JPH0246608B2 - - Google Patents

Info

Publication number
JPH0246608B2
JPH0246608B2 JP56187796A JP18779681A JPH0246608B2 JP H0246608 B2 JPH0246608 B2 JP H0246608B2 JP 56187796 A JP56187796 A JP 56187796A JP 18779681 A JP18779681 A JP 18779681A JP H0246608 B2 JPH0246608 B2 JP H0246608B2
Authority
JP
Japan
Prior art keywords
porous membrane
plane
cellulose
porosity
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56187796A
Other languages
Japanese (ja)
Other versions
JPS5889626A (en
Inventor
Seiichi Manabe
Michitaka Iwata
Mamoru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56187796A priority Critical patent/JPS5889626A/en
Priority to US06/443,074 priority patent/US4581140A/en
Priority to DE8282110793T priority patent/DE3267317D1/en
Priority to EP82110793A priority patent/EP0080206B1/en
Priority to CA000416225A priority patent/CA1216110A/en
Priority to DK523282A priority patent/DK158707C/en
Priority to KR8205319A priority patent/KR880000511B1/en
Publication of JPS5889626A publication Critical patent/JPS5889626A/en
Publication of JPH0246608B2 publication Critical patent/JPH0246608B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、平均孔径が0.01〜20μmで、かつ少
なくとも一つの面の面内空孔率が30%以上である
再生セルロース多孔膜に関する。さらに詳しく
は、セルロース分子の平均分子量が5×104以上
で、結晶領域が実質的にセルロースおよび/ま
たは−2結晶で構成される再生セルロース多孔
膜であり、(101)面の多孔膜面への配向度(以
下、配向度と表す)が40%以下、測定周波数110
Hzにおける30℃での動的弾性率が1.5×108(100−
Prρ)dyn/cm2以上(Prは百分率表示での空孔率)、
多孔膜において平均孔径が0.01〜20μmであり、
かつ少なくとも一つの面の面内空孔率が30%以上
であるか、あるいは面内の1cm2当りの孔の数が6
×105/D〜3×107/D個であることを特徴とす
る再生セルロース多孔膜に関する。 物質の分離精製技術の中で膜分離技術が注目さ
れつつある。蒸留と異なり分離に伴なう温度変化
を必要としないこと、分離に必要なエネルギーが
少ないこと、さらに工程がコンパクトであるとい
う膜分離プロセスの特徴を生かし、広範囲の分野
で高分子膜が利用されている。たとえば、酪農、
水産、畜産、食品加工、医薬品、化学工業、繊維
染色加工、鉄鋼、機械、表面処理、水処理、原子
力工業などである。将来膜分離システムが中心と
なる可能性のある分野として、低温での濃縮、
精製、回収を必要とする分野(食品、生物化学工
業分野)、無菌、無塵を必要とする分野(医薬
品および治療機関、電子工業)、微量な高価物
質の濃縮回収(原子力、重金属分野)、特殊少
量分離分野(医療分野)、エネルギー多消費分
離分野(蒸留代替)が考えられる。これらの分野
に利用される膜として、孔径の大きな取扱いの容
易な親水性膜の必要性が高まつている。 親水性高分子の典型例であるセルロースで構成
される多孔膜としては、平均孔径が100Å(0.01μ
m)以下の人工腎臓用多孔膜が知られている。こ
の種の膜の典型例として、銅アンモニアセルロー
ス膜がある。この膜を構成するセルロースの平均
分子量が5×104で、結晶領域が実質的にセルロ
ースであり、動的弾性率は5×1010dyn/cm2程度
で、力学的損失正接tanδ−温度曲線におけるピー
ク温度Tmaxは約200℃である。空孔率Prは約10
%と低く、平均孔径は、本発明方法での評価で
は、小さすぎて評価不能で、電子顕微鏡では観察
できない。また、(101)面の配向度は約50%であ
る。また、酢酸セルロースあるいは硝酸セルロー
スなどのセルロース誘導体膜をアルカリ水溶液で
ケン化することにより、再生セルロース多孔膜が
得られている。このような方法で得られた多孔膜
の平均孔径は0.01〜2μmの範囲であり、セルロー
ス誘導体を出発物質とするため再生後のセルロー
ス分子の分子量は3.5×104以下である。このよう
な孔径範囲の孔を持つ従来の再生セルロース多孔
膜のセルロース分子の分子量は4.0×104以下であ
る。たとえば、セルロースアセテートをケン化し
て得られた再生セルロース多孔膜の平均分子量が
2×104である。結晶領域はセルロース型結晶
であり、(101)面の配向度は約60%、空孔率は70
%であり、動的弾性率は3×106dyn/cm2と低く、
また、力学的損失正接tanδ−温度曲線におけるピ
ーク温度Tmaxは約200℃である。そのため乾燥
状態での多孔膜の力学的性質(特に強度)は著し
く低く、かつ脆い。たとえば、多孔膜の空孔率を
Prρ(百分率表示)とすれば、弾性率はほぼ102
(100−Prρ)3dyn/cm2である。引張り破壊強度は弾
性率にほぼ比例し、弾性率の約1/10である。水に
よる湿潤状態での強度は、乾燥状態にくらべてさ
らに低くなるため、セルロース誘導体から得られ
た従来の再生セルロース多孔膜は、取扱い時に破
損することがある。 本発明の再生セルロース多孔膜の第1の特徴
は、該膜の平均分子量が5×104以上のセルロー
ス分子で構成されている点にある。再生セルロー
ス多孔膜は乾燥状態では脆い。分子量の増大に伴
なつて多孔膜の強度は上昇し、脆さが改善され
る。そのため多孔膜の取扱いが容易となり、多孔
膜の破損は減少する。セルロースの平均分子量が
大きければ大きいほど、同一の空孔率で比較した
場合の破損率は減少する。該平均分子量の膜物性
に及ぼす影響は、平均分子量が大きくなるにした
がつて飽和する傾向が認められる。したがつて、
平均分子量は5.0×104以上であれば、実用上の取
扱い易さの点でさしつかえない。多孔膜の作製の
容易さから、平均分子量は3×105以下が望まし
い。 本発明の第2の特徴は、結晶領域がセルロース
またはセルロース−2結晶あるいは両者の混
在した結晶で構成されている点にある。セルロー
スまたは−2結晶あるいは両者の混在した結
晶で結晶領域が構成されていることは、結晶領域
内部が実質的にセルロース分子で構成され、セル
ロース誘導体などのようにセルロース分子中の水
酸基が他の基で置換されていないことを意味す
る。セルロースあるいは−2結晶は、化学
的、熱的にも安定である。 本発明の最大の特徴は、セルロースおよび
−2結晶おいて、(101)面の多孔膜面への配向度
が40%以下である点にある。従来公知の再生セル
ロース膜では、、(101)面の法線方向は膜面に垂
直にある。この法線が膜面と垂直な方向に配向す
る程度を表現するには、膜面に平行にX線を入射
させて得られるX線回折強度を利用することがで
きる。後述の測定方法で得られる(101)面の膜
面への配向度で表示すると、公知の再生セルロー
ス膜では50%以上である。 (101)面の多孔膜面への配向とは、セルロー
スまたは−2結晶の(101)面の法線の膜平
面に垂直な方向への配向の程度を示すパラメータ
であり、X線回折法で測定される。具体的には
(101)面の結晶配向度の測定として後述する。
(101)面は水素結合に垂直な面であるため、該面
の多孔膜面への結晶配向度が40%以下になると、
引張破壊強度の大きい多孔膜となる。例えば、結
晶配向度が40%以下の膜の引張破壊強度は1.5×
106(100−Prρ)dyn/cm2以上となる。これに反し
て、結晶配向度が低下するにしたがつて、多孔膜
の破裂強度が低下する。しかし、結晶配向度が40
%以下に低下しても、測定周波数110Hzにおける
30℃の動的弾性率が1.5×108(100−Prρ)dyn/cm2
以上であれば、破裂強度の低下はほとんど認めら
れない。 例えば、平均孔径1〜2μm、空孔率61〜71、
結晶配向度25〜35%の範囲内で一定として、動的
弾性率を変化させた場合における多孔膜の引張破
壊強度、破裂強度を第1表に示す。
The present invention relates to a regenerated cellulose porous membrane having an average pore diameter of 0.01 to 20 μm and an in-plane porosity of at least one surface of 30% or more. More specifically, it is a regenerated cellulose porous membrane in which the average molecular weight of cellulose molecules is 5 × 10 4 or more, the crystalline region is substantially composed of cellulose and/or -2 crystals, and the porous membrane surface has a (101) plane. The degree of orientation (hereinafter referred to as degree of orientation) is 40% or less, and the measurement frequency is 110.
The dynamic elastic modulus at 30℃ at Hz is 1.5×10 8 (100−
Prρ) dyn/cm 2 or more (Pr is porosity in percentage),
The porous membrane has an average pore diameter of 0.01 to 20 μm,
and the in-plane porosity of at least one surface is 30% or more, or the number of pores per 1 cm2 in the plane is 6
The present invention relates to a regenerated cellulose porous membrane characterized in that the number of cells is ×10 5 /D to 3 × 10 7 /D. Membrane separation technology is attracting attention among materials separation and purification technologies. Unlike distillation, polymer membranes are used in a wide range of fields, taking advantage of the characteristics of the membrane separation process: no temperature change is required for separation, little energy is required for separation, and the process is compact. ing. For example, dairy farming,
These include fisheries, livestock, food processing, pharmaceuticals, chemical industry, textile dyeing, steel, machinery, surface treatment, water treatment, and nuclear power industry. Fields in which membrane separation systems may become central in the future include low-temperature concentration,
Fields that require purification and recovery (food, biochemical industry), fields that require sterility and dust-free (pharmaceutical and therapeutic institutions, electronic industry), concentration and recovery of trace amounts of expensive substances (nuclear power, heavy metal fields), Possible fields include special small-volume separation field (medical field) and energy-intensive separation field (distillation alternative). As membranes used in these fields, there is an increasing need for hydrophilic membranes with large pores and easy handling. A porous membrane composed of cellulose, which is a typical example of a hydrophilic polymer, has an average pore diameter of 100 Å (0.01 μ
m) The following porous membranes for artificial kidneys are known. A typical example of this type of membrane is a cuprammonium cellulose membrane. The average molecular weight of cellulose constituting this membrane is 5 x 104 , the crystalline region is substantially cellulose, the dynamic elastic modulus is about 5 x 1010 dyn/cm2, and the mechanical loss tangent tanδ-temperature curve The peak temperature Tmax at is about 200°C. Porosity Pr is approximately 10
%, and the average pore diameter is too small to be evaluated using the method of the present invention, and cannot be observed using an electron microscope. Furthermore, the degree of orientation of the (101) plane is approximately 50%. Furthermore, a regenerated cellulose porous membrane has been obtained by saponifying a cellulose derivative membrane such as cellulose acetate or cellulose nitrate with an alkaline aqueous solution. The average pore diameter of the porous membrane obtained by such a method is in the range of 0.01 to 2 μm, and since a cellulose derivative is used as the starting material, the molecular weight of the cellulose molecules after regeneration is 3.5×10 4 or less. The molecular weight of cellulose molecules in conventional regenerated cellulose porous membranes having pores in such a pore size range is 4.0×10 4 or less. For example, the average molecular weight of a regenerated cellulose porous membrane obtained by saponifying cellulose acetate is 2×10 4 . The crystalline region is a cellulose type crystal, the degree of orientation of the (101) plane is approximately 60%, and the porosity is 70%.
%, and the dynamic elastic modulus is as low as 3×10 6 dyn/cm 2 .
Further, the peak temperature Tmax in the mechanical loss tangent tan δ-temperature curve is about 200°C. Therefore, the mechanical properties (especially strength) of the porous membrane in a dry state are extremely low and brittle. For example, the porosity of a porous membrane is
If Prρ (expressed as a percentage), the elastic modulus is approximately 10 2
(100−Prρ) 3 dyn/ cm2 . The tensile breaking strength is approximately proportional to the elastic modulus, and is approximately 1/10 of the elastic modulus. Conventional regenerated cellulose porous membranes obtained from cellulose derivatives may break during handling because their strength in a wet state with water is even lower than in a dry state. The first feature of the regenerated cellulose porous membrane of the present invention is that the membrane is composed of cellulose molecules having an average molecular weight of 5×10 4 or more. Regenerated cellulose porous membranes are brittle in dry conditions. As the molecular weight increases, the strength of the porous membrane increases and its brittleness is improved. Therefore, handling of the porous membrane becomes easier and damage to the porous membrane is reduced. The higher the average molecular weight of cellulose, the lower the breakage rate when compared at the same porosity. The influence of the average molecular weight on the film properties tends to become saturated as the average molecular weight increases. Therefore,
An average molecular weight of 5.0×10 4 or more is acceptable in terms of practical ease of handling. From the viewpoint of ease of producing a porous membrane, the average molecular weight is desirably 3×10 5 or less. A second feature of the present invention is that the crystalline region is composed of cellulose, cellulose-2 crystals, or a mixture of both. The fact that the crystalline region is composed of cellulose or -2 crystals or a mixture of both means that the inside of the crystalline region is substantially composed of cellulose molecules, and as in cellulose derivatives, the hydroxyl groups in the cellulose molecules are not connected to other groups. means that it is not replaced. Cellulose or -2 crystals are chemically and thermally stable. The greatest feature of the present invention is that in cellulose and -2 crystals, the degree of orientation of the (101) plane to the porous membrane surface is 40% or less. In conventionally known regenerated cellulose membranes, the normal direction of the (101) plane is perpendicular to the membrane surface. To express the extent to which this normal line is oriented in a direction perpendicular to the film surface, it is possible to use the X-ray diffraction intensity obtained by making X-rays incident parallel to the film surface. The degree of orientation of the (101) plane to the membrane surface obtained by the measurement method described below is 50% or more in known regenerated cellulose membranes. The orientation of the (101) plane to the porous membrane plane is a parameter that indicates the degree of orientation of the normal line of the (101) plane of cellulose or -2 crystal in the direction perpendicular to the membrane plane, and it can be measured by X-ray diffraction method. be measured. Specifically, this will be described later as a measurement of the degree of crystal orientation of the (101) plane.
Since the (101) plane is a plane perpendicular to hydrogen bonding, if the degree of crystal orientation of this plane to the porous membrane surface becomes 40% or less,
This results in a porous film with high tensile fracture strength. For example, the tensile fracture strength of a film with a degree of crystal orientation of 40% or less is 1.5×
10 6 (100−Prρ)dyn/cm 2 or more. On the other hand, as the degree of crystal orientation decreases, the bursting strength of the porous membrane decreases. However, the degree of crystal orientation is 40
% or less at a measurement frequency of 110Hz.
The dynamic elastic modulus at 30℃ is 1.5×10 8 (100−Prρ) dyn/cm 2
If it is above, almost no decrease in bursting strength is observed. For example, average pore diameter 1-2 μm, porosity 61-71,
Table 1 shows the tensile fracture strength and burst strength of the porous membrane when the dynamic elastic modulus was varied while the degree of crystal orientation was constant within the range of 25 to 35%.

【表】 ※ 比較例
この配向性の特徴は、水あるいは有機溶媒中へ
該多孔膜を浸漬した際の膨潤変形に現われる。す
なわち、(101)面の配向度が大きくなると、水で
膨潤させた際の膜厚方向の膨潤が他の2方向にく
らべて大きくなるのに対して、本発明ではほぼ等
方向に膨潤する。 本発明物の他の特徴として、平均孔径が0.01〜
2.0μmであり、かつ少なくとも一つの面の面内空
孔率が30%以上であるか、あるいは面内1cm2当り
の孔数が6×105/D〜3×107/D個である点に
ある。面内空孔率が30%以上となると、多孔膜を
用いた過速度は大幅に増加し、また過容量も
増大する。理論的には、過速度は体積換算した
空孔率(以下この空孔率を単に空孔率と表示す
る)に比例し、過容量もほぼ空孔率に比例す
る。空孔率が30%以上になると、面内空孔率の増
大に伴なう過速度および過容量は共に増大
し、面内空孔率は30%以上であれば、大きければ
大きいほどよい。望ましくは面内空孔率が55%以
上であればよい。ただし、多孔膜の取扱い易さ、
多孔膜の力学的性質から、面内空孔率として90%
以下が望ましい。被過液体は、多孔膜の表面か
ら裏面へ向つて過される。表面の平均孔径が同
一で、かつ空孔率が同一の種々の膜の組合せで
過速度を比較した場合、裏面の孔径は表面の孔径
より大きければ、過速度および過容量も大き
い。 多孔膜の外形の形状としては、平面膜、チユー
ブ状、中空糸状物すべてを含む。また平均孔半径
とは、(1)式によつて定義される3を意味する。
多孔膜1cm2当りの孔半径がr〜r+drに存在する
孔の数をN(r)drと表示すると(N(r)は孔径
分布関数)、平均孔半径3は(1)式で与えられる。
本発明でいう平均孔径とは23で定義される。 3=∫0r3N(r)dr/∫0r2N(r)dr (1) 孔一個当りの限外過速度は、ほぼ3の4乗
に比例し、また空孔率に比例する。したがつて、
過速度のみを大きくするには、3は大きけれ
ば大きいほどよい。しかし、目的とする分離対象
の粒子径との関連から、当然最大孔径が決定され
る。親水性のスクリーン型フイルターとしての特
性が十分発揮される領域は、平均孔径(すなわち
3)として20μm以下である。また平均孔径が
0.01μm以下の場合、該膜による分離対象とする
粒子は、一般に球状でないものが増大し、本発明
多孔膜の特徴が生かされない。後述するように、
本発明多孔膜を用いた分離対象物として、水を含
む液体または気体混合物中の目的とする成分の分
離除去および濃縮にあり、しかも高速度で過す
ることを目的とする。当然平均孔径が小さくなる
と、過速度の低下は著しい。また、多孔膜の厚
さは通常薄ければ薄いほどよいが、取扱いの容易
さおよびピンホールの混在をさせるため、5μm
以上の厚さを持つのが一般的である。平均孔径が
0.01μm以下の孔の場合には、貫通孔でないもの
(非貫通孔)の存在確率が増大し、いわば過膜
としての性能は、貫通孔で予測される性能以下と
なる。非貫通孔の混在をさけるため、平均孔径は
0.01μm以上でなければならない。平均孔径が大
きくなるにしたがつて、多孔膜の膜厚を厚くする
ことによりピンホールの混入を防ぐことができ
る。しかし、過速度は膜厚に反比例するので、
膜としては薄い方が望ましい。両者の相反する傾
向のため、膜厚の最適範囲は、多孔膜の製法と密
接に関連する。 さらに、測定周波数110Hzにおける力学的損失
正接tanδ−温度曲線において、ピーク温度Tmax
が250℃以上であれば、多孔膜の熱的安定性が増
大し、有機溶媒中での耐熱性が上昇する。 本発明多孔膜が利用できる分離対照として、水
を含む液体または気体混合物中の目的とする成分
の分離除去、たとえば、人工腎臓用あるいは人工
肝臓、人工膵臓用膜などである。その他限外過
膜として利用できるほとんどすべての分野で利用
できるが、親水性で力学的性質に優れる強靭な本
多孔膜は、生体関連分野(医学、生物化学工業)
あるいは食品醗酵分野が特に適する。 本発明物は、たとえば10%(重量)のセルロー
ス銅アンモニア溶液中にアセトンを10重量%添加
して得た溶液を、厚さ500μmのアプリケータで
通常の方法でガスラ板上に流延し、ただちに35℃
のアセトン蒸気雰囲気下に入れ、60分放置後、得
られた膜を20℃の2重量%硫酸水溶液に浸漬し、
その後水洗し、しかる後該膜を20℃のアセトン中
に浸漬することにより、該膜中の水分をアセトン
で置換し、乾燥することによつて得ることができ
る。なお、セルロース−2結晶から構成される
膜は、液体アンモニア中へ10秒間浸漬後、20℃で
アンモニアを除去することによつて得られる。得
られた膜の熱的安定性は著しく増大する。 実施例に先立ち、発明の詳細な説明中で用いら
れた各種物性値の測定方法を以下に示す。 <平均分子量> 銅アンモニア溶液中(20℃)で測定された極限
粘度数〔η〕(ml/g)を(2)式に代入することによ
り、平均分子量(粘度平均分子量)Mvを算出す
る。 Mv=〔η〕×3.2×103 (2) <セルロースおよび−2結晶の同定、結晶配
向度> 理学電機社製X線発生装置(RU−200PL)と
ゴニオメータ(SG−9R))、計数管にはシンチレ
ーシヨンカウンター、計数部には波高分析器を用
い、30KV、800mAでX線発生装置を運転し、ニ
ツケルフイルターで単色化したCu−Kα線(波長
λ=1.5418Å)でX線回折強度を測定する。 結晶構造の決定の場合は、フイルム面に垂直方
向、または中空糸の場合には、繊維軸に垂直方向
からX線を入射する。スキヤニング速度1゜/
min、チヤート速度10mm/min、タイムコンスタ
ント1sec、ダイバージエンススリツト1/2゜、レシ
ービングスリツト0.3mm、スキヤツタリングスリ
ツト1/2゜において、回折角2θが4゜〜35゜の範囲でX
線回折強度を測定する。 セルロース結晶は、2θ=12゜{(101)面からの
反射}、20.2゜{(101)面からの反射}、21゜{(00
2)
面からの反射}の3種の回折で特徴づけられる。
またセルロース−2結晶は、2θ=12゜{(101)面
からの反射、20゜{(101)面からの反射}の2種
の回折で特徴づけられる。 (101)面の結晶配向度の測定は、試料が平面
膜の場合には、X線を膜面に対して平行に入射さ
せる。中空糸の場合には、中空糸を平面状に圧縮
し、中空の空隙部をなくし、見掛上2枚の積層膜
の状態に変形する。該積層膜平面に対して平行に
X線を入射させる。2θ=12゜にゴニオメータをセ
ツトし、対称透過法を用いて方位角方向を+30゜
〜−30゜走査し、方位角方向の回折強度を記録す
る。さらに+180゜と−180゜の方位角方向の回折強
度を記録する。このときのスキヤニング速度は
4゜/min、チヤート速度は10mm/min、タイムコン
スタントは1sec、コリメータは2mmφ、レシービ
ングスリツトは、縦幅1.9mm、横幅35mmである。
得られた方位角方向の回折強度曲線から結晶配向
度を求める。まず±180゜で得られたX線回折強度
の平均値を取り、水平線を引きベースラインとす
る。ピークの頂点からベースラインに垂線を下ろ
し、その高さの中点を求める。中点を通る水平線
を引き、これと回折強度曲線との二つの交点間の
距離を測定し、この値を角度(゜)に換算した値
を配向角H(゜)とする。結晶配向度は(3)式で与
えられる。 結晶配向度(%)={(180−H)/180}×100 (3) 結晶が無配向の場合には、Hは180となり、結
晶配向度は0%である。 <空孔率Prρ> 平面状の多孔膜を47mmφの円形に切り出し、該
多孔膜を真空中で乾燥し、水分率を0.5%以下と
する。乾燥後の多孔膜の厚さをd(cm)、重量をW
(g)とすると、空孔率Prρ(%)は(4)式で与えら
れる。 Prρ(%)=(1−17.34×d/1.50×W)×100 (4) 中空糸の場合、中空糸の内径をD2(cm)、外径
をD1(cm)とし、中空糸の長さをl(cm)、重量を
W(g)とすると、Prρは(5)式で与えられる。 Prρ(%) ={1−W/6.0×π(D21−D22)l}×100(5
) <平均孔半径3、面内空孔率Prおよび孔数N> 走査型電子顕微鏡には、日本電子製JSM−U3
型を用い、表裏面の電子顕微鏡写真を撮影する。
該写真から公知の方法で孔径分布関数N(r)を
算出し、これを本文中(1)式に代入する。すなわ
ち、孔径分布を求めたい部分の走査電子顕微鏡写
真を適当な大きさ(たとえば20cm×20cm)に拡大
焼付けし、得られた写真上に等間隔にテストライ
ン(直線)を20本描く。おのおのの直線は多数の
孔を横切る。多孔膜の表面または裏面上の孔を横
切つた際の孔内に存在する直線の長さを測定し、
この頻度分布関数を求める。もし、膜表面上(裏
面上)の孔かどうかの判定が困難な場合は、写真
上で観察される孔をすべて膜表面上の孔とみな
し、この際、(7)式で算出されるNの1/3が本発明
における孔数と定義する。また、この際の面内空
孔率は、(6)式で算出されるPrの2倍が面内空孔
率であると定義する。この頻度分布関数を用い
て、たとえば、ステレオロジ(たとえば、諏訪紀
夫著、定量形態学、岩波書店)の方法でN(r)
を定める。面内空孔率PrはN(r)を用いて(6)式
で算出される。また、孔数Nは(7)式で与えられ
る。 Pr(%)=π∫r2N(r)dr×100 (6) N=∫ 0N(r)dr (7) <tan−δ−温度曲線、動的弾性率> 幅1mm、長さ5cmの短冊状の試料を多孔膜から
切り出し、東洋ボールドウイン社製Reo Vibron
DDV−c型を使用し、測定周波数110Hz、乾燥
空気下で、平均昇温速度10℃/minでtanδ−温度
曲線と動的弾性率を測定する。測定されたtanδ−
温度曲線からtanδのピーク温度Tmax(℃)を読
み取る。 実施例 1 セルロースリンター(平均分子量2.3×105)を
公知の方法で調製した銅アンモニア溶液中に10重
量%の濃度で溶解後、該溶液にアセトンを12%添
加し、撹拌後、30℃の空気中に通常の方法でガラ
ス板上に500μmのアプリケータで流延する。直
ちに該流延物を20℃のアセトン蒸気雰囲気の速度
が飽和蒸気圧の70%の雰囲気下に入れ、120分放
置後、得られた膜を20℃の2重量%硫酸水溶液に
15分浸漬再生し、その後水洗し、しかる後該膜を
20℃のアセトン中に15分浸漬し、膜中の水分をア
セトンで置換し、紙にはさんで乾燥し、厚さ
50μmの多孔膜を得た。その微細構造上の特徴と
各種物性値は以下のようになる。平均分子量は
5.7×104、(101)面の配向度は28%、測定周波数
110Hzにおける30℃の動的弾性率は9.1×109dyn/
cm2、平均孔径は約1μm、面内空孔率は65%、孔
数は4.0×107個、Tmaxは264℃である。なお、
本多孔膜の表面の電子顕微鏡写真を第1図に、同
裏面の電子顕微鏡写真を第2図に示す。 比較例 1 公知の方法(USP3883626)で得られた種々の
セルロースアセテート多孔膜をPH12.0の苛性ソー
ダ水溶液を用いて30℃でケン化し、再生セルロー
ス多孔膜を得た。その微細構造上の特徴と各種物
性値を第2表に示す。
[Table] * Comparative example This feature of orientation appears in swelling deformation when the porous membrane is immersed in water or an organic solvent. That is, as the degree of orientation of the (101) plane increases, the swelling in the film thickness direction becomes larger when the film is swollen with water compared to the other two directions, whereas in the present invention, the film swells in almost the same direction. Another feature of the present invention is that the average pore diameter is from 0.01 to
2.0 μm, and the in-plane porosity of at least one surface is 30% or more, or the number of pores per 1 cm 2 in the plane is 6 × 10 5 /D to 3 × 10 7 /D. At the point. When the in-plane porosity is 30% or more, the overspeed using a porous membrane increases significantly, and the overcapacity also increases. Theoretically, the overspeed is proportional to the volumetric porosity (hereinafter, this porosity is simply referred to as porosity), and the overcapacity is also approximately proportional to the porosity. When the porosity is 30% or more, both overspeed and overcapacity increase as the in-plane porosity increases, and as long as the in-plane porosity is 30% or more, the larger the better. Desirably, the in-plane porosity should be 55% or more. However, the ease of handling porous membranes,
Due to the mechanical properties of the porous membrane, the in-plane porosity is 90%
The following are desirable. The permeated liquid is passed from the front surface to the back surface of the porous membrane. When comparing the overspeed of various membrane combinations with the same average pore size on the surface and the same porosity, if the pore size on the back side is larger than the pore size on the front side, the overspeed and overcapacity will also be large. The external shape of the porous membrane includes a flat membrane, a tube shape, and a hollow fiber shape. Further, the average pore radius means 3 defined by equation (1).
If the number of pores with a pore radius of r to r+dr per 1 cm2 of porous membrane is expressed as N(r)dr (N(r) is the pore size distribution function), the average pore radius 3 is given by equation (1). .
The average pore diameter in the present invention is defined as 2 3 . 3 = ∫ / 0 r 3 N (r) dr / ∫ / 0 r 2 N (r) dr (1) The ultimate overspeed per hole is approximately proportional to the fourth power of 3 , and the proportional to the rate. Therefore,
To increase only the overspeed, the larger 3 is, the better. However, the maximum pore size is naturally determined in relation to the target particle size to be separated. The region where the characteristics as a hydrophilic screen filter are fully exhibited is an average pore diameter (ie, 2 3 ) of 20 μm or less. Also, the average pore size
When the diameter is 0.01 μm or less, the particles to be separated by the membrane are generally non-spherical, and the characteristics of the porous membrane of the present invention cannot be utilized. As described later,
The object to be separated using the porous membrane of the present invention is to separate and remove and concentrate a target component in a liquid or gas mixture containing water, and to perform the separation at a high rate. Naturally, as the average pore diameter becomes smaller, the overspeed decreases significantly. In addition, the thickness of the porous membrane is normally the thinner the better, but for ease of handling and to prevent pinholes from forming, a thickness of 5 μm is recommended.
It is common to have a thickness greater than or equal to that. The average pore size is
In the case of pores of 0.01 μm or less, the probability of the existence of non-through holes (non-through holes) increases, so that the performance as a membrane becomes lower than that expected for through holes. In order to avoid the mixture of non-penetrating holes, the average pore diameter is
Must be 0.01μm or more. As the average pore diameter increases, the thickness of the porous membrane can be increased to prevent pinholes from being included. However, since overspeed is inversely proportional to film thickness,
It is desirable that the film be thinner. Because of these contradictory tendencies, the optimum range of film thickness is closely related to the manufacturing method of the porous film. Furthermore, in the mechanical loss tangent tanδ-temperature curve at a measurement frequency of 110Hz, the peak temperature Tmax
When the temperature is 250°C or higher, the thermal stability of the porous membrane increases, and the heat resistance in organic solvents increases. The porous membrane of the present invention can be used for separation and removal of target components in liquid or gas mixtures containing water, for example, membranes for artificial kidneys, artificial livers, and artificial pancreases. Although it can be used in almost all other fields in which ultrafiltration membranes can be used, this strong porous membrane with excellent hydrophilic properties and mechanical properties is suitable for bio-related fields (medicine, biochemical industry).
Or it is particularly suitable for the food fermentation field. In the present invention, for example, a solution obtained by adding 10% by weight of acetone to a 10% (by weight) cellulose cupric ammonia solution is cast onto a glass plate in the usual manner using an applicator having a thickness of 500 μm. Immediately 35℃
After leaving the membrane in an acetone vapor atmosphere for 60 minutes, the resulting membrane was immersed in a 2% sulfuric acid aqueous solution at 20℃
It can then be obtained by washing with water, then immersing the membrane in acetone at 20°C to replace the moisture in the membrane with acetone, and drying. Note that the film composed of cellulose-2 crystals can be obtained by immersing the film in liquid ammonia for 10 seconds and then removing the ammonia at 20°C. The thermal stability of the membrane obtained is significantly increased. Prior to Examples, methods for measuring various physical property values used in the detailed description of the invention are shown below. <Average Molecular Weight> The average molecular weight (viscosity average molecular weight) Mv is calculated by substituting the intrinsic viscosity number [η] (ml/g) measured in a cupric ammonia solution (20° C.) into equation (2). Mv=[η]×3.2×10 3 (2) <Identification of cellulose and -2 crystals, degree of crystal orientation> Rigaku Corporation X-ray generator (RU-200PL) and goniometer (SG-9R)), counter tube Using a scintillation counter and a pulse height analyzer for the counting section, the X-ray generator was operated at 30 KV and 800 mA, and the X-ray diffraction intensity was measured using Cu-Kα rays (wavelength λ = 1.5418 Å) made monochromatic with a nickel filter. Measure. In the case of determining the crystal structure, X-rays are incident perpendicularly to the film surface, or in the case of hollow fibers, perpendicularly to the fiber axis. Scanning speed 1°/
min, chart speed 10mm/min, time constant 1sec, divergence slit 1/2°, receiving slit 0.3mm, scattering slit 1/2°, and the diffraction angle 2θ is in the range of 4° to 35°.
Measure the linear diffraction intensity. Cellulose crystal has 2θ=12゜{reflection from (101) plane}, 20.2゜{reflection from (101) plane}, 21゜{(00
2)
It is characterized by three types of diffraction: reflection from a surface.
Furthermore, cellulose-2 crystals are characterized by two types of diffraction: 2θ=12° {reflection from the (101) plane} and 20° {reflection from the (101) plane}. To measure the degree of crystal orientation of the (101) plane, if the sample is a flat film, X-rays are incident parallel to the film surface. In the case of hollow fibers, the hollow fibers are compressed into a planar shape to eliminate hollow voids and deform into the appearance of two laminated membranes. X-rays are made incident parallel to the plane of the laminated film. The goniometer is set at 2θ = 12°, and the azimuth direction is scanned from +30° to -30° using the symmetrical transmission method, and the diffraction intensity in the azimuthal direction is recorded. Furthermore, the diffraction intensity in the azimuth directions of +180° and -180° is recorded. The scanning speed at this time is
4°/min, the chart speed is 10mm/min, the time constant is 1sec, the collimator is 2mmφ, and the receiving slit is 1.9mm long and 35mm wide.
The degree of crystal orientation is determined from the obtained diffraction intensity curve in the azimuthal direction. First, take the average value of the X-ray diffraction intensities obtained at ±180°, and draw a horizontal line to use it as the baseline. Drop a perpendicular line from the top of the peak to the baseline and find the midpoint of its height. A horizontal line passing through the midpoint is drawn, the distance between the two intersections of this and the diffraction intensity curve is measured, and this value is converted into an angle (°), and the value is defined as the orientation angle H (°). The degree of crystal orientation is given by equation (3). Crystal orientation degree (%) = {(180-H)/180}×100 (3) When the crystal is non-oriented, H is 180 and the crystal orientation degree is 0%. <Porosity Prρ> A planar porous membrane is cut into a circular shape of 47 mmφ, and the porous membrane is dried in vacuum to reduce the moisture content to 0.5% or less. The thickness of the porous membrane after drying is d (cm), the weight is W
(g), the porosity Prρ (%) is given by equation (4). Prρ (%) = (1-17.34×d/1.50×W)×100 (4) In the case of hollow fibers, the inner diameter of the hollow fiber is D 2 (cm), the outer diameter is D 1 (cm), and the When the length is l (cm) and the weight is W (g), Prρ is given by equation (5). Prρ (%) = {1-W/6.0×π( D2 / 1 - D2 / 2 )l}×100(5
) <Average pore radius 3 , in-plane porosity Pr, and number of pores N> For the scanning electron microscope, JSM-U3 manufactured by JEOL Ltd.
Using the mold, take electron micrographs of the front and back sides.
The pore size distribution function N(r) is calculated from the photograph by a known method and substituted into equation (1) in the text. That is, a scanning electron micrograph of the area where the pore size distribution is to be determined is enlarged and printed to an appropriate size (for example, 20 cm x 20 cm), and 20 test lines (straight lines) are drawn at equal intervals on the resulting photograph. Each straight line crosses a number of holes. Measure the length of the straight line that exists within the pores when crossing the pores on the front or back surface of the porous membrane,
Find this frequency distribution function. If it is difficult to determine whether the pores are on the membrane surface (on the back side), all pores observed on the photograph are considered to be pores on the membrane surface, and in this case, N 1/3 is defined as the number of holes in the present invention. Further, the in-plane porosity at this time is defined as twice Pr calculated by equation (6). Using this frequency distribution function, for example, by the method of stereology (for example, Norio Suwa, Quantitative Morphology, Iwanami Shoten), N(r)
Establish. The in-plane porosity Pr is calculated by equation (6) using N(r). Further, the number of holes N is given by equation (7). Pr(%)=π∫r 2 N(r)dr×100 (6) N=∫ 0 N(r)dr (7) <tan-δ-temperature curve, dynamic elastic modulus> Width 1mm, length A 5 cm strip sample was cut out from the porous membrane, and a Reo Vibron manufactured by Toyo Baldwin was used.
Using a DDV-c model, the tan δ-temperature curve and dynamic elastic modulus are measured at a measurement frequency of 110 Hz, under dry air, and an average heating rate of 10° C./min. Measured tanδ−
Read the peak temperature Tmax (℃) of tan δ from the temperature curve. Example 1 Cellulose linter (average molecular weight 2.3×10 5 ) was dissolved in a copper ammonia solution prepared by a known method at a concentration of 10% by weight, then 12% acetone was added to the solution, stirred, and then heated at 30°C. Cast with a 500 μm applicator on a glass plate in the usual manner in air. Immediately, the cast product was placed in an acetone vapor atmosphere at 20°C with a velocity of 70% of the saturated vapor pressure, and after being left for 120 minutes, the obtained film was placed in a 2% by weight sulfuric acid aqueous solution at 20°C.
Regenerate by soaking for 15 minutes, then rinse with water, and then remove the membrane.
Immerse it in acetone at 20℃ for 15 minutes to replace the moisture in the membrane with acetone, dry it by sandwiching it between paper sheets, and reduce the thickness.
A porous membrane of 50 μm was obtained. Its microstructural features and various physical property values are as follows. The average molecular weight is
5.7×10 4 , (101) plane orientation degree is 28%, measurement frequency
The dynamic elastic modulus at 30℃ at 110Hz is 9.1×10 9 dyn/
cm 2 , average pore diameter is about 1 μm, in-plane porosity is 65%, number of pores is 4.0×10 7 , and Tmax is 264°C. In addition,
An electron micrograph of the front surface of this porous membrane is shown in FIG. 1, and an electron micrograph of the back surface is shown in FIG. Comparative Example 1 Various cellulose acetate porous membranes obtained by a known method (USP 3883626) were saponified at 30°C using a caustic soda aqueous solution of pH 12.0 to obtain regenerated cellulose porous membranes. Table 2 shows its microstructural characteristics and various physical property values.

【表】【table】

【表】 なお、試料番号1−1〜1−4で得られた多孔
膜を構成するセルロース分子の平均分子量は1.5
×104〜2.0×104に分布する。 セルロース誘導体を再生して得られる多孔膜
は、平均孔径が低いほかに、動的弾性率が本発明
物の1/3以下であり、Tmaxも低い。これらが原
因して該多孔膜の強度や耐熱性は、本発明多孔膜
にくらべて著しく劣ることがわかる。
[Table] The average molecular weight of the cellulose molecules constituting the porous membranes obtained with sample numbers 1-1 to 1-4 is 1.5.
Distributed between ×10 4 and 2.0 × 10 4 . The porous membrane obtained by regenerating cellulose derivatives has a low average pore diameter, a dynamic elastic modulus that is 1/3 or less of that of the present invention, and a low Tmax. It can be seen that due to these factors, the strength and heat resistance of the porous membrane are significantly inferior to those of the porous membrane of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明物の表面の走査型電子顕微鏡写
真、第2図は同裏面の走査型電子顕微鏡写真であ
る。
FIG. 1 is a scanning electron micrograph of the front surface of the product of the present invention, and FIG. 2 is a scanning electron micrograph of the back surface of the same.

Claims (1)

【特許請求の範囲】 1 セルロース分子の平均分子量が5×104以上
で、結晶領域が実質的にセルロースあるいは
−2結晶あるいは両者が混在する結晶であり、
(101)面の多孔膜面への結晶配向度が40%以下、
測定周波数110Hzにおける30℃の動的弾性率が1.5
×108(100−Prρ)dyn/cm2以上(Prρは百分率表示
での空孔率)、多孔膜において平均孔径(Dμm)
が0.01〜20μmであり、かつ少なくとも一つの面
の面内空孔率が30%以上であるか、あるいは面内
の1cm2当りの孔の数が6×105/D個以上で3×
107/D個以下であることを特徴とする再生セル
ロース多孔膜。 2 多孔膜の少なくとも一つの面の面内空孔率が
55%以上で90%以下である特許請求の範囲第1項
記載の再生セルロース多孔膜。 3 測定周波数110Hzにおける力学的損失正接
tanδのピーク温度Tmaxが250℃以上である特許
請求の範囲第1項または第2項記載の再生セルロ
ース多孔膜。
[Scope of Claims] 1. The average molecular weight of cellulose molecules is 5 × 10 4 or more, and the crystalline region is substantially cellulose or -2 crystals, or a mixture of both,
The degree of crystal orientation of the (101) plane to the porous membrane surface is 40% or less,
Dynamic elastic modulus at 30℃ at measurement frequency 110Hz is 1.5
×10 8 (100−Prρ) dyn/cm 2 or more (Prρ is porosity expressed as a percentage), average pore diameter (Dμm) in porous membrane
is 0.01 to 20 μm, and the in-plane porosity of at least one surface is 30% or more, or the number of pores per 1 cm 2 in the plane is 6 × 10 5 /D or more, and 3 ×
A regenerated cellulose porous membrane characterized in that the number of cells is 10 7 /D or less. 2 The in-plane porosity of at least one surface of the porous membrane is
The regenerated cellulose porous membrane according to claim 1, wherein the regenerated cellulose porous membrane is 55% or more and 90% or less. 3 Mechanical loss tangent at measurement frequency 110Hz
The regenerated cellulose porous membrane according to claim 1 or 2, wherein the tan δ peak temperature Tmax is 250°C or higher.
JP56187796A 1981-11-25 1981-11-25 Tough regenerated cellulose porous membrane Granted JPS5889626A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP56187796A JPS5889626A (en) 1981-11-25 1981-11-25 Tough regenerated cellulose porous membrane
US06/443,074 US4581140A (en) 1981-11-25 1982-11-19 Porous regenerated cellulose membrane and process for the preparation thereof
DE8282110793T DE3267317D1 (en) 1981-11-25 1982-11-23 Porous regenerated cellulose membrane and process for the preparation thereof
EP82110793A EP0080206B1 (en) 1981-11-25 1982-11-23 Porous regenerated cellulose membrane and process for the preparation thereof
CA000416225A CA1216110A (en) 1981-11-25 1982-11-24 Porous regenerated cellulose membrane and process for the preparation thereof
DK523282A DK158707C (en) 1981-11-25 1982-11-24 POROE MEMBRANE OF REGENERED CELLULOSE AND PROCEDURES FOR PRODUCING THEREOF
KR8205319A KR880000511B1 (en) 1981-11-25 1982-11-25 A multi-porous regeneration cellulose film and preparation process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56187796A JPS5889626A (en) 1981-11-25 1981-11-25 Tough regenerated cellulose porous membrane

Publications (2)

Publication Number Publication Date
JPS5889626A JPS5889626A (en) 1983-05-28
JPH0246608B2 true JPH0246608B2 (en) 1990-10-16

Family

ID=16212373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56187796A Granted JPS5889626A (en) 1981-11-25 1981-11-25 Tough regenerated cellulose porous membrane

Country Status (1)

Country Link
JP (1) JPS5889626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623210B2 (en) 2006-03-02 2014-01-07 Sei-ichi Manabe Pore diffusion type flat membrane separating apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274707A (en) * 1985-05-31 1986-12-04 Asahi Chem Ind Co Ltd Regenerated porous membrane for separating bacteria
JPS621403A (en) * 1985-06-25 1987-01-07 Asahi Chem Ind Co Ltd Cuprammonium cellulose porous membrane with good dimensional stability
JPS6277325A (en) * 1985-09-30 1987-04-09 Asahi Chem Ind Co Ltd Membrane separation of albumin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134920A (en) * 1973-05-09 1974-12-25
JPS5040168A (en) * 1973-08-01 1975-04-12
JPS551363A (en) * 1978-06-20 1980-01-08 Murata Mach Ltd Feed roll device of double twister

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49134920A (en) * 1973-05-09 1974-12-25
JPS5040168A (en) * 1973-08-01 1975-04-12
JPS551363A (en) * 1978-06-20 1980-01-08 Murata Mach Ltd Feed roll device of double twister

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623210B2 (en) 2006-03-02 2014-01-07 Sei-ichi Manabe Pore diffusion type flat membrane separating apparatus

Also Published As

Publication number Publication date
JPS5889626A (en) 1983-05-28

Similar Documents

Publication Publication Date Title
US4822540A (en) Process for the preparation of a porous regenerated cellulose hollow fiber
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US3457171A (en) Graphitic oxide memberane for desalinating water
RU2658909C2 (en) Electrospun hybrid nanofibre felt
JPH01148305A (en) High molecular porous hollow yarn and process for removing virus utilizing the same
JPWO2009060836A1 (en) Cellulosic porous membrane
Hou et al. Preparation and characterization of nanocellulose–polyvinyl alcohol multilayer film by layer-by-layer method
JPS6214642B2 (en)
JPS6244017B2 (en)
US5387345A (en) Cellulose acetate membranes
JPH0246608B2 (en)
FI63972C (en) FOERFARANDE FOER FORMNING AV CELLULOSALOESNINGAR
KR840002296A (en) Porous regenerated cellulose membrane and its manufacturing process
JP2000061277A (en) Production of cellulosic crosslinked membrane
JPS6244018B2 (en)
JPS618105A (en) Permeable membrane and manufacture thereof
JPH0446978B2 (en)
JPS59204911A (en) Regenerated cellulose hollow fiber of novel structure
JPS61296112A (en) Cuprammonium cellulose hollow yarn membrane
JPS621403A (en) Cuprammonium cellulose porous membrane with good dimensional stability
JPH041015B2 (en)
JPH06509746A (en) Hollow fiber for dialysis
US20190240641A1 (en) Filtering medium for selective adsorption of blood components, and blood filter
Alberto et al. Desalination performance of a forward osmosis membrane from acetylated nata de coco (bacterial cellulose)
JPS61274707A (en) Regenerated porous membrane for separating bacteria