms, ions and the like. Membrane separation has been thought to be optimal for separation and purification of thermally, mechanically and chemically unstable substances, but industrially, membrane separation has many obstacles as described above. In the present invention, the point of low separation speed and the point of increasing processing capacity, which were the biggest disadvantages of diffusion, were improved, and separation and recovery in a wide molecular weight range (particle size range) were possible by utilizing pore diffusion. It becomes. In addition, the membrane separation device, which tends to be complicated, can be easily regenerated by slowing the clogging of the membrane by inventing a simple and easy-to-operate device suitable for the pore diffusion method. Can be used repeatedly. Furthermore, the simplification of the apparatus has the effect of reducing the cost and price. By applying the method of the present invention to a liquid in which various components are mixed, domestic wastewater, industrial wastewater, or salt water, it can be converted into useful water quality.


膜セット概略図Membrane set schematic 膜カートリッジ概略図Membrane cartridge schematic 膜分離装置の例Example of membrane separator 膜分離装置の例Example of membrane separator 膜分離装置の例Example of membrane separator 膜セット概略図2Membrane set schematic 2 膜カートリッジ概略図2Membrane cartridge schematic diagram 2 多段式膜分離装置の例Example of multistage membrane separator 多段式膜分離装置の例2Example 2 of multistage membrane separator


本発明で使用する多孔性平膜1は、孔拡散型膜分離が可能な孔特性を持つ分離膜であり、平均孔径5nm以上500μm以下、望ましくは平均孔径10nm〜100μmで、多孔性平膜が不織布の場合の平均孔径としては、例えば1μm以上100μm以下であり、望ましくは5μm以上50μm以下で、空孔率30%以上90%以下、膜厚1μm以上3mm未満の平膜であり、材質は特に選ばないが、望ましい材質としては親水性高分子であるセルロース製平膜で、膜の再生の容易さと、目詰まりの起こりにくさ、加工しやすさが特徴である。具体的なセルロース製平膜としてはミクロ相分離法で作製された多層構造平膜の他、ろ紙状物や不織布を用いる場合もある。平均孔径が5nm未満であれば溶解・拡散機構による寄与が大きく、拡散係数が小さくなりすぎる。空孔率の上限は90%以下であり、これを超えると膜の力学的性質の低下が著しく、ピンホールなど欠陥の発生確率も高くなる。膜厚は望ましくは30μm以上で、膜厚を厚くすることで膜の強度、取り扱いやすさが増し、ピンホールの発生が減少する点から微生物除去にも効果的である。

The porous flat membrane 1 used in the present invention is a separation membrane having pore characteristics capable of pore diffusion membrane separation, and has an average pore diameter of 5 nm to 500 μm, preferably an average pore diameter of 10 nm to 100 μm. The average pore diameter in the case of a nonwoven fabric is, for example, 1 μm or more and 100 μm or less, preferably 5 μm or more and 50 μm or less, a porosity of 30% or more and 90% or less, and a film thickness of 1 μm or more and less than 3 mm, and the material is particularly Although it does not choose, a desirable material is a flat membrane made of cellulose, which is a hydrophilic polymer, and is characterized by ease of membrane regeneration, resistance to clogging, and ease of processing. As a specific cellulose flat membrane, in addition to a multilayer flat membrane produced by a microphase separation method, a filter paper-like material or a non-woven fabric may be used. If the average pore diameter is less than 5 nm, the contribution by the dissolution / diffusion mechanism is large, and the diffusion coefficient is too small. The upper limit of the porosity is 90% or less. When the upper limit is exceeded, the mechanical properties of the film are significantly deteriorated, and the probability of occurrence of defects such as pinholes is increased. The film thickness is desirably 30 μm or more. Increasing the film thickness increases the film strength and ease of handling, and is effective in removing microorganisms from the viewpoint of reducing the occurrence of pinholes.


平均孔径は「粘度・膜厚・濾過速度/膜間差圧・空孔率」の平方根で与えられる。ここで濾過速度は一平方メートル当りの純水の濾過速度でml/minの単位で測定され、膜厚はミクロン単位、粘度はセンチポイズ、膜間差圧はmmHg単位で、空孔率は無次元単位である。この際の平均孔径はnm単位となる。空孔率は「1−膜の密度/素材高分子の密度」で与えられる。膜の密度は「膜の重量/膜の面積*膜の厚さ」で算出される。素材高分子の密度は空孔率0%の時の膜の密度で、これはすでに文献で与えられている。多層構造膜とは膜の断面方向から電子顕微鏡で観察すると10〜1000nmの厚さの層が認められ、膜の表面からの観察では網目状または粒子間の隙間が孔として、また粒子相互は融着した様子が観察される膜である

The average pore diameter is given by the square root of “viscosity, film thickness, filtration rate / transmembrane differential pressure, porosity”. Here, the filtration rate is the filtration rate of pure water per square meter, measured in units of ml / min, the film thickness is in microns, the viscosity is in centipoise, the transmembrane pressure is in mmHg, and the porosity is a dimensionless unit. It is. The average pore diameter at this time is in nm units. The porosity is given by “1-membrane density / material polymer density”. The density of the film is calculated by “the weight of the film / the area of the film * the thickness of the film”. The density of the material polymer is the density of the membrane when the porosity is 0%, which has already been given in the literature. A multilayer structure film is a layer having a thickness of 10 to 1000 nm when observed with an electron microscope from the cross-sectional direction of the film. In the observation from the surface of the film, a mesh or a gap between particles is a hole, and particles are fused. It is a film that can be seen wearing


多層構造を持つ多孔性平膜とは、フィールドエミッション型走査型電子顕微鏡によって膜中に孔の存在が認められる膜で平均孔径5nm以上、空孔率が30%以上で、厚さ約0.2μmの層が10層以上に積層された膜を意味する。

A porous flat membrane having a multilayer structure is a membrane in which the presence of pores is recognized by a field emission type scanning electron microscope, an average pore diameter of 5 nm or more, a porosity of 30% or more, and a thickness of about 0.2 μm. Means a film in which 10 layers or more are laminated.


例えば銅安法再生セルロース平膜は親水性素材として最適であるが膜厚を100μm以上にまた平均孔径を100nm以上にするのが難しい。該膜の製法は特公昭62−044019号及び特公昭62−044017号と特公昭62−044018号に与えられている。広い範囲の平均孔径を持つ再生セルロース製の平膜の製法として多孔性アセテート膜を作成し、湿潤状態の膜を0.1規定の苛性ソーダでケン化処理することによって作製できる。アセテート膜の製法は上出健二,真鍋征一,松井敏彦,坂本富男,梶田修司,高分子論文集,34巻3号205頁〜216頁(1977年)に与えられている。この方法により0.01〜数ミクロンの平均孔径を持つ多孔性膜が得られ、膜厚は20μm〜数mmまで可能である。

For example, a copper anodized regenerated cellulose flat membrane is optimal as a hydrophilic material, but it is difficult to make the film thickness 100 μm or more and the average pore diameter 100 nm or more. The production method of the membrane is given in JP-B-62-044019, JP-B-62-044017 and JP-B-62-044018. As a method for producing a regenerated cellulose flat membrane having a wide range of average pore diameters, a porous acetate membrane is prepared, and a wet membrane is saponified with 0.1 N caustic soda. The method for producing the acetate membrane is given by Kenji Kamide, Seiichi Manabe, Toshihiko Matsui, Tomio Sakamoto, Shuji Hamada, Kogaku Seishu, Vol. 34, No. 3, pages 205-216 (1977). By this method, a porous film having an average pore diameter of 0.01 to several microns can be obtained, and the film thickness can be from 20 μm to several mm.


原液とは分離対象物質(分子あるいは粒子)を含む溶液であり、拡散液とは、該分離対象物質を拡散させる溶液のことであり、流導分別ろ過の場合には二次流路に満たされる液体が拡散液の役割を果たす場合もある。

The stock solution is a solution containing a substance to be separated (molecules or particles), and the diffusion liquid is a solution for diffusing the substance to be separated, and is filled in the secondary flow path in the case of flow separation filtration. In some cases, the liquid may act as a diffusion liquid.


得られた多孔性平膜1を図1に示すような支持体2に固定する。平膜を固定する際に、厚さ0.1mm〜1mm程度の薄いプラスチック板の支持板を用いてあらかじめ固定しておいてもよい。ピンホール発生を防止するためには該平膜を複数枚重ね合わせた方が望ましい。二枚の多孔性平膜を両側に固定した支持体を膜セット5と呼ぶ。

The obtained porous flat membrane 1 is fixed to a support 2 as shown in FIG. When the flat membrane is fixed, it may be fixed in advance using a thin plastic plate support plate having a thickness of about 0.1 mm to 1 mm. In order to prevent the occurrence of pinholes, it is desirable to superimpose a plurality of flat films. A support in which two porous flat membranes are fixed on both sides is called a membrane set 5.


膜セット5をベース4上にて並べ連ねることで膜カートリッジ6が作製できる。この膜カートリッジ6の側面全体がそれぞれ一次側流路3となり、原水(原液と同義)が一次側流体流れ8のように流れる。膜カートリッジ6の側面のうち、ベース4に連結される面が二次側流路7につながり、ろ液(拡散液と同義)10は二次側流体流れ9のように流れる。二次側流路7には開閉弁11が設置され、ろ液10の排出速度が調整される。この膜カートリッジ6が膜分離装置12のポンプ1手前、原水流れ8の途中にセットされる。

The membrane cartridge 6 can be manufactured by arranging the membrane set 5 on the base 4 and connecting them. The entire side surface of the membrane cartridge 6 becomes the primary side flow path 3, and the raw water (synonymous with the raw solution) flows like the primary side fluid flow 8. Of the side surfaces of the membrane cartridge 6, the surface connected to the base 4 is connected to the secondary side flow path 7, and the filtrate (synonymous with diffusion liquid) 10 flows like a secondary side fluid flow 9. An open / close valve 11 is installed in the secondary channel 7 to adjust the discharge speed of the filtrate 10. This membrane cartridge 6 is set in the middle of the raw water flow 8 in front of the pump of the membrane separation device 12.


支持体2は、ポリエチレンやポリプロピレン等のポリオレフィン類、ポリカーボネートやポリエチレンテレフタラートやナイロン等の高分子縮合重合体、さらにフッ素系樹脂やポリ塩化ビニルなどの側鎖として極性基を持つ樹脂製か、あるいは金属製の織物、編物あるいは不織布などが使用される。

The support 2 is made of polyolefins such as polyethylene and polypropylene, polymer condensation polymers such as polycarbonate, polyethylene terephthalate and nylon, and a resin having a polar group as a side chain such as fluorine resin or polyvinyl chloride, or Metal woven fabric, knitted fabric or non-woven fabric is used.


膜セット5は望ましくは接着せずに積層し、面に対して垂直方向に面圧をかけて膜カートリッジ5とする。あるいは少量の接着剤、たとえばシリコンやポリウレタン樹脂や溶剤などを用いて積層し、膜カートリッジ6とする。

The membrane set 5 is desirably laminated without bonding, and a membrane pressure is applied in a direction perpendicular to the surface to form the membrane cartridge 5. Alternatively, a film cartridge 6 is formed by laminating using a small amount of adhesive, for example, silicon, polyurethane resin, or a solvent.


以上の手順で組み立てた膜分離装置12には、流体を循環させるためのポンプ13と循環流路14、流体用タンク15があり、場合によってポンプ16、あるいは気体圧源17を有する。ここでポンプ13、ポンプ16、気体圧源17が一次側流速調整機構となる。また、開閉弁11が二次側流速調整機構となる。流体用タンク15に導入された流体は、ポンプ16、あるいはポンプ13によって一定のひずみ速度以上で膜カートリッジ5と膜分離装置内を一次側流体流れ8、循環流路14の方向に循環する。ひずみ速度τは次式で与えられる。「τ=V/T (秒-1)」ここでVは流速(mm/秒)、Tは流路幅(mm)である。ひずみ速度の条件は除去対象粒子によるが、たとえば除去対象粒子が0.数μmである場合、ひずみ速度を20/秒以上、および膜間差圧(原液と拡散液との静圧の差)を0.02MPaに設定することによって目詰まりをほぼ起こさずにろ過を行うことができる。また、一次側の流体は膜表面でのひずみ速度で2/秒以上の流速で流し、膜間差圧が0.01MPa以下になるように調整することで、目詰まりをほぼ起こさずに平膜の平均孔径の1/2以下の粒子径の粒子を分離できる。

The membrane separation device 12 assembled in the above procedure has a pump 13 for circulating fluid, a circulation flow path 14, and a fluid tank 15, and optionally has a pump 16 or a gas pressure source 17. Here, the pump 13, the pump 16, and the gas pressure source 17 serve as a primary side flow rate adjustment mechanism. The on-off valve 11 serves as a secondary side flow rate adjustment mechanism. The fluid introduced into the fluid tank 15 is circulated in the direction of the primary fluid flow 8 and the circulation flow path 14 through the membrane cartridge 5 and the membrane separation device at a constant strain rate or higher by the pump 16 or the pump 13. The strain rate τ is given by the following equation. “Τ = V / T (second −1 )” where V is a flow velocity (mm / second), and T is a channel width (mm). The strain rate conditions depend on the particles to be removed. When it is several μm, the strain rate is set to 20 / second or more, and the transmembrane pressure difference (the difference in static pressure between the stock solution and the diffusion solution) is set to 0.02 MPa to perform filtration with almost no clogging. be able to. In addition, the fluid on the primary side is allowed to flow at a flow rate of 2 / sec or more at the strain rate on the membrane surface, and the pressure difference between the membranes is adjusted to be 0.01 MPa or less, so that the flat membrane is almost free from clogging. Particles having a particle size of ½ or less of the average pore size can be separated.


孔拡散型膜分離では膜間差圧を平膜の平均孔径によって指定される圧力△P以下となるように流体(液体)を供給する。△Pは次式で与えられる。「 △P≦kdDη/r 2 」ここでdは膜厚、Dは微粒子の拡散係数、ηは分離対象とする液体の粘度rは平均孔径、kは膜の孔構造を反映した定数で非多層構造膜では4000、多層構造膜では2×10である。この式を満足する△Pでの孔拡散分離法では目詰まりがほぼ完全に防止できる。膜セット間の流路幅と、膜分離装置内の流路とポンプは、一定のひずみ速度で流体が流すことができるように、流体の粘度、流路の圧力損失から決定される。

In the pore diffusion membrane separation, a fluid (liquid) is supplied so that the transmembrane pressure difference is not more than a pressure ΔP specified by the average pore diameter of the flat membrane. ΔP is given by the following equation. “ΔP ≦ kdDη / r f 2 ” where d is the film thickness, D is the diffusion coefficient of the fine particles, η is the viscosity of the liquid to be separated r f is the average pore diameter, and k is a constant reflecting the pore structure of the membrane. The non-multilayer structure film is 4000, and the multilayer structure film is 2 × 10 5 . Clogging can be almost completely prevented by the pore diffusion separation method at ΔP that satisfies this equation. The channel width between the membrane sets, and the channels and pumps in the membrane separator are determined from the viscosity of the fluid and the pressure loss of the channel so that the fluid can flow at a constant strain rate.


ポンプ13およびポンプ16を同時に用いる場合は、二つのポンプの吐出力と流速、および開閉弁11を調整することで、膜カートリッジ5の一次側流路における流速と同時に結果として膜間差圧を制御する。その結果、十分なひずみ速度で流れる流体によって分離対象粒子は膜表面に堆積せずに一定のろ過速度を得ることができる。

When the pump 13 and the pump 16 are used simultaneously, by adjusting the discharge force and flow velocity of the two pumps and the on-off valve 11, the transmembrane pressure difference is controlled simultaneously with the flow velocity in the primary flow path of the membrane cartridge 5. To do. As a result, the separation target particles are not deposited on the membrane surface by the fluid flowing at a sufficient strain rate, and a constant filtration rate can be obtained.


ポンプ13あるいはポンプ16のいずれかのみを用いる場合は、一次側流路に接続された流体用タンク15に気体圧源19から気体圧をかけ、開閉弁11を調整することによって、膜間差圧を制御する。あるいは、流体用タンク15に貯められた流体の水頭圧20を調節することによって膜間差圧を制御する。

When only one of the pump 13 and the pump 16 is used, the transmembrane differential pressure is adjusted by applying a gas pressure from the gas pressure source 19 to the fluid tank 15 connected to the primary flow path and adjusting the on-off valve 11. To control. Alternatively, the transmembrane pressure difference is controlled by adjusting the hydraulic head pressure 20 of the fluid stored in the fluid tank 15.


分離対象物質に親和力を有する物質を利用した親和力型孔拡散膜分離を行う場合には、多孔性平膜1に親和力を有する物質を担持させて使用する。具体的には、分離対象物質が粒径2nm以下の粒子、たとえば1価あるいは2価の陽イオンの場合、親和力を有する物質として鉄コロイド粒子、鉄シアン錯体、水酸基、カルボキシル基、アミノ基、スルホ基のいずれかの使用が考えられる。たとえばNaイオンやCaイオン、Csイオンなどの陽イオン粒子を分離する場合には、該粒子に対して親和力を有する物質として、プラスに帯電した鉄コロイド粒子や、Csイオンに親和力を有する鉄シアン錯体を平膜に担持させる。Caイオンに対してはカルボキシル基が有効であり、一方、塩化物イオンなどの陰イオンの場合にはスルホ基が有効である。

When performing affinity type pore diffusion membrane separation using a substance having an affinity for the separation target substance, the porous flat film 1 is used by carrying a substance having an affinity. Specifically, when the substance to be separated is a particle having a particle size of 2 nm or less, for example, a monovalent or divalent cation, iron colloid particles, iron cyanide complex, hydroxyl group, carboxyl group, amino group, sulfo group are used as the substance having affinity. Any use of the group is contemplated. For example, when separating cation particles such as Na ions, Ca ions, and Cs ions, positively charged iron colloid particles or iron cyanide complexes having affinity for Cs ions are used as substances having affinity for the particles. Is supported on a flat membrane. A carboxyl group is effective for Ca ions, while a sulfo group is effective for anions such as chloride ions.


平膜への担持の方法としては、鉄コロイド粒子は水中に分散させた後、ろ過操作を行うことで平膜表面にケーク層として担持させる方法がある。鉄シアノ錯体の場合は、ケーク層として担持させる他、前駆体としてのフェロシアン化カリウム水溶液を平膜に浸漬させた後、3価の鉄イオンを反応させ、平膜中に鉄シアノ錯体を析出させる方法がある。官能基を平膜に負荷して親和力物質として担持させる場合は、たとえばカルボキシル基の場合は、過酸化水素や過マンガン酸カリウムなどの酸化剤を使用し、セルロース製平膜中の水酸基を酸化してカルボキシル基とする方法がある。アミノ基、スルホ基の付加は、それぞれプラズマ処理によるアミノ基の付加、および共役ジエンのスルホン化物との反応などがある。

As a method for supporting on a flat membrane, there is a method in which iron colloidal particles are dispersed in water and then supported as a cake layer on the surface of the flat membrane by performing a filtration operation. In the case of an iron cyano complex, a method of depositing an iron cyano complex in a flat film by allowing it to be supported as a cake layer and by immersing an aqueous potassium ferrocyanide solution as a precursor in a flat film and then reacting with trivalent iron ions There is. When loading a functional group onto a flat membrane and supporting it as an affinity substance, for example, in the case of a carboxyl group, an oxidizing agent such as hydrogen peroxide or potassium permanganate is used to oxidize the hydroxyl group in the cellulose flat membrane. There is a method of using a carboxyl group. Addition of an amino group and a sulfo group includes addition of an amino group by plasma treatment and reaction with a sulfonated conjugated diene.


分離対象物質に対する分離性能(濃縮度あるいは希釈度)が低い場合に、膜カートリッジ6をセットした膜分離装置12を図8のように還流式多段構造に組むこともできる。複数の膜分離装置12を前段から後段に多段に連結させる際に、前段の一次側出口を後段の一次側入口に連結し、かつ後段の二次側の出口を前段の一次側入口に連結し、二次側ろ液を前段の一次側に還流させることで徐々に濃縮度あるいは希釈度を上げていくことができる。ここで前段、後段とは一次側流体の流れに対する呼称であって、一次側流体の流れの上流側が前段、下流側が後段である。この際、二次側の流体の流れは考慮に入れない。

When the separation performance (concentration or dilution) for the substance to be separated is low, the membrane separation device 12 in which the membrane cartridge 6 is set can also be assembled in a reflux type multistage structure as shown in FIG. When connecting a plurality of membrane separators 12 from the front stage to the rear stage in multiple stages, connecting the primary side outlet of the front stage to the primary side inlet of the rear stage, and connecting the secondary side outlet of the rear stage to the primary side inlet of the front stage The concentration or dilution can be gradually increased by refluxing the secondary filtrate to the primary side of the previous stage. Here, the former stage and the latter stage are names for the flow of the primary side fluid, and the upstream side of the flow of the primary side fluid is the former stage and the downstream side is the latter stage. At this time, the flow of the fluid on the secondary side is not taken into consideration.


また膜セット5には図6に示すような二次側流体入口21を設置することもできる。その結果、図7に示すように膜カートリッジ6にも二次側流体入口21と二次側流体出口7が設置され、図9に示すような対流式多段構造が可能となる。複数の膜分離装置12を前段から後段に多段に連結させる際に、前段の一次側出口を後段の一次側入口に連結し、かつ後段の二次側の出口を前段の二次側入口に連結し、膜を介して一次側と二次側の流体の流れを対流させることで、徐々に濃縮度あるいは希釈度を上げていくことができる。

In addition, a secondary fluid inlet 21 as shown in FIG. As a result, the secondary fluid inlet 21 and the secondary fluid outlet 7 are also installed in the membrane cartridge 6 as shown in FIG. 7, and a convective multistage structure as shown in FIG. 9 is possible. When connecting a plurality of membrane separation devices 12 in multiple stages from the front stage to the rear stage, the primary outlet on the front stage is connected to the primary side inlet on the rear stage, and the secondary outlet on the rear stage is connected to the secondary side inlet on the front stage. In addition, the degree of concentration or dilution can be gradually increased by convection of the fluid flow on the primary side and the secondary side through the membrane.


セルロース誘導体の銅安法で作製された再生セルロース長繊維不織布(旭化成繊維製ベンリーゼNE107、目付が100g/平米、厚さ390μm、平均孔径約20μm)をプレス加工し、厚さ101μm、空孔率39%、透水速度214286L/(平米・hr)、平均孔径7.0μmの加工済み不織布を得た。当該不織布を多孔性平膜1とした。

Recycled cellulose long-fiber nonwoven fabric (Benryse NE107 manufactured by Asahi Kasei Fiber, weight per unit area: 100 g / square meter, thickness: 390 μm, average pore size of about 20 μm) produced by the copper-ammonium method of cellulose derivatives is pressed to a thickness of 101 μm, porosity 39 %, A water permeability of 214286 L / (square meter · hr), and a processed non-woven fabric having an average pore diameter of 7.0 μm. The nonwoven fabric was designated as a porous flat membrane 1.


この多孔性平膜1を、200mm角に切り取り、塩化ビニル製支持体2にセットし、16層に積層して膜カートリッジを作製した。

This porous flat membrane 1 was cut into a 200 mm square, set on a vinyl chloride support 2, and laminated into 16 layers to produce a membrane cartridge.


処理用原水として下水系排水を凝集剤で処理をしたものを使用した。排水に含まれる粒子の粒径をダイナミック光散乱粒径アナライザー(大塚電子)にて測定したところ、約0.05μmから200μmに粒径分布を持ち、約17μmにピークを有し、平均粒径は31μmであった。

As the raw water for treatment, sewage wastewater treated with a flocculant was used. When the particle size of the particles contained in the wastewater was measured with a dynamic light scattering particle size analyzer (Otsuka Electronics), it had a particle size distribution from about 0.05 μm to 200 μm, had a peak at about 17 μm, and the average particle size was It was 31 μm.


50L/分の送液ポンプをポンプ13として使用し、ポンプ13の回転数をインバーターで制御し、一次側流量調整機構とした。また二次側流路に開閉弁11を設け、二次側流量調整機構とした。一次側流路における流速は9.8cm/秒、ひずみ速度は24.5/秒である。一次側を原水が定常的に流れていることを確認後、開閉弁11をゆっくり開き、二次側浸出液流速を時間当たり約50L/平米に調整することにより、一次側流路における膜間差圧を約0.002MPaに設定した。

A liquid feed pump of 50 L / min was used as the pump 13, and the number of rotations of the pump 13 was controlled by an inverter to provide a primary flow rate adjusting mechanism. Moreover, the on-off valve 11 was provided in the secondary side flow path, and it was set as the secondary side flow volume adjustment mechanism. The flow rate in the primary channel is 9.8 cm / second, and the strain rate is 24.5 / second. After confirming that the raw water is steadily flowing on the primary side, the on-off valve 11 is slowly opened and the secondary side leachate flow rate is adjusted to about 50 L / sq.m. Was set to about 0.002 MPa.


流体の循環開始後、二次側流路7からろ液10が排出され、12時間にわたり一定の流速であった。ろ液の目視外観は透明であり、含まれる粒子の粒径をダイナミック光散乱粒径アナライザー(大塚電子)にて測定したところ、平均粒径は約1μmであった。

After the fluid circulation was started, the filtrate 10 was discharged from the secondary side flow path 7, and the flow rate was constant for 12 hours. The visual appearance of the filtrate was transparent, and when the particle size of the contained particles was measured with a dynamic light scattering particle size analyzer (Otsuka Electronics), the average particle size was about 1 μm.


再生セルロース長繊維不織布(旭化成繊維製ベンリーゼNE107、目付が100g/平米、厚さ390μm、平均孔径約20μm)を、フェロシアン化カリウム(黄血塩)の水溶液に浸漬し、十分に浸透させた。その後3価の鉄イオン水溶液を平膜に滴下し、平膜の層内に鉄シアン錯体を析出させ、担持させた。

A regenerated cellulose long-fiber nonwoven fabric (Benryse NE107 manufactured by Asahi Kasei Fiber, basis weight of 100 g / square meter, thickness of 390 μm, average pore diameter of about 20 μm) was immersed in an aqueous solution of potassium ferrocyanide (yellow blood salt) and sufficiently infiltrated. Thereafter, a trivalent iron ion aqueous solution was dropped onto the flat film, and an iron cyanide complex was precipitated and supported in the layer of the flat film.


この多孔性平膜1を、200mm角に切り取り、塩化ビニル製支持体2にセットし、16層に積層して膜カートリッジを作製した。膜カートリッジの各膜セット5間の一次側流路の幅は4mmである。

This porous flat membrane 1 was cut into a 200 mm square, set on a vinyl chloride support 2, and laminated into 16 layers to produce a membrane cartridge. The width of the primary channel between the membrane sets 5 of the membrane cartridge is 4 mm.


膜カートリッジを実施例1と同様の膜分離装置にセットし、水道水を循環させながら、鉄シアン錯体フロックを一次側流路に導入し、緩やかにろ過しながら、平膜表面に鉄シアン錯体フロックをケーク状に積層させた。

Set the membrane cartridge in the same membrane separator as in Example 1, introduce iron cyanide complex floc into the primary channel while circulating tap water, and gently filter the iron cyan complex floc on the flat membrane surface. Were laminated in a cake.


処理用原水(原液)として塩化セシウム水溶液(セシウム濃度約500ppm)を作成した。その原液をタンク15に入れ、50L/分の送液ポンプをポンプ13として使用し、ポンプ13の回転数をインバーターで制御し、一次側流量調整機構とした。また二次側流路に開閉弁11を設け、二次側流量調整機構とした。一次側流路における流速は9.8cm/秒、ひずみ速度は24.5/秒である。一次側を原水が定常的に流れていることを確認後、開閉弁11をゆっくり開き、二次側浸出液流速を時間当たり約5L/平米に調整することにより、一次側流路における膜間差圧を約0.002MPaに設定した。原水に含まれる粒子の粒径をダイナミック光散乱粒径アナライザー(大塚電子)にて測定したところ、約0.95μmと約27μmに二つのピークを有し、平均粒径は約27μmであった。

A cesium chloride aqueous solution (cesium concentration of about 500 ppm) was prepared as a raw water for treatment (raw solution). The stock solution was put in the tank 15, a liquid feed pump of 50 L / min was used as the pump 13, and the number of revolutions of the pump 13 was controlled by an inverter to form a primary flow rate adjusting mechanism. Moreover, the on-off valve 11 was provided in the secondary side flow path, and it was set as the secondary side flow volume adjustment mechanism. The flow rate in the primary channel is 9.8 cm / second, and the strain rate is 24.5 / second. After confirming that the raw water is steadily flowing on the primary side, the on-off valve 11 is slowly opened, and the secondary side leachate flow rate is adjusted to about 5 L / sq.m. Was set to about 0.002 MPa. When the particle size of the particles contained in the raw water was measured with a dynamic light scattering particle size analyzer (Otsuka Electronics), it had two peaks at about 0.95 μm and about 27 μm, and the average particle size was about 27 μm.


2時間処理を継続し、原液と浸出液のイオン濃度およびセシウム濃度をそれぞれ電気伝導率計 (堀場製作所、B-173)および原子吸光光度計(日立製Z-2300)を用いて測定した。その結果、1時間後において一次側電気伝導度420μS/cm、セシウム濃度334.1ppm、二次側電気伝導度390μS/cm、セシウム濃度312.0ppm、除去率6.6%(セシウム濃度)であり、2時間後において一次側電気伝導度410μS/cm、セシウム濃度330.0ppm、二次側電気伝導度400μS/cm、セシウム濃度312.7ppm、除去率5.2%(セシウム濃度)であった。ろ液の目視外観は透明であり、含まれる粒子の粒径をダイナミック光散乱粒径アナライザー(大塚電子)にて測定したところ、粒子は不検出であった。

The treatment was continued for 2 hours, and the ion concentration and cesium concentration of the stock solution and the leachate were measured using an electric conductivity meter (Horiba, B-173) and an atomic absorption photometer (Hitachi Z-2300), respectively. As a result, after one hour, the primary electric conductivity was 420 μS / cm, the cesium concentration was 334.1 ppm, the secondary electric conductivity was 390 μS / cm, the cesium concentration was 312.0 ppm, and the removal rate was 6.6% (cesium concentration). After 2 hours, the primary electric conductivity was 410 μS / cm, the cesium concentration was 330.0 ppm, the secondary electric conductivity was 400 μS / cm, the cesium concentration was 312.7 ppm, and the removal rate was 5.2% (cesium concentration). The visual appearance of the filtrate was transparent, and when the particle size of the contained particles was measured with a dynamic light scattering particle size analyzer (Otsuka Electronics), no particles were detected.


温和な条件下で分離、精製が求められる産業(例、製薬産業、食品産業)、特にタンパク質などの生理活性を持つ物質の分離、精製に本発明は利用できる。また、下水処理、排水処理などの水処理に利用することができる。特に高い粒子除去性と、目詰まりが起こりにくい特徴を持つ安価な分離用不織布膜として、従来の高価な膜分離技術の適用が不可能と考えられていた水処理用として利用される。また、コロイド系を取り扱う工業においてコロイド粒子を含めて特定の微粒子を精製、分離する方法として工業的プロセスに組み込むことが出来る。また、医療用、環境用、特に水処理用として、ウイルスや細菌、重金属類、COD原因物質、染料などの汚染物質、有害性微粒子の除去に用いられる。

The present invention can be used in industries that require separation and purification under mild conditions (eg, pharmaceutical industry, food industry), particularly separation and purification of substances having physiological activity such as proteins. Further, it can be used for water treatment such as sewage treatment and drainage treatment. In particular, it is used as an inexpensive non-woven fabric for separation having a high particle removability and a feature that clogging is unlikely to occur, and is used for water treatment where it has been considered impossible to apply a conventional expensive membrane separation technique. Further, in the industry handling colloidal systems, it can be incorporated into an industrial process as a method for purifying and separating specific fine particles including colloidal particles. In addition, it is used for the removal of viruses, bacteria, heavy metals, COD causative substances, contaminants such as dyes, and harmful fine particles for medical use, environmental use, particularly water treatment.


1,多孔性平膜あるいは不織布
2,二次側支持体
3,一次側流路
4,ベース
5,膜セット
6,膜カートリッジ
7,二次側ろ液出口
8,一次側流体
9,二次側流体
10,ろ液
11,開閉弁
12,膜分離装置
13,ポンプ1
14,循環流路
15,タンク
16,ポンプ2
17,気体圧源
18,水頭圧
19,洗浄水タンク
20,一次側流体入口
21,二次側流体入口

1, porous flat membrane or non-woven fabric 2, secondary side support 3, primary side flow path 4, base 5, membrane set 6, membrane cartridge 7, secondary side filtrate outlet 8, primary side fluid 9, secondary side Fluid 10, filtrate 11, on-off valve 12, membrane separator 13, pump 1
14, circulation flow path 15, tank 16, pump 2
17, gas pressure source 18, water head pressure 19, washing water tank 20, primary side fluid inlet 21, secondary side fluid inlet

Claims (4)

0.01〜100μmの平均孔径をもつ多孔性平膜を備え、一次側および二次側に流速調整機構を設け、一次側の流体は膜表面でのひずみ速度で2/秒以上の流速で流し、該流速調整機構で間接的に膜間差圧が0.01MPa以下になるように調整し、該平膜の平均孔径の1/2以下の粒子径の分離対象物質を分離することを特徴とする孔拡散型膜分離装置を使用するにあたり、該平膜の表面あるいは/および内部に、処理対象液に含まれる分離対象物質に対し親和力を有する物質あるいは官能基を担持させて使用し、処理対象液に含まれる分離対象物質と他成分との親和力の違いにより分離することを特徴とする分離方法。 Equipped with a porous flat membrane having an average pore diameter of 0.01 to 100 μm, provided with a flow rate adjusting mechanism on the primary and secondary sides, and the primary side fluid flows at a flow rate of 2 / sec or more at the strain rate on the membrane surface. The flow rate adjusting mechanism is indirectly adjusted so that the transmembrane pressure difference is 0.01 MPa or less, and the separation target substance having a particle size of 1/2 or less of the average pore size of the flat membrane is separated. When using a pore diffusion membrane separation apparatus, the surface or / and the inside of the flat membrane is used with a substance or functional group having affinity for the substance to be separated contained in the liquid to be treated, A separation method, wherein separation is performed based on a difference in affinity between a substance to be separated contained in a liquid and another component. 請求項1の分離方法において、分離対象物質が1価あるいは2価の陽イオンであり、親和力を有する物質として鉄コロイド粒子、鉄シアン錯体、水酸基、カルボキシル基、アミノ基、スルホ基のいずれかを使用することを特徴とする孔拡散型膜分離方法。 2. The separation method according to claim 1, wherein the substance to be separated is a monovalent or divalent cation, and the substance having affinity has any of iron colloid particles, iron cyanide complex, hydroxyl group, carboxyl group, amino group, and sulfo group. A pore diffusion membrane separation method characterized by using. 請求項1あるいは請求項2の分離方法において、複数の前記膜分離装置を前段から後段に多段に連結させる際に、前段の一次側出口を後段の一次側入口に連結し、かつ後段の二次側の出口を前段の一次側入口に連結し、二次側ろ液を前段の一次側に還流させることを特徴とする多段式孔拡散型膜分離方法。 3. The separation method according to claim 1 or 2, wherein when the plurality of membrane separation devices are connected in multiple stages from the front stage to the rear stage, the primary side outlet of the front stage is connected to the primary side inlet of the rear stage, and the secondary of the rear stage A multi-stage pore diffusion membrane separation method, characterized in that a secondary outlet is connected to a primary inlet of a preceding stage, and a secondary filtrate is refluxed to the primary side of the preceding stage. 請求項1あるいは請求項2の分離方法において、複数の前記膜分離装置を前段から後段に多段に連結させる際に、前段の一次側出口を後段の一次側入口に連結し、かつ後段の二次側の出口を前段の二次側入口に連結し、膜を介して一次側と二次側の流体の流れを対流させることを特徴とする多段式孔拡散型膜分離方法。



3. The separation method according to claim 1 or 2, wherein when the plurality of membrane separation devices are connected in multiple stages from the front stage to the rear stage, the primary side outlet of the front stage is connected to the primary side inlet of the rear stage, and the secondary of the rear stage A multi-stage pore diffusion membrane separation method characterized in that the outlet on the side is connected to the secondary side inlet on the previous stage, and the flow of the fluid on the primary side and the secondary side is convected through the membrane.



JP2013245425A 2013-11-27 2013-11-27 Hole diffusion membrane separation method Active JP6277346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245425A JP6277346B2 (en) 2013-11-27 2013-11-27 Hole diffusion membrane separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245425A JP6277346B2 (en) 2013-11-27 2013-11-27 Hole diffusion membrane separation method

Publications (2)

Publication Number Publication Date
JP2015100774A JP2015100774A (en) 2015-06-04
JP6277346B2 true JP6277346B2 (en) 2018-02-14

Family

ID=53376969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245425A Active JP6277346B2 (en) 2013-11-27 2013-11-27 Hole diffusion membrane separation method

Country Status (1)

Country Link
JP (1) JP6277346B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6422032B2 (en) * 2015-11-04 2018-11-14 日本特殊膜開発株式会社 Flow separation type pore diffusion membrane separation module for concentration
JP6708834B2 (en) * 2016-04-15 2020-06-10 日本特殊膜開発株式会社 A method for producing clean water using snow and clean water produced by the method.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349268A (en) * 2004-06-09 2005-12-22 Seiichi Manabe Substance separation and purification process utilizing diffusion through porous film
JP2012148240A (en) * 2011-01-19 2012-08-09 Sepa Sigma Inc Membrane separator and method of separation utilizing flat membrane
JP2012223704A (en) * 2011-04-19 2012-11-15 Sepa Sigma Inc Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
JP2013237016A (en) * 2012-05-15 2013-11-28 Sepa Sigma Inc Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same

Also Published As

Publication number Publication date
JP2015100774A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
Otitoju et al. Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review
Yu et al. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: Air plasma treatment
Saren et al. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly
Madaeni et al. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles
JP6772840B2 (en) Separation membrane, separation membrane element, water purifier and method for manufacturing separation membrane
Gebreslase et al. Review on membranes for the filtration of aqueous based solution: oil in water emulsion
Maximous et al. Effect of the metal oxide particle distributions on modified PES membranes characteristics and performance
EP3216515B1 (en) Hollow fiber filtration membrane
WO2011152967A2 (en) Coated porous materials
JP2014514966A (en) Improved membrane with polydopamine coating
JP2013237016A (en) Hole diffusion type or f flow guide sorting type membrane separation apparatus and a method using the same
JP2006187731A (en) Separation membrane and water treatment apparatus
Akther et al. Synthesis of polybenzimidazole (PBI) forward osmosis (FO) membrane and computational fluid dynamics (CFD) modeling of concentration gradient across membrane surface
JP2012148240A (en) Membrane separator and method of separation utilizing flat membrane
JP2961629B2 (en) Manufacturing method of microfiltration membrane
JP6277346B2 (en) Hole diffusion membrane separation method
Cheng et al. Electrospun nanofibers for water treatment
JP6343589B2 (en) Flow separation type pore diffusion membrane separation module
KR20170093808A (en) Multilayer semipermeable membrane
JP6422032B2 (en) Flow separation type pore diffusion membrane separation module for concentration
JP2015013267A (en) Mixing, stirring and residence apparatus
JP2012223704A (en) Membrane separation device installed with hole diffusion type or hole diffusion filtering type membrane cartridge, and membrane separation method
KR101357670B1 (en) Forward osmosis membrane packed with draw material, the preparing method thereof and the forward osmosis apparatus comprising the same
JP2005349268A (en) Substance separation and purification process utilizing diffusion through porous film
JP2010269258A (en) Separation method by flat membrane pore diffusion and apparatus therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171201

R150 Certificate of patent or registration of utility model

Ref document number: 6277346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250