JPS6153384B2 - - Google Patents

Info

Publication number
JPS6153384B2
JPS6153384B2 JP56085662A JP8566281A JPS6153384B2 JP S6153384 B2 JPS6153384 B2 JP S6153384B2 JP 56085662 A JP56085662 A JP 56085662A JP 8566281 A JP8566281 A JP 8566281A JP S6153384 B2 JPS6153384 B2 JP S6153384B2
Authority
JP
Japan
Prior art keywords
weight
parts
thermoplastic resin
titanium oxide
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56085662A
Other languages
Japanese (ja)
Other versions
JPS57200455A (en
Inventor
Hitoshi Inada
Minoru Kimura
Yoji Tamano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP8566281A priority Critical patent/JPS57200455A/en
Publication of JPS57200455A publication Critical patent/JPS57200455A/en
Publication of JPS6153384B2 publication Critical patent/JPS6153384B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は黄変防止性能と経済的熱安定性を有す
る酸化チタン含有熱可塑性樹脂組成物に関する。 熱可塑性樹脂は工業部品から家庭用品にまで、
巾広い分野で使用されているが、美観上、遮光
性、反射性などの観点から種々の色に着色して使
用される。この際、顔料として酸化チタンを使用
する場合が多い。特にメーターボツクス、ランプ
ハウジングなどの高反射率(白度)と遮光性が同
時に要求される分野には、多量の酸化チタンの添
加が必要となる。 また熱可塑性樹脂には形成機内での熱安定性と
経時的熱安定性を保つため、一般に種々のフエノ
ール系酸化防止剤が添加され、使用されている。
ところが、酸化チタンとフエノール系酸化防止剤
を併用すると、酸化チタンの如何なる作用による
ものが明確ではないが、フエノール系酸化防止剤
が酸化されてキノンタイプの化合物となり、黄色
を呈する様になる。このため酸化チタンを使用し
て白色に着色した熱可塑性樹脂は、長時間放置し
たり、温度の高い環境下や、日光、螢光灯及び白
熱灯など光や紫外線の多い環境下に、またはそれ
らが同時に存在する環境下では、黄色に変色する
欠点が生じる。一般に酸化チタンの添加量が多く
なるか、またはフエノール系酸化防止剤の添加量
が多くなると、それについて黄変の程度は大きく
なる。したがつて、酸化チタンを含有した熱可塑
性樹脂組成物においては、熱安定性と同時に黄変
防止性の改善が望まれていた。 本発明者らは、上記の課題に鑑み鋭意研究の結
果、酸化チタン含有の熱可塑性樹脂に対しては、
種々の酸化防止剤のうちから特にリン酸系酸化防
止剤を添加することによつて、黄変がなく且つ成
形機内での熱安定性の良好な熱可塑性樹脂組成物
が得られることを見出し、既に提案した。さら
に、かかる酸化チタン含有の熱可塑性樹脂につい
て、成形機内および成形品の経時的な熱安定性も
十分に満足させるべく研究を重ねた結果、特定さ
れたフエノール系酸化防止剤またはチオエーテル
系酸化防止剤を併用することによつて所期の目的
が達成され、本発明を完成した。 即ち、本発明は熱可塑性樹脂100重量部に対
し、酸化チタン0.1〜250重量部、リン系酸化防止
剤0.01〜2.0重量部、およびパラ位に炭素原子数
が4個以上の置換基を有するフエノール系酸化防
止剤0.005〜1.0重量部または(および)チオエー
テル系酸化防止剤0.01〜2.0重量部を含有してな
る熱可塑性樹脂組成物である。 本発明で用いられる熱可塑性樹脂としては、ポ
リエチレン、ポリプロピレン、ポリブデン等のポ
リオレフイン;ポリスチレン、AS、ABS、等の
スチレン系ポリマー;ナイロン6、ナイロン6・
6等のポリアミド;ポリ塩化ビニル;等々のホモ
ポリマーあるいはコポリマーの単独または混合物
が挙げられ、特にポリプロピレンを主成分とする
ポリオレフインが好ましく用いられる。 また酸化チタンとしては特に限定されず、一般
の市販品が任意に使用される。酸化チタンの配合
量は熱可塑性樹脂100重量部に対して0.1〜250重
量部であつて、顔料としては好ましくは0.1〜1.0
重量部、またはランプハウジングやメーターボツ
クスなどの白度と遮光性が同時に要求される場合
は1.0〜250重量部、好ましくは4.0〜250重量部で
ある。酸化チタンの配合量は前記下限値より少な
い場合は、充分な白色度や遮光性が得られない。
また酸化チタンの配合量が前記上限値より多い場
合は熱可塑性樹脂成形品を製造する際、押出機で
の混練ペレタイズが困難となるので工業的に好適
ではない。 本発明の酸化チタンを含有させた熱可塑性樹脂
においてリン系酸化防止剤を併用することは、該
熱可塑性樹脂の成形機内における熱安定性を向上
させるだけでなく、後記するフエノール系酸化防
止剤による黄変作用を抑制する効果を発揮する。
リン系酸化防止剤としては、脂肪族または芳香族
の亜リン酸エステルが一般的に用いられ、例えば 但し1≦n、n′≦50 1≦m、m′≦20の式で示
されるものであるが、特に10≦n、n′≦25、1≦
m、m′≦3のものが好適に用いられる。 また、 但し、1≦2≦5の式で示されるものである
が、特にn=2のものが好適に用いられる。 また 但し1≦n、n′、n″、n≦5 1≦m≦5の
式で示されるものであるが特にn=m=2のもの
が好適に用いられる。 上記の如きリン系酸化防止剤の配合量は、熱可
塑性樹脂100重量部に対して一般に0.01〜2.0重量
部好ましくは0.03〜2.0重量部である。リン系酸
化防止剤の配合量が前記下限値より低いと、成形
機内での充分な熱安定性が得られず、また前記上
限値より高くても熱安定性の向上がなく、いたず
らに高価になるだけである。 本発明の酸化チタンを含有する熱可塑性樹脂組
成物においては、リン系酸化防止剤とともにパラ
位炭素原子が4個以上の置換基を有するフエノー
ル系酸化防止剤またはチオエーテル系酸化防止剤
を併用することが、経時的な熱安定性を得るため
に極めて重要である。 前記したように、熱可塑性樹脂の熱安定性を保
つために、一般に種々のフエノール系酸化防止剤
が添加され、使用されている。しかしながら、酸
化チタンを含有した熱可塑性樹脂においてフエノ
ール系酸化防止剤を添加した場合には、黄変を生
する欠点を生ずる。しかして、本発明においては
パラ位に炭素原子数が4個以上の置換器を有する
特定のフエノール系酸化防止剤を選択し、リン系
酸化防止剤と併用することによつて、酸化チタン
を含有する熱可塑性樹脂組成物が黄変を生じず、
経時的な熱安定性が得られるのである。即ち、後
記する比較例に示すように、フエノール系酸化防
止剤として 2・6−ジ−t−ブチル−4−メチルフエノール を用いた場合には、経時的な熱安定性が発揮され
ず、また黄変が著しく認められる。これに対し
て、実施例に示した如き種々のフエノール系酸化
防止剤を用いた場合には、黄変もなく経済的熱安
定性が発揮されることが明らかである。これらの
結果から、本発明に用いるフエノール系酸化防止
剤はパラ位の置換基が多数の炭素原子を有するこ
とが必要であり、該置換基が一般に4個以上の炭
素原子を有することが好ましい。 かかるパラ位に炭素原子数が4個以上の置換基
を有するフエノール系酸化防止剤としては特に制
限されず、一般に市販されているものが使用され
る。例えば下記のようなものが挙げられる。 本発明におけるパラ位に炭素原子数が4個以上
の置換基を有するフエノール系酸化防止剤の配合
量は、熱可塑性樹脂100重量部に対して一般に
0.005〜1.0重量部、好ましくは0.01〜0.5重量部で
あり、上記の下限値より低い場合には成形品の充
分な経時的熱安定性が得られず、また上記の上限
値より高い場合には経時的熱安定性の向上は少な
く、いたずらに高価になるだけでなく、わずかな
がら、黄変性も発生し、好ましくない。 また本発明においては前記のパラ位に炭素原子
数が4個以上の置換基を有するフエノール系酸化
防止剤の代りに、あるいは併用してチオエーテル
系酸化防止剤を用いても同様の効果が得られる。
チオエーテル系酸化防止剤としては公知のものが
特に限定されず、一般に市販されているものが使
用される。例えば 但し1≦m≦5、1≦m′≦5、5≦n≦30、
5≦n′≦30の式で示されるものであるが、特に1
≦m≦3、1≦m′≦3、10≦n≦20、10≦m′≦
20のものが好適に用いられる。具体的には、ジラ
ウロイル−チオ−プロピオネート、ジミリスチル
−チオ−プロピオネート、ジステアリル−チオ−
プロピオネートなど一般に用いられる。 本発明におけるチオエーテル系酸化防止剤の配
合量は重量部100重量部に対して0.01〜2.0重量部
好ましくは0.05〜2.0重量部である。チオエーテ
ル系酸化防止剤の配合量が上記下限値より低いと
形成品の充分な経時的熱安定性が得られない。ま
た上記上限値より高くても、経時的熱安行性の向
上は少なく、いたずらに高価になるだけで好まし
くない。 本発明において熱可塑性樹脂、酸化チタン、リ
ン系酸化防止剤、パラ位に炭素原子数が4個以上
の置換基を有するフエノール系酸化防止剤、チオ
エーテル系酸化防止剤を混合する順序は特に限定
されず、各成分を同時に混合してもよく、数種を
予じめ混合し、残りを後から混合してもよい。ま
た混合方法も特に限定されず、一般にタンブラー
式ブレンダー、V型ブレンダー、ヘンシエルミキ
サー、リボンミキサー等を用いて行なわれる。更
に予め数種をヘンシエルミキサーで混合し、次い
で残りを加えてタンブラー式ブレンダーで混合す
るといつた、混合順序、装置を変える方法も採用
出来る。 なお、本発明の熱可塑性樹脂組成物には、上記
の各成分のほかに従来公知の紫外線吸収剤、滑
剤、帯電防止剤、核剤、顔料、ガラス繊維、ガラ
スビースなどのガラス類、炭カル、タルク、硫酸
バリウム、マイカ、アスベスト、シリカ、水酸化
マグネシウム塩基性炭酸マグネシウム、水酸化ア
ルミ、カオリンなど無機充填物を添加しても良
い。特に上記ガラス類や無機充填物を併用するこ
とは、本発明の酸化チタンを添加し高遮光、高反
射率が要求される熱可塑性組成物に対して好適で
ある。 本発明を更に具体的に説明するために、以下に
実施例及び比較例を挙げて説明するが、本発明は
これらの実施例に限定されるものではない。 実施例及び比較例で使用するリン系酸化防止剤
は下記のものを使用し、それぞれリン系A、リン
系B、リン系Cと略記する。 なお、実施例及び比較例で示した黄変度試験
は、射出成形機を用い、78mm×48mm×3.5mmの板
状試験片を作成し、これをスガ社製サンシヤイ
ン、ウエザーメーターに投入し、120時間後に観
察したものである。その結果、まつたく黄変が見
られないものを◎、ほんのわずかに黄変が見られ
るが、実用上問題がない無いものを〇、少し黄変
があるものを△、黄変が激しいものを×とした。 また実施例及び比較例に示した経時的熱安定性
の試験は、所定の熱可塑性樹脂組成物を加熱熔融
後、加圧冷却することにより作成した100mm×50
mm×0.5mmのシートを、スガ社製熱風循環二軸回
転式ギアーオーブン内に投入して145℃に設定
し、シートの1/3が劣化消失するまでの時間を測
定した。 実施例 1(及び比較例1) ポリプロピレン(徳山曹達社製ME140、MI9の
ホモポリマー)100重量部に対して、第1表に示
す割合の酸化チタン(ラポート社製、テオナ
113)、各種酸化防止剤およびステアリン酸カルシ
ウムをスーパーミキサー(川田製作所製)で混合
した。なお、ステアリン酸カルシウムは各サンプ
ルとも共通に全組成物中に0.1%となる様に添加
した。 次いでニーダ付押出機を用いて熔融混離(樹脂
温度260℃)し、ペレツト化した。このサンプル
で黄変度試験と、メルトインデツクスの測程及び
経時的熱安定性試験を行ない、その結果を第1表
に併記した。
The present invention relates to a titanium oxide-containing thermoplastic resin composition having anti-yellowing performance and economic thermal stability. Thermoplastic resins are used in everything from industrial parts to household items.
Although it is used in a wide range of fields, it is colored in various colors for aesthetic reasons, light-shielding properties, and reflective properties. At this time, titanium oxide is often used as the pigment. Particularly in fields such as meter boxes and lamp housings where high reflectance (whiteness) and light-shielding properties are required at the same time, it is necessary to add a large amount of titanium oxide. In addition, various phenolic antioxidants are generally added to thermoplastic resins in order to maintain thermal stability within the forming machine and thermal stability over time.
However, when titanium oxide and a phenolic antioxidant are used together, the phenolic antioxidant is oxidized to a quinone-type compound, which takes on a yellow color, although it is not clear what effect the titanium oxide has. For this reason, thermoplastic resins colored white using titanium oxide should not be left for long periods of time, exposed to high temperatures, or exposed to sunlight, fluorescent lights, incandescent lamps, or other environments with a lot of light or ultraviolet rays. In an environment where both are present at the same time, there is a drawback that the color changes to yellow. Generally, as the amount of titanium oxide added or the amount of phenolic antioxidant added increases, the degree of yellowing increases. Therefore, in thermoplastic resin compositions containing titanium oxide, it has been desired to improve not only thermal stability but also anti-yellowing properties. In view of the above-mentioned problems, the present inventors have conducted extensive research and found that thermoplastic resins containing titanium oxide have the following properties:
It has been discovered that by adding a phosphoric acid antioxidant among various antioxidants, a thermoplastic resin composition that is free from yellowing and has good thermal stability in a molding machine can be obtained, Already suggested. Furthermore, as a result of repeated research in order to fully satisfy the thermal stability within the molding machine and of molded products over time, we have identified phenolic antioxidants or thioether antioxidants for such titanium oxide-containing thermoplastic resins. By using these together, the intended purpose was achieved and the present invention was completed. That is, the present invention uses 0.1 to 250 parts by weight of titanium oxide, 0.01 to 2.0 parts by weight of a phosphorus antioxidant, and a phenol having a substituent having 4 or more carbon atoms at the para position to 100 parts by weight of a thermoplastic resin. The present invention is a thermoplastic resin composition containing 0.005 to 1.0 parts by weight of a antioxidant or (and) 0.01 to 2.0 parts by weight of a thioether antioxidant. Thermoplastic resins used in the present invention include polyolefins such as polyethylene, polypropylene, and polybutene; styrenic polymers such as polystyrene, AS, and ABS; nylon 6, nylon 6, etc.
Examples include homopolymers or copolymers such as polyamides such as No. 6, polyvinyl chloride, and the like alone or in mixtures, and polyolefins containing polypropylene as a main component are particularly preferably used. The titanium oxide is not particularly limited, and any commercially available titanium oxide may be used. The amount of titanium oxide blended is 0.1 to 250 parts by weight per 100 parts by weight of the thermoplastic resin, and preferably 0.1 to 1.0 parts by weight as a pigment.
The amount is 1.0 to 250 parts by weight, preferably 4.0 to 250 parts by weight when whiteness and light-shielding properties are required at the same time for lamp housings, meter boxes, etc. If the amount of titanium oxide is less than the lower limit, sufficient whiteness and light-shielding properties cannot be obtained.
Furthermore, if the amount of titanium oxide is more than the above upper limit, kneading and pelletizing using an extruder becomes difficult when producing a thermoplastic resin molded article, which is not industrially suitable. The combined use of a phosphorus-based antioxidant in the thermoplastic resin containing titanium oxide of the present invention not only improves the thermal stability of the thermoplastic resin in the molding machine, but also improves the phenolic antioxidant described below. Demonstrates the effect of suppressing yellowing effect.
As phosphorus antioxidants, aliphatic or aromatic phosphite esters are generally used, such as However, it is expressed by the formula 1≦n, n'≦50, 1≦m, m'≦20, but especially 10≦n, n'≦25, 1≦
m, m′≦3 is preferably used. Also, However, although it is expressed by the formula 1≦2≦5, one in which n=2 is particularly preferably used. Also However, 1≦n, n', n'', n≦5, 1≦m≦5, and those in which n=m=2 are particularly preferably used. Phosphorous antioxidants such as those mentioned above. The blending amount of the phosphorus antioxidant is generally 0.01 to 2.0 parts by weight and preferably 0.03 to 2.0 parts by weight per 100 parts by weight of the thermoplastic resin.If the blending amount of the phosphorus antioxidant is lower than the above lower limit, Sufficient thermal stability cannot be obtained, and even if the temperature is higher than the above upper limit, the thermal stability will not be improved and the price will only increase unnecessarily.In the thermoplastic resin composition containing titanium oxide of the present invention, It is extremely important to use a phenolic antioxidant or a thioether antioxidant having a substituent with 4 or more carbon atoms in the para-position together with a phosphorus antioxidant in order to obtain thermal stability over time. As mentioned above, various phenolic antioxidants are generally added and used in order to maintain the thermal stability of thermoplastic resins.However, in thermoplastic resins containing titanium oxide, phenolic antioxidants are used. When an inhibitor is added, yellowing occurs.However, in the present invention, a specific phenolic antioxidant having a substituent having 4 or more carbon atoms at the para position is selected. , by using it in combination with a phosphorus-based antioxidant, the thermoplastic resin composition containing titanium oxide does not yellow.
This provides thermal stability over time. That is, as shown in the comparative example below, 2,6-di-t-butyl-4-methylphenol was used as a phenolic antioxidant. When used, thermal stability over time is not exhibited and yellowing is observed significantly. On the other hand, when various phenolic antioxidants as shown in the examples are used, it is clear that economical thermal stability is exhibited without yellowing. From these results, it is necessary for the phenolic antioxidant used in the present invention to have a substituent at the para position having a large number of carbon atoms, and it is generally preferable that the substituent has 4 or more carbon atoms. The phenolic antioxidant having a substituent having 4 or more carbon atoms at the para-position is not particularly limited, and commonly commercially available ones can be used. Examples include the following: In the present invention, the amount of the phenolic antioxidant having a substituent having 4 or more carbon atoms at the para position is generally based on 100 parts by weight of the thermoplastic resin.
The amount is 0.005 to 1.0 parts by weight, preferably 0.01 to 0.5 parts by weight; if it is lower than the above lower limit, sufficient thermal stability over time of the molded product cannot be obtained, and if it is higher than the above upper limit, There is little improvement in thermal stability over time, and not only does it become unnecessarily expensive, but it also causes a small amount of yellowing, which is undesirable. Furthermore, in the present invention, similar effects can be obtained by using a thioether antioxidant instead of or in combination with the phenolic antioxidant having a substituent having 4 or more carbon atoms at the para position. .
The thioether antioxidant is not particularly limited to known ones, and commonly commercially available ones can be used. for example However, 1≦m≦5, 1≦m′≦5, 5≦n≦30,
It is expressed by the formula 5≦n′≦30, but especially 1
≦m≦3, 1≦m′≦3, 10≦n≦20, 10≦m′≦
20 is preferably used. Specifically, dilauroyl-thio-propionate, dimyristyl-thio-propionate, distearyl-thio-
Commonly used such as propionate. The amount of the thioether antioxidant in the present invention is 0.01 to 2.0 parts by weight, preferably 0.05 to 2.0 parts by weight, per 100 parts by weight. If the amount of the thioether antioxidant is lower than the above lower limit, sufficient thermal stability over time of the formed product cannot be obtained. Moreover, even if it is higher than the above-mentioned upper limit, there is little improvement in thermal stability over time and it becomes undesirably expensive. In the present invention, the order in which the thermoplastic resin, titanium oxide, phosphorus antioxidant, phenolic antioxidant having a substituent having 4 or more carbon atoms at the para position, and thioether antioxidant are mixed is not particularly limited. First, each component may be mixed at the same time, or several components may be mixed in advance and the remaining components may be mixed later. Further, the mixing method is not particularly limited, and is generally carried out using a tumbler type blender, a V-type blender, a Henschel mixer, a ribbon mixer, or the like. Furthermore, it is also possible to adopt a method of changing the mixing order and equipment, such as mixing several types in advance in a Henschel mixer, then adding the rest and mixing in a tumbler type blender. In addition to the above-mentioned components, the thermoplastic resin composition of the present invention also contains conventionally known ultraviolet absorbers, lubricants, antistatic agents, nucleating agents, pigments, glasses such as glass fibers and glass beads, and charcoal. , talc, barium sulfate, mica, asbestos, silica, magnesium hydroxide, basic magnesium carbonate, aluminum hydroxide, kaolin, and other inorganic fillers may be added. In particular, the combined use of the above-mentioned glasses and inorganic fillers is suitable for thermoplastic compositions containing the titanium oxide of the present invention that require high light shielding and high reflectance. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be given below, but the present invention is not limited to these Examples. The phosphorus antioxidants used in Examples and Comparative Examples are as follows, and are abbreviated as phosphorus A, phosphorus B, and phosphorus C, respectively. In addition, for the yellowing test shown in Examples and Comparative Examples, a plate-shaped test piece of 78 mm x 48 mm x 3.5 mm was prepared using an injection molding machine, and this was placed in a sunshine weather meter manufactured by Suga Co., Ltd. This was observed after 120 hours. As a result, those with no visible yellowing are ◎, those with very slight yellowing but no problem for practical use are 0, those with a little yellowing are △, and those with severe yellowing are × In addition, in the tests of thermal stability over time shown in Examples and Comparative Examples, a 100 mm x 50
A sheet of mm x 0.5 mm was placed in a hot air circulating biaxial rotary gear oven manufactured by Suga Corporation and set at 145°C, and the time required for 1/3 of the sheet to deteriorate and disappear was measured. Example 1 (and Comparative Example 1) Titanium oxide (manufactured by LaPorte, Teona) in the proportion shown in Table 1 was added to 100 parts by weight of polypropylene (ME140, MI9 homopolymer manufactured by Tokuyama Soda).
113), various antioxidants, and calcium stearate were mixed using a super mixer (manufactured by Kawada Seisakusho). Note that calcium stearate was added to the total composition in a common amount of 0.1% for each sample. Next, the mixture was melt mixed using an extruder with a kneader (resin temperature 260°C) and pelletized. This sample was subjected to a yellowing test, a melt index measurement and a thermal stability test over time, and the results are also listed in Table 1.

【表】【table】

【表】 実施例 2(及び比較例2) ポリプロピレン(徳山曹達社製MS640、MI6・
5のポリエチレンとのブロツクコポリマー)100
重量部に対して、第2表に示す割合の各種酸化チ
タン、各種酸化防止剤およびステアリン酸カルシ
ウムを実施例1と同様に混合、ペレタイズ後、黄
変度試験とメルトインデツクスの測定及び経時的
熱安定性試験を行ない、その結果を第2表に併記
した。
[Table] Example 2 (and Comparative Example 2) Polypropylene (MS640, MI6 manufactured by Tokuyama Soda Co., Ltd.)
5 block copolymer with polyethylene) 100
Various titanium oxides, various antioxidants, and calcium stearate were mixed in the same manner as in Example 1 in the proportions shown in Table 2 based on the weight part, and after pelletizing, yellowing test and melt index measurement and heating over time were performed. A stability test was conducted and the results are also listed in Table 2.

【表】 実施例 3(及び比較例3) ポリプロピレン(徳山曹達社製ME30、MI4の
ポリエチレンとのランダムコポリマー)100重量
部に対して第3表に示す割合の各種無機充填材、
酸化チタン、各種酸化防止剤およびステアリン酸
カルシウムを実施例1と同様に混合、ペレタイズ
後、黄変度試験とメルトインデツクスの測定及び
経時的熱安定性試験を行ない、その結果を第3表
に併記した。
[Table] Example 3 (and Comparative Example 3) Various inorganic fillers in the proportions shown in Table 3 based on 100 parts by weight of polypropylene (random copolymer with polyethylene of ME30 and MI4 manufactured by Tokuyama Soda Co., Ltd.),
Titanium oxide, various antioxidants, and calcium stearate were mixed and pelletized in the same manner as in Example 1, and then a yellowing test, melt index measurement, and thermal stability test over time were conducted, and the results are also listed in Table 3. did.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 熱可塑性樹脂100重量部に対し、酸化チタン
0.1〜250重量部、リン系酸化防止剤0.01〜2.0重量
部、およびパラ位に炭素原子数が4個以上の置換
基を有するフエノール系酸化防止剤0.005〜1.0重
量部または(および)チオエーテル系酸化防止剤
0.01〜2.0重量部を含有してなる熱可塑性樹脂組
成物。 2 熱可塑性樹脂がポリオレフインである特許請
求の範囲第1項記載の熱可塑性樹脂組成物。 3 ポリオレフインがポリプロピレンである特許
請求の範囲第2項記載の熱可塑性樹脂組成物。 4 リン系酸化防止剤が脂肪族または芳香族の亜
リン酸エステルである特許請求の範囲第1項記載
の熱可塑性樹脂組成物。
[Claims] 1 Titanium oxide based on 100 parts by weight of thermoplastic resin
0.1 to 250 parts by weight, 0.01 to 2.0 parts by weight of a phosphorous antioxidant, and 0.005 to 1.0 parts by weight of a phenolic antioxidant having a substituent with 4 or more carbon atoms at the para position, or (and) thioether oxidation. inhibitor
A thermoplastic resin composition containing 0.01 to 2.0 parts by weight. 2. The thermoplastic resin composition according to claim 1, wherein the thermoplastic resin is a polyolefin. 3. The thermoplastic resin composition according to claim 2, wherein the polyolefin is polypropylene. 4. The thermoplastic resin composition according to claim 1, wherein the phosphorus antioxidant is an aliphatic or aromatic phosphite.
JP8566281A 1981-06-05 1981-06-05 Thermoplastic resin composition Granted JPS57200455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8566281A JPS57200455A (en) 1981-06-05 1981-06-05 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8566281A JPS57200455A (en) 1981-06-05 1981-06-05 Thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPS57200455A JPS57200455A (en) 1982-12-08
JPS6153384B2 true JPS6153384B2 (en) 1986-11-17

Family

ID=13865032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8566281A Granted JPS57200455A (en) 1981-06-05 1981-06-05 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS57200455A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113049A (en) * 1982-12-20 1984-06-29 Unitika Ltd Resin composition
DE3688241T2 (en) * 1985-11-29 1993-09-16 Ge Specialty Chem STABILIZER MIXTURES BASED ON PHOSPHITE.
JPH0751655B2 (en) * 1986-09-30 1995-06-05 三菱化学株式会社 Thermoplastic resin composition
JPS63118373A (en) * 1986-11-07 1988-05-23 Idemitsu Petrochem Co Ltd Thermoplastic resin composition
JPH07107111B2 (en) * 1987-07-14 1995-11-15 日本石油化学株式会社 Polyolefin composition with improved stability
JP2710321B2 (en) * 1987-12-28 1998-02-10 電気化学工業株式会社 Resin composition with excellent weather resistance
JPH02229853A (en) * 1989-03-03 1990-09-12 Ube Ind Ltd Electricity-feeding parts material composition
JP5977598B2 (en) * 2012-06-22 2016-08-24 旭化成株式会社 Method for improving flowability of polyamide resin composition

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322718A (en) * 1963-08-23 1967-05-30 Nat Distillers Chem Corp Polyolefins stabilized with phosphites, phenols, and benzotriazoles
JPS491935A (en) * 1972-04-25 1974-01-09
US3824192A (en) * 1969-08-29 1974-07-16 A Dibattista Stabilized system containing metal hydroxyalkyl phosphonic acid or phosphinic acid
JPS504379A (en) * 1973-05-16 1975-01-17
JPS5035096A (en) * 1973-08-01 1975-04-03
JPS5052152A (en) * 1973-08-27 1975-05-09
JPS5088144A (en) * 1973-10-11 1975-07-15
JPS50139836A (en) * 1974-04-27 1975-11-08
JPS5111654A (en) * 1974-07-18 1976-01-29 Masakuni Kanai
JPS51109050A (en) * 1975-02-20 1976-09-27 Ciba Geigy
JPS5241779A (en) * 1975-09-29 1977-03-31 Nippon Kogaku Kk <Nikon> Limit circuit of servo-device
GB1471665A (en) * 1973-07-03 1977-04-27 Ici Ltd Dry strippable wall-coverings
JPS52106879A (en) * 1976-03-04 1977-09-07 Borg Warner Production of mixed aromaticcaliphatic phosphites
JPS5329343A (en) * 1976-09-01 1978-03-18 Oshika Shinko Co Adhesive composition
JPS5373245A (en) * 1976-12-13 1978-06-29 Mitsubishi Monsanto Chem Co Inorganic filler-containing resin compositions having improved thermal stability
JPS5377238A (en) * 1976-12-20 1978-07-08 Tokuyama Soda Co Ltd Polyolefin composition
JPS5425951A (en) * 1977-07-29 1979-02-27 Adeka Argus Chem Co Ltd Synthetic resin composition
JPS54101846A (en) * 1978-01-09 1979-08-10 Ciba Geigy Ag Polypropylene composition
US4185004A (en) * 1977-04-27 1980-01-22 Phillips Petroleum Company Multi-component stabilizing system for pigmented polyolefins
JPS5554339A (en) * 1978-10-13 1980-04-21 American Cyanamid Co Photoostable composition and photoostabilizer composition
US4209430A (en) * 1978-11-24 1980-06-24 Scm Corporation Treatment of inorganic pigments
JPS5783539A (en) * 1980-09-19 1982-05-25 American Cyanamid Co Polyolefin composition containing stabilized titanium dioxide pigment
JPS5783582A (en) * 1980-09-18 1982-05-25 Uniroyal Inc Stabilizing composition and stabilized composition containing organic material and same
JPS5787449A (en) * 1980-11-19 1982-05-31 Hitachi Cable Ltd Polyvinyl chloride composition

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3322718A (en) * 1963-08-23 1967-05-30 Nat Distillers Chem Corp Polyolefins stabilized with phosphites, phenols, and benzotriazoles
US3824192A (en) * 1969-08-29 1974-07-16 A Dibattista Stabilized system containing metal hydroxyalkyl phosphonic acid or phosphinic acid
JPS491935A (en) * 1972-04-25 1974-01-09
JPS504379A (en) * 1973-05-16 1975-01-17
GB1471665A (en) * 1973-07-03 1977-04-27 Ici Ltd Dry strippable wall-coverings
JPS5035096A (en) * 1973-08-01 1975-04-03
JPS5052152A (en) * 1973-08-27 1975-05-09
JPS5088144A (en) * 1973-10-11 1975-07-15
JPS50139836A (en) * 1974-04-27 1975-11-08
JPS5111654A (en) * 1974-07-18 1976-01-29 Masakuni Kanai
JPS51109050A (en) * 1975-02-20 1976-09-27 Ciba Geigy
JPS5241779A (en) * 1975-09-29 1977-03-31 Nippon Kogaku Kk <Nikon> Limit circuit of servo-device
JPS52106879A (en) * 1976-03-04 1977-09-07 Borg Warner Production of mixed aromaticcaliphatic phosphites
JPS5329343A (en) * 1976-09-01 1978-03-18 Oshika Shinko Co Adhesive composition
JPS5373245A (en) * 1976-12-13 1978-06-29 Mitsubishi Monsanto Chem Co Inorganic filler-containing resin compositions having improved thermal stability
JPS5377238A (en) * 1976-12-20 1978-07-08 Tokuyama Soda Co Ltd Polyolefin composition
US4185004A (en) * 1977-04-27 1980-01-22 Phillips Petroleum Company Multi-component stabilizing system for pigmented polyolefins
JPS5425951A (en) * 1977-07-29 1979-02-27 Adeka Argus Chem Co Ltd Synthetic resin composition
JPS54101846A (en) * 1978-01-09 1979-08-10 Ciba Geigy Ag Polypropylene composition
JPS5554339A (en) * 1978-10-13 1980-04-21 American Cyanamid Co Photoostable composition and photoostabilizer composition
US4209430A (en) * 1978-11-24 1980-06-24 Scm Corporation Treatment of inorganic pigments
JPS5783582A (en) * 1980-09-18 1982-05-25 Uniroyal Inc Stabilizing composition and stabilized composition containing organic material and same
JPS5783539A (en) * 1980-09-19 1982-05-25 American Cyanamid Co Polyolefin composition containing stabilized titanium dioxide pigment
JPS5787449A (en) * 1980-11-19 1982-05-31 Hitachi Cable Ltd Polyvinyl chloride composition

Also Published As

Publication number Publication date
JPS57200455A (en) 1982-12-08

Similar Documents

Publication Publication Date Title
CA1258335A (en) Fire-retardant resin composition
CN112409693B (en) Halogen-free flame retardant with good flame retardance and processability and flame-retardant resin composition
SK24997A3 (en) Universal masterbatch
JP6877443B2 (en) Flame Retardant Composition and Flame Retardant Synthetic Resin Composition
US5034439A (en) Flame-resistant polyester moulding compound
JPS6153384B2 (en)
JP2896624B2 (en) Flame retardant polyolefin composition
US4839410A (en) Flame-retardant rubber-modified styrene resin composition
JPS6126945B2 (en)
JPH093310A (en) Light-diffusing aromatic polycarbonate resin composition and molded article for light diffusion and transmission
JP3648032B2 (en) Flame retardant resin composition
JP3107249B2 (en) Polycarbonate resin composition with improved flame retardancy
JP3830177B2 (en) Organic phosphite composition
JP3540532B2 (en) Antibacterial flame-retardant resin composition
JPS59206454A (en) Flame-retardant acrylic resin composition having improved transparency
JPH0581575B2 (en)
JPH06107882A (en) Antistatic styrene resin composition with excellent thermal stability and antistatic agent for the styrene resin composition
JPH01163230A (en) Flame-retardant polyolefin composition
JPH0359941B2 (en)
JPH03227368A (en) Flame-retardant polymer composition
JPS62285937A (en) Flame-retarding styrene resin composition
JP2545185B2 (en) Antistatic polyolefin resin composition having excellent thermal stability and antistatic agent for the polyolefin resin composition
JPH04106154A (en) Flame-retardant resin composition
JPH11246712A (en) Stabilized polyolefin composition
JPH08231777A (en) Flame retardant for polyolefin having improved light exposure property