JPS6154844B2 - - Google Patents

Info

Publication number
JPS6154844B2
JPS6154844B2 JP55072434A JP7243480A JPS6154844B2 JP S6154844 B2 JPS6154844 B2 JP S6154844B2 JP 55072434 A JP55072434 A JP 55072434A JP 7243480 A JP7243480 A JP 7243480A JP S6154844 B2 JPS6154844 B2 JP S6154844B2
Authority
JP
Japan
Prior art keywords
steel
temperature
grain coarsening
forging
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55072434A
Other languages
Japanese (ja)
Other versions
JPS5719324A (en
Inventor
Shinichi Suzuki
Takeshi Miki
Yutaka Tsuchida
Toshimichi Mori
Yoshiro Koyasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7243480A priority Critical patent/JPS5719324A/en
Publication of JPS5719324A publication Critical patent/JPS5719324A/en
Publication of JPS6154844B2 publication Critical patent/JPS6154844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱間鍛造後の直接焼入、熱間鍛造後
の焼準省略あるいは浸炭時間の短縮を可能ならし
める鍛造用機械構造用鋼の製造法にかかわるもの
である。 一般に、機械構造用鋼は、熱間鍛造、熱処理特
に浸炭処理等の多くの熱エネルギーを要して、機
械部品となるものが多く、エネルギーの供給難が
叫ばれている昨今、これらの消費エネルギーを少
しでも少なくすることは、大きな社会的要請であ
る。 機械構造用鋼の熱間鍛造は、一般に1200℃以上
の温度において行なわれる。これまでの鋼は、こ
のような高温に加熱されると、結晶粒が著しく粗
大化して、組織が粗くなる。そのために、熱間鍛
造後にも、その影響を受け、靭性を必要とする機
械部品においては、熱間鍛造後直接焼入(鍛造焼
入とも言い、熱間鍛造後の余熱を利用して、再加
熱することなく、焼入れることをいう。)して
も、必要性能が得られない。そこで再加熱し、焼
入される。また、熱間鍛造後の粗大組織を調整す
るために、熱間鍛造後、焼準することも多い。こ
れらは、現在の鍛造時の加熱温度を低めることに
よつて、解消出来るわけであるが、あまり温度を
下げると、成形出来なくなるので低くとも1150℃
には加熱する必要がある。しかしながら、これま
での鋼では、1000℃でもかなり組織が粗くなる。 また、浸炭して使用される、いわゆる肌焼鋼は
通常、鍛造後930℃前後の温度で、一般に4〜5
時間、時に、50〜60時間浸炭される。これらの場
合、浸炭温度を高めろことによつて、浸炭時間が
短かく出来る。浸炭温度50℃高めれば、時間は約
1/2に出来る。したがつて、浸炭温度を高めて
も、トータルのエネルギーは節約される。しかし
ながら、従来の肌焼鋼では浸炭温度を930℃以上
高めたくとも、組織が粗大化し、性能が劣化して
しまう。しかも、このような組織の粗大化、性能
劣化は、浸炭前に冷間鍛造を行なつた場合、特に
著しいことが知られている。 以上のごとく、鍛造に供される機械構造用鋼
は、高温においてなお、組織が微細であれば、そ
の加工工程でのエネルギー消費節減に寄与すると
ころが大きい。 さて、鋼の高温における組織の粗大化は、結晶
粒の粗大化にもとづくものであつて、この結晶粒
粗大化阻止は金属組織学の大きな課題であり、多
くの研究がなされて来た。そして、A,Nb,
Ti等の析出物が結晶粒粗大化阻止効果のあるこ
とがわかつている。とりわけ、TiNが熱的に安定
で、他の析出物より高温まで、結晶粒粗大化阻止
効果のあることもわかつている。しかし、実際、
従来の知見だけでは、目的とする鋼が必ずしも得
られない。偶々、うまくいく場合もあるが、再現
性に乏しい。したがつて、TiNは高温まで結晶粒
粗大化阻止効果の大きいことがわかつていても、
実用化しているものは少ない。さらに、Zr、Hf
もTiと同様結晶粒粗大化阻止効果があることが
知られているが、その効果の再現性乏しく、実用
化されているものは少ない。 本発明は、Ti、ZrおよびHfの窒化物による結
晶粒粗大化阻止効果を活用するための、鋼の合金
成分と製造条件との相互関連を明らかにし、鍛造
用機械構造用鋼においてそれを具現化したもので
ある。 すなわち、本発明の要旨とするところはC0.12
〜0.8%、Si0.1〜1.0%、Mn2(C%)〜2.5%、
A0.01〜0.05%であり、Ti、ZrおよびHfの1種
又は2種以上を含み、(Ti%)+0.53(Zr%)+
0.27(Hf%)が0.01〜0.05%、Nが0.29(Ti%)+
0.15(Zr%)+0.08(Hf%)から0.015%、および
これら基本成分にさらにCr2%以下、Ni3%以
下、Mo0.5%以下の1種または2種以上を含み、
残部がFeおよび不純物からなる連続鋳造鋳片を
950〜1120℃の温度に加熱したのち、圧延または
鍛造することを特徴とする高温においてなお微細
組織を有する鍛造用機械構造用鋼の製造法にあ
る。 以下、本発明を詳細に説明する。 第1表に示すA,Bを基本成分としてTi、N
の添加量を種々変えた鋼を溶製し、連続鋳造法及
びインゴツト法で造塊し、1100℃に加熱して20φ
に延伸した。これらの鋼片を色々の温度に1時間
加熱後、冷却したときの旧オーステナイト粒を観
察し、観察面の面積率で約50%粗大粒が見られる
ようになる温度を測定し、これを結晶粒粗大化温
度とした。
The present invention relates to a method for manufacturing steel for forging machine structures that enables direct quenching after hot forging, omitting normalization after hot forging, or shortening carburizing time. In general, steel for machine structures requires a lot of thermal energy for hot forging, heat treatment, especially carburizing treatment, etc., and many of them are made into machine parts. It is a major social demand to reduce this as much as possible. Hot forging of mechanical structural steel is generally performed at temperatures of 1200°C or higher. When conventional steels are heated to such high temperatures, their crystal grains become significantly coarsened and their structures become coarse. For this reason, mechanical parts that require toughness even after hot forging are subject to the effects of hot forging, and are then directly quenched (also called forge quenching) by using the residual heat after hot forging. quenching without heating), the required performance cannot be obtained. There it is reheated and hardened. Further, in order to adjust the coarse structure after hot forging, normalization is often performed after hot forging. These problems can be resolved by lowering the current heating temperature during forging, but if the temperature is lowered too much, it will not be possible to form, so the temperature should be at least 1150℃.
requires heating. However, with conventional steels, the structure becomes quite coarse even at 1000°C. In addition, so-called case-hardened steel, which is used after carburizing, is usually heated at a temperature of around 930°C after forging, and is generally used at a temperature of 4~5°C.
Carburized for 50 to 60 hours. In these cases, the carburizing time can be shortened by increasing the carburizing temperature. If the carburizing temperature is increased by 50℃, the time will be approx.
It can be done in 1/2. Therefore, even if the carburizing temperature is increased, total energy is saved. However, with conventional case hardening steel, even if the carburizing temperature is increased to 930°C or higher, the structure becomes coarser and the performance deteriorates. Moreover, it is known that such coarsening of the structure and deterioration of performance are particularly noticeable when cold forging is performed before carburizing. As described above, if the steel for machine structures used for forging has a fine structure even at high temperatures, it will greatly contribute to reducing energy consumption in the processing process. Now, the coarsening of the structure of steel at high temperatures is based on the coarsening of crystal grains, and preventing this grain coarsening is a major challenge in metallography, and much research has been carried out. And A, Nb,
It is known that precipitates such as Ti have the effect of inhibiting crystal grain coarsening. In particular, it is known that TiN is thermally stable and has the effect of inhibiting crystal grain coarsening at higher temperatures than other precipitates. However, in fact,
Conventional knowledge alone does not necessarily yield the desired steel. Sometimes it works, but it is not reproducible. Therefore, even though it is known that TiN has a large grain coarsening inhibiting effect up to high temperatures,
Very few have been put into practical use. Furthermore, Zr, Hf
It is known that like Ti, it has the effect of inhibiting crystal grain coarsening, but its effect is poorly reproducible and few have been put into practical use. The present invention clarifies the interrelationship between alloy components of steel and manufacturing conditions in order to take advantage of the crystal grain coarsening inhibiting effect of Ti, Zr, and Hf nitrides, and embodies this in steel for machine structural use for forging. It has become. In other words, the gist of the present invention is C0.12
~0.8%, Si0.1~1.0%, Mn2 (C%) ~2.5%,
A 0.01 to 0.05%, containing one or more of Ti, Zr and Hf, (Ti%) + 0.53 (Zr%) +
0.27 (Hf%) is 0.01~0.05%, N is 0.29 (Ti%) +
0.15 (Zr%) + 0.08 (Hf%) to 0.015%, and further contains one or more of Cr2% or less, Ni3% or less, Mo0.5% or less,
Continuously cast slabs with the remainder consisting of Fe and impurities
A method for producing a steel for machine structural use for forging which still has a fine structure even at high temperatures, which comprises heating to a temperature of 950 to 1120°C and then rolling or forging. The present invention will be explained in detail below. Ti, N using A and B shown in Table 1 as basic components
Steel with various additive amounts is melted, formed into ingots by continuous casting method and ingot method, and heated to 1100℃ to form 20φ
It was extended to. After heating these steel pieces to various temperatures for 1 hour, we observed the prior austenite grains when cooled, measured the temperature at which approximately 50% coarse grains were visible in terms of the area ratio of the observed surface, and determined this as crystallization. This was taken as the grain coarsening temperature.

【表】 この結晶粒粗大化温度とTi量との関係を図示
すると第1図のようになる。 第1図においてA,Bの成分系のいずれを基本
成分とした場合でもインゴツトで造塊した場合は
Ti量の如何によらず、結晶粒粗大化温度は全く
改善されない。これに反し、連続鋳造による鋼塊
を用いる場合は、Ti量の増加と共に結晶粒粗大
化温度の顕著な改善が認められる。したがつて、
Tiを結晶粒粗大化温度の改善に役立てるために
は連続鋳造による造塊が不可欠である。また、
Zr、Hfを添加した場合にもZr、Hf量を原子量比
でTi量に換算すると、第1図と同様の結果が得
られた。したがつて、Ti、ZrおよびHf添加は原
子量比でTi量に換算しその和をTi当量とするこ
とにより統一的に取扱うことができる。すなわち
Ti当量はTi%+0.53(Zr%)+0.27(Hf%)とし
て表示できる。次に、S53CおよびSMn443鋼を基
本成分として、Ti、Zr、HfおよびN量を変化さ
せ、種々の結晶粒粗大化温度を有する鋼材を製造
した。この鋼材を1250〜1300℃で熱間鍛造(鍛造
比5)後直接焼入したときの旧オーステナイト粒
を観察し、観察面での粗大粒の面積率を測定し
た。これを粗大粒混入率と定義し、結果を第2図
に示す。 また、SCM420鋼及びSCr420鋼を基本成分とし
てTi、Zr、HfおよびN量を変化させることによ
り、種々の結晶粒粗大化温度を有する鋼材を製造
した。この鋼材を球状化焼鈍後、0、30、80%の
圧縮率で冷間鍛造し、930℃で5時間浸炭した。
この浸炭材の旧オーステナイト粒を観察し、観察
面での粗大粒の面積率を測定し、粗大粒混入率と
した。結果を第3図に示す。 これら第2図および第3図から、初めに述べた
鍛造用機械構造用鋼の熱間鍛造あるいは浸炭時の
省エネルギーを可能ならしめるためには、結晶粒
粗大化温度が1050℃以上であることが望ましいこ
とがわかる。したがつて、第1図からわかるよう
に、1050℃以上の結晶粒粗大化温度を得るために
は、Ti量あるいはTi当量が0.01%以上を必要とす
る。しかし、0.05%でほぼ飽和してしまう。一
方、Nについては、これらTi、ZrおよびHfより
有効に利用するためには、少なくとも、鋼中の
Ti、ZrおよびHfがすべて窒化物となるに十分な
Nが必要である。そのためにはM+N→MN(M
はTi、ZrあるいはHf)反応において、Ti量に見
合うN量、すなわち、0.29(Ti%)+0.15(Zr
%)+0.08(Hf%)以上のNを必要とする。実
際、高い結晶粒粗大化温度は、0.29(Ti%)+
0.15(Zr%)+0.08(Hf%)より過剰Nの方が、
安定して得られる。しかし、0.015%超添加して
も、添加量に見合うだけの効果はみられなかつ
た。 次に0.25,0.45,0.75%C―0.01%Ti―0.01%
Zr―0.01%Hf―0.009%Nを基本に、Si1%以下、
Mn2.5%以下、Cr2%以下、Ni3%以下、Mo0.5%
以下、A0.05%以下の各元素を1種または2種
以上、色々と量を変えて添加した鋼を溶製し、連
続鋳造法で鋳片とし、前記と同様の要領で実験し
た。そして、これら鋼の結晶粒粗大化温度を求
め、これらにおよぼすSi,Mn,Cr,Ni,Mo,A
の影響を明らかにした。この結果、Mnを除い
て、他の元素はほとんど影響のないことがわかつ
た。すなわち、機械構造用鋼に通常使用される
Si1%以下、Cr2%以下、Ni3%以下、Mo0.5%以
下、A0.05%以下の各元素を1種または2種以
上添加しても、結晶粒粗大化温度に対して悪影響
を与えない。したがつて、機械構造用鋼としての
性能を附与するために、これら各元素を、上記し
た範囲で必要に応じ添加する。上記の範囲超は、
一般的機械構造用鋼に必要ない。ただし、溶鋼の
脱酸が十分でないと、Ti,ZrおよびHfの歩留が
安定しないので、これを安定化するために脱酸作
用の強いSi,Aについては、Si0.1%以上、A
0.01%以上必要である。 上記の実験におけるMn量と結晶粒粗大化温度
との関係を示す第4図をみてわかるように、Mn
についてはその量が増すにつれて結晶粒粗大化温
度も高くなる。また、同図から1050℃以上の結晶
粒粗大化温度を得には、0.25%Cの鋼においては
0.5%以上、0.45%Cの鋼においては0.9%以上、
0.75%Cの鋼においては1.5%以上のMnを、夫々
必要とすることがわかる。1050℃以上の結晶粒粗
大化温度を得るに、C量の多い鋼においては、よ
り多くのMn量を必要とする。この関係を一般化
すると、2(C%)≦Mnとなる。しかし、2%
Mnでほぼ飽和状態になり、2.5%超は必要としな
い。そればかりか、2.5%超ではかえつて鋼の靭
性を害する。 結晶粒粗大化温度におよぼす合金元素の影響に
ついて、非常に多くの実験をし、これらの相互関
連を明らかにしてきたが、それでもまだ時とし
て、予測通りにならないことがある。すなわち、
適正成分の鋼でも、必ずしも1050℃以上の結晶粒
粗大化温度の得られないことが往々にしてある。 これは、試験鋼塊を鍛造するときの加熱温度の
適、不適によるものであることがわかつた。 すなわち、0.45%C―0.25%Si―1.0%Mn―
0.01%Ti―0.015%Zr―0.02%Hf―0.008%Nを主
要成分とする鋼を溶製し、5.5トン インゴツト
および連続鋳造鋳片に鋳造し、これら鋼塊を種種
の温度に加熱したる後、延伸した。 かく延伸したそれぞれの鋼片の結晶粒粗大化温
度を前記と同様の要領で求めた。その結果を第5
図に示した。同図は、鋼塊の加熱温度に対し、そ
れぞれの鋼片の結晶粒粗大化温度を図示したもの
である。同図から明らかなごとく、鋳造手段が連
続鋳造で、かつ、鋳塊加熱温度が1120℃以下もし
くは1300℃以上の場合のみに目標とする1050℃以
上の結晶粒粗大化温度が得られることがわかる。
すなわち、本発明においては、鋳片の鍛造手段は
連続鋳造でなければならず、さらに鋳片を延伸す
るための加熱温度も重要であつて、1120℃超〜
1300℃未満の範囲では、所期の目標を達成するこ
とはできない。なお、鋳片の加熱温度範囲は、第
5図のデータに基いて、本発明においては950〜
1120℃に限定した。 すなわち、加熱温度が950℃未満では圧延また
は鋳造時の変形負荷が上昇するばかりで、効果の
向上度は小さく、一方、1120℃を超えると、結晶
粒粗大化温度が低くなり、本発明の目的に合致し
ない。なお、1300℃以上になると、再び結晶粒粗
大化温度が上昇するものの、加熱温度が高く、熱
エネルギーの消費が大きくなるので、工業的には
不利となる。 以上、説明したところを要約すると、C0.12〜
0.8%、Si0.1〜1.0%、A0.01〜0.05%、および
Cr2%以下、Ni3%以下、Mo0.5%以下を1種また
は2種以上からなる一般的な機械構造用鋼におい
て、1050℃以上の結晶粒粗大化温度を有する鋼を
得るに、Mn2(C%)〜2.5%、Ti、ZrおよびHf
の1種または2種以上を含み、Ti+0.53(Zr%)
+0.27(Hf%)が0.01〜0.05%、Nが0.29(Ti
%)+0.15(Zr%)+0.08(Hf%)〜0.015%を含
む連続鋳造鋼塊を950〜1120℃の温度で延伸する
ことが必要である。かくして、第2図および第3
図に示したところにより、高温においてなお微細
組織を有する鍛造用機械構造用鋼を製造すること
ができる。 以下、実施例により、本発明の効果をさらに具
体的に述べる。 実施例 第2表に示す化学成分を有する従来鋼1,4,
7,10と本発明の範囲にMn,Ti,Zr,Hf,N
を調整した鋼2,3,5,6,8,9,11,1
2,13,14を溶製し、これらの一部は、鋼塊
とし、一部は連続鋳造鋳片として、それぞれを約
1100℃、約1250℃の各温度に加熱し、圧延して
120□の角鋼を造つた。これらの角鋼を切断し
て、結晶粒粗大化温度を求めた。この結晶を第3
表に示す。同表中、No.に○印を付けたものが、本
発明例であり、他は比較例である。これらの結晶
粒粗大化温度を比較すると本発明法によるものが
優れていることが明らかである。 本発明法による鍛造用機械構造用鋼は、2次加
工工程におけるエネルギー節減に寄与し、その工
業的価値は大きい。
[Table] The relationship between the grain coarsening temperature and the amount of Ti is shown in Figure 1. In Figure 1, regardless of whether the component system A or B is used as the basic component, if the ingot is made into an ingot,
Regardless of the amount of Ti, the crystal grain coarsening temperature is not improved at all. On the other hand, when a continuously cast steel ingot is used, a remarkable improvement in grain coarsening temperature is observed as the amount of Ti increases. Therefore,
In order to use Ti to improve the grain coarsening temperature, ingot formation by continuous casting is essential. Also,
When Zr and Hf were added, the same results as in FIG. 1 were obtained when the amounts of Zr and Hf were converted to the amount of Ti based on the atomic weight ratio. Therefore, the addition of Ti, Zr, and Hf can be handled uniformly by converting the atomic weight ratio into the amount of Ti and using the sum as the Ti equivalent. i.e.
Ti equivalent can be expressed as Ti% + 0.53 (Zr%) + 0.27 (Hf%). Next, using S53C and SMn443 steel as basic components, the amounts of Ti, Zr, Hf, and N were varied to produce steel materials having various grain coarsening temperatures. Prior austenite grains were observed when this steel material was directly quenched after hot forging at 1250 to 1300°C (forging ratio 5), and the area ratio of coarse grains on the observed surface was measured. This is defined as the coarse particle mixing rate, and the results are shown in FIG. Furthermore, by using SCM420 steel and SCr420 steel as basic components and varying the amounts of Ti, Zr, Hf, and N, steel materials with various grain coarsening temperatures were manufactured. This steel material was annealed to form a spheroid, then cold forged at compression ratios of 0, 30, and 80%, and carburized at 930°C for 5 hours.
The prior austenite grains of this carburized material were observed, and the area ratio of coarse grains on the observed surface was measured, which was defined as the coarse grain mixing ratio. The results are shown in Figure 3. From these Figures 2 and 3, it is clear that in order to save energy during hot forging or carburizing of forging machine structural steel mentioned at the beginning, the grain coarsening temperature must be 1050°C or higher. It turns out to be desirable. Therefore, as can be seen from FIG. 1, in order to obtain a grain coarsening temperature of 1050° C. or higher, the Ti content or Ti equivalent must be 0.01% or higher. However, it is almost saturated at 0.05%. On the other hand, in order to utilize N more effectively than Ti, Zr and Hf, it is necessary to at least
Sufficient N is required so that Ti, Zr and Hf all become nitrides. For that purpose, M+N→MN(M
(Ti, Zr or Hf) reaction, the amount of N commensurate with the amount of Ti, i.e. 0.29 (Ti%) + 0.15 (Zr
%)+0.08 (Hf%) or more is required. In fact, the high grain coarsening temperature is 0.29 (Ti%) +
Excess N is better than 0.15 (Zr%) + 0.08 (Hf%).
Obtained stably. However, even when more than 0.015% was added, no effect commensurate with the added amount was observed. Next 0.25, 0.45, 0.75%C-0.01%Ti-0.01%
Based on Zr-0.01%Hf-0.009%N, Si1% or less,
Mn2.5% or less, Cr2% or less, Ni3% or less, Mo0.5%
Hereinafter, steel to which various amounts of one or more of each element (A 0.05% or less) were added was melted and cast into slabs by continuous casting, and experiments were conducted in the same manner as described above. Then, the grain coarsening temperatures of these steels were determined, and the effects of Si, Mn, Cr, Ni, Mo, and A on these steels were determined.
clarified the impact of As a result, it was found that other elements except Mn had almost no effect. i.e. normally used in mechanical structural steel
Even if one or more of the following elements are added: Si 1% or less, Cr 2% or less, Ni 3% or less, Mo 0.5% or less, A 0.05% or less, there will be no adverse effect on the crystal grain coarsening temperature. . Therefore, in order to impart performance as a mechanical structural steel, each of these elements is added as necessary within the above-mentioned range. If the above range is exceeded,
Not required for general mechanical structural steel. However, if the molten steel is not sufficiently deoxidized, the yield of Ti, Zr and Hf will not be stabilized, so in order to stabilize this, Si0.1% or more of Si and A, which have a strong deoxidizing effect, and A
0.01% or more is required. As can be seen from Figure 4, which shows the relationship between Mn content and crystal grain coarsening temperature in the above experiment, Mn
As the amount increases, the crystal grain coarsening temperature also increases. Also, from the same figure, in order to obtain a grain coarsening temperature of 1050℃ or higher, for 0.25% C steel,
0.5% or more, 0.9% or more for steel with 0.45%C,
It can be seen that 0.75% C steel requires 1.5% or more of Mn. In order to obtain a grain coarsening temperature of 1050° C. or higher, steel with a large amount of C requires a larger amount of Mn. Generalizing this relationship, 2(C%)≦Mn. However, 2%
It is almost saturated with Mn and does not require more than 2.5%. Not only that, but exceeding 2.5% actually impairs the toughness of the steel. Although we have conducted a large number of experiments on the effects of alloying elements on grain coarsening temperatures and clarified their interrelationships, sometimes things still don't work out as expected. That is,
Even with steel with appropriate composition, it is often not possible to obtain a grain coarsening temperature of 1050°C or higher. It was found that this was due to the appropriate or inappropriate heating temperature when forging the test steel ingot. That is, 0.45%C-0.25%Si-1.0%Mn-
Steel whose main components are 0.01%Ti-0.015%Zr-0.02%Hf-0.008%N is melted and cast into 5.5 ton ingots and continuously cast slabs, and these steel ingots are heated to various temperatures. , stretched. The grain coarsening temperature of each of the thus drawn steel pieces was determined in the same manner as described above. The result is the fifth
Shown in the figure. The figure illustrates the grain coarsening temperature of each steel slab with respect to the heating temperature of the steel ingot. As is clear from the figure, the target grain coarsening temperature of 1050°C or higher can be obtained only when the casting method is continuous casting and the ingot heating temperature is 1120°C or lower or 1300°C or higher. .
That is, in the present invention, the means for forging the slab must be continuous casting, and the heating temperature for drawing the slab is also important;
In a range below 1300°C, the desired goal cannot be achieved. In addition, the heating temperature range of the slab is 950 to 950 in the present invention based on the data shown in FIG.
The temperature was limited to 1120℃. That is, if the heating temperature is less than 950°C, the deformation load during rolling or casting will only increase, and the degree of improvement in the effect will be small. On the other hand, if the heating temperature exceeds 1120°C, the crystal grain coarsening temperature will become low, and the object of the present invention will not be achieved. does not match. Note that when the temperature exceeds 1300°C, although the crystal grain coarsening temperature rises again, the heating temperature is high and the consumption of thermal energy becomes large, which is disadvantageous from an industrial perspective. To summarize what has been explained above, C0.12~
0.8%, Si0.1~1.0%, A0.01~0.05%, and
In general mechanical structural steels consisting of one or more of Cr2% or less, Ni3% or less, and Mo0.5% or more, Mn2 (C %)~2.5%, Ti, Zr and Hf
Contains one or more of the following, Ti + 0.53 (Zr%)
+0.27 (Hf%) is 0.01~0.05%, N is 0.29 (Ti
%) + 0.15 (Zr%) + 0.08 (Hf%) to 0.015% it is necessary to draw the continuous cast steel ingot at a temperature of 950-1120 ° C. Thus, FIGS. 2 and 3
As shown in the figure, it is possible to produce forging machine structural steel that still has a fine structure even at high temperatures. Hereinafter, the effects of the present invention will be described in more detail with reference to Examples. Example Conventional steel 1, 4, having the chemical composition shown in Table 2
7, 10 and Mn, Ti, Zr, Hf, N within the scope of the present invention.
Steel 2, 3, 5, 6, 8, 9, 11, 1 with adjusted
2, 13, and 14 were melted, some of them were made into steel ingots, and some of them were made into continuously cast slabs.
Heated to 1100℃ and approximately 1250℃ and rolled.
We made a 120□ square steel. These square steel bars were cut to determine the grain coarsening temperature. This crystal is the third
Shown in the table. In the same table, the numbers marked with a circle are examples of the present invention, and the others are comparative examples. Comparing these grain coarsening temperatures, it is clear that the method of the present invention is superior. The forging machine structural steel produced by the method of the present invention contributes to energy savings in the secondary processing process, and has great industrial value.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTi量と結晶粒粗大化温度との関係を
示す図、第2図は熱間鍛造における素材の結晶粒
粗大化温度と粗大粒混入率との関係を示す図、第
3図は冷間圧縮後の浸炭における素材の結晶粒粗
大化温度と粗大粒混入率との関係を示す図、第4
図はMn量と結晶粒粗大化温度との関係を示す
図、第5図は鋼塊加熱温度と結晶粒粗大化温度と
の関係を示す図である。
Figure 1 is a diagram showing the relationship between Ti content and crystal grain coarsening temperature, Figure 2 is a diagram showing the relationship between grain coarsening temperature of the material in hot forging and coarse grain mixing rate, and Figure 3 is a diagram showing the relationship between grain coarsening temperature and coarse grain mixing rate of the material in hot forging. Diagram 4 showing the relationship between the grain coarsening temperature of the material and the coarse grain mixing rate during carburizing after cold compression.
The figure shows the relationship between Mn content and grain coarsening temperature, and FIG. 5 shows the relationship between steel ingot heating temperature and grain coarsening temperature.

Claims (1)

【特許請求の範囲】 1 C0.12〜0.8%、Si0.1〜1.0%、Mn2(C%)
〜2.5%、A0.01〜0.05%であり、Ti、Zr、Hf
の1種または2種以上を含み、(Ti%)+0.53(Zr
%)+0.27(Hf%)が0.01〜0.05%、Nが0.29(Ti
%)+0.15(Zr%)+0.08(Hf%)から0.015%で
あり、残部がFeおよび不純物からなる連続鋳造
鋳片を950〜1120℃の温度に加熱したのち、圧延
または鍛造することを特徴とする高温においてな
お微細組織を有する鍛造用機械構造用鋼の製造
法。 2 C0.12〜0.8%、Si0.1〜1.0%、Mn2(C%)
〜2.5%、A0.01〜0.05%であり、Ti、Zr、Hf
の1種または2種以上を含み、(Ti%)+0.53(Zr
%)+0.27(Hf%)が0.01〜0.05%、Nが0.29(Ti
%)+0.15(Zr%)+0.08(Hf%)から0.015%で
あり、さらにCr2%以下、Ni3%以下、Mo0.5%以
下の1種または2種以上を含み、残部がFeおよ
び不純物からなる連続鋳造鋳片を950〜1120℃の
温度に加熱したのち、圧延または鍛造することを
特徴とする高温においてなお微細組織を有する鍛
造用機械構造用鋼の製造法。
[Claims] 1 C0.12-0.8%, Si0.1-1.0%, Mn2 (C%)
~2.5%, A0.01~0.05%, Ti, Zr, Hf
(Ti%) + 0.53 (Zr
%) + 0.27 (Hf%) is 0.01 to 0.05%, N is 0.29 (Ti
%) + 0.15 (Zr%) + 0.08 (Hf%) to 0.015%, with the balance consisting of Fe and impurities. After heating the continuous cast slab to a temperature of 950 to 1120°C, rolling or forging is performed. A method for producing steel for forging machine structural use that still has a fine structure even at high temperatures, characterized by: 2 C0.12-0.8%, Si0.1-1.0%, Mn2 (C%)
~2.5%, A0.01~0.05%, Ti, Zr, Hf
(Ti%) + 0.53 (Zr
%) + 0.27 (Hf%) is 0.01 to 0.05%, N is 0.29 (Ti
%) + 0.15 (Zr%) + 0.08 (Hf%) to 0.015%, and further contains one or more of Cr2% or less, Ni3% or less, Mo0.5% or less, and the balance is Fe and A method for producing a steel for machine structural use for forging which still has a fine structure even at high temperatures, the method comprising heating a continuously cast slab containing impurities to a temperature of 950 to 1120°C and then rolling or forging.
JP7243480A 1980-05-30 1980-05-30 Production of steel for machine structural use for forging having fine structure at high temperature Granted JPS5719324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7243480A JPS5719324A (en) 1980-05-30 1980-05-30 Production of steel for machine structural use for forging having fine structure at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7243480A JPS5719324A (en) 1980-05-30 1980-05-30 Production of steel for machine structural use for forging having fine structure at high temperature

Publications (2)

Publication Number Publication Date
JPS5719324A JPS5719324A (en) 1982-02-01
JPS6154844B2 true JPS6154844B2 (en) 1986-11-25

Family

ID=13489184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7243480A Granted JPS5719324A (en) 1980-05-30 1980-05-30 Production of steel for machine structural use for forging having fine structure at high temperature

Country Status (1)

Country Link
JP (1) JPS5719324A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294170A (en) * 1985-10-21 1987-04-30 ピジヨン株式会社 Milking device
JPS6454555U (en) * 1987-10-01 1989-04-04
JPH0362105B2 (en) * 1986-12-08 1991-09-24 Pigeon Corp
JPH0362106B2 (en) * 1987-01-14 1991-09-24 Pigeon Corp
JPH0380511B2 (en) * 1987-04-09 1991-12-25 Jekusu Kk
JPH0410344B2 (en) * 1986-06-24 1992-02-25

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262942A (en) * 1984-06-11 1985-12-26 Nissan Motor Co Ltd Carburizing steel
JPS624819A (en) * 1985-06-28 1987-01-10 Nissan Motor Co Ltd Manufacture of carburizing steel
JPS62196359A (en) * 1986-02-24 1987-08-29 Sumitomo Metal Ind Ltd Non-heattreated steel for hot forging and production thereof
JPS62202054A (en) * 1986-03-03 1987-09-05 Sumitomo Metal Ind Ltd Non-heattreated steel for hot forging
JPH05658Y2 (en) * 1988-02-22 1993-01-11
JP2546045B2 (en) * 1990-08-20 1996-10-23 日本鋼管株式会社 Case hardening steel
DE102008052885A1 (en) * 2008-10-23 2010-04-29 Deutsche Edelstahlwerke Gmbh hardened steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130526A (en) * 1974-09-07 1976-03-15 Nippon Steel Corp ATSUENMAMAKOJINSEIKOZAINOSEIZOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130526A (en) * 1974-09-07 1976-03-15 Nippon Steel Corp ATSUENMAMAKOJINSEIKOZAINOSEIZOHO

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294170A (en) * 1985-10-21 1987-04-30 ピジヨン株式会社 Milking device
JPH0410344B2 (en) * 1986-06-24 1992-02-25
JPH0362105B2 (en) * 1986-12-08 1991-09-24 Pigeon Corp
JPH0362106B2 (en) * 1987-01-14 1991-09-24 Pigeon Corp
JPH0380511B2 (en) * 1987-04-09 1991-12-25 Jekusu Kk
JPS6454555U (en) * 1987-10-01 1989-04-04

Also Published As

Publication number Publication date
JPS5719324A (en) 1982-02-01

Similar Documents

Publication Publication Date Title
JP3152576B2 (en) Method for producing Nb-containing ferrite steel sheet
JPS6154844B2 (en)
WO2022145061A1 (en) Steel material
RU2650467C2 (en) Ferritic stainless steel with excellent oxidation resistance, good high temperature strength and good formability
EP0319590B1 (en) High-strength, cold-rolled steel sheet having high r value and process for its production
JPH029647B2 (en)
WO2022145068A1 (en) Steel material
JPS6137334B2 (en)
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPH0112815B2 (en)
JPS62196359A (en) Non-heattreated steel for hot forging and production thereof
JPH0254416B2 (en)
JP3458682B2 (en) Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same
EP0247264A2 (en) Method for producing a thin casting of Cr-series stainless steel
JP7445744B2 (en) Ferritic stainless steel cold-rolled annealed steel sheet with improved high-temperature creep resistance and its manufacturing method
JPH04358025A (en) Production of high toughness seamless steel tube having fine-grained structure
WO2022145069A1 (en) Steel material
JPS62139815A (en) Manufacture of high strength and toughness thick steel plate with added boron by direct quenching process
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JPH0236669B2 (en)
JP2003321710A (en) Method of producing steel product for carburization having excellent grain size property and machinability
JPH04259349A (en) Manufacture of hot forged non-heat treated steel free from coarsening of structure at the time of hot forging
JPH0742552B2 (en) High Ni alloy thin strip having excellent corrosion resistance and method for producing the same
JPS59211533A (en) Production of composite texture steel plate having excellent ductility and low yield ratio