JPS6150713B2 - - Google Patents

Info

Publication number
JPS6150713B2
JPS6150713B2 JP57043265A JP4326582A JPS6150713B2 JP S6150713 B2 JPS6150713 B2 JP S6150713B2 JP 57043265 A JP57043265 A JP 57043265A JP 4326582 A JP4326582 A JP 4326582A JP S6150713 B2 JPS6150713 B2 JP S6150713B2
Authority
JP
Japan
Prior art keywords
cemented carbide
drill
solid
carbide
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57043265A
Other languages
Japanese (ja)
Other versions
JPS58160008A (en
Inventor
Masaya Myake
Juichi Hirayama
Shozo Wamoto
Hiroshi Fukuyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57043265A priority Critical patent/JPS58160008A/en
Publication of JPS58160008A publication Critical patent/JPS58160008A/en
Publication of JPS6150713B2 publication Critical patent/JPS6150713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2240/00Details of connections of tools or workpieces
    • B23B2240/08Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/02Connections between shanks and removable cutting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/011Micro drills

Description

【発明の詳細な説明】 本発明はドリル径2mm以下0.1mm前後の細いド
リル刃を有する超硬合金製小径ソリツドドリル及
びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a small-diameter solid drill made of cemented carbide having a narrow drill blade with a drill diameter of 2 mm or less and around 0.1 mm, and a method for manufacturing the same.

上記小径超硬ソリツドドリル(マイクロドリル
とも称す)は主としてIC用プリント基板の穴明
け加工に用いられ電子機器の需要増に伴つて近年
著しく使用が多くなつている。IC基板の穴はま
すます細径で高精度のものが要求され、しかも生
産の効率化のために使用条件が厳しくなり、剛性
が高く耐摩耗性の高い超硬ソリツドドリルが多用
されている。この超硬ソリツドドリルは第1図に
示す如く刃先部1が0.1〜0.2mmφ、胴部2が2〜
3mmφが一体となつているもので、従来の高速度
鋼に較べて靭性が少い超硬合金では刃先部に応力
がかゝつて折れ易いという問題がある。特にIC
基板では数多くの細穴を穿けるためドリルの折損
は穴あけ作業の能率を著しく悪くする。しかも超
硬合金製ソリツドドリルは原料の点でも加工の点
でも高価でありドリルの折損はIC基板の製造コ
ストにも多大の影響を与えるという問題がある。
The small-diameter solid carbide drill (also referred to as a microdrill) is mainly used for drilling holes in printed circuit boards for ICs, and its use has increased significantly in recent years as demand for electronic devices increases. Holes in IC boards are increasingly required to have smaller diameters and higher precision, and usage conditions have become stricter in order to improve production efficiency, so solid carbide drills with high rigidity and high wear resistance are increasingly being used. As shown in Fig. 1, this solid carbide drill has a cutting edge part 1 of 0.1 to 0.2 mmφ and a body part 2 of 2 to 0.2 mmφ.
The blade is made of cemented carbide, which has a diameter of 3 mm in one piece, and has less toughness than conventional high-speed steel, so there is a problem that stress is applied to the cutting edge and it easily breaks. Especially IC
Since a large number of small holes can be drilled in a board, a broken drill will significantly reduce the efficiency of the drilling operation. Moreover, cemented carbide solid drills are expensive both in terms of raw materials and processing, and there is a problem in that breakage of the drill greatly affects the manufacturing cost of IC boards.

本発明者らは、従来廃却していた折損した又は
使用済みのソリツドドリルの再使用を検討した結
果、超硬ドリルの胴部の先に刃先部となる超硬合
金を当接して、当接部に電子ビーム、レーザービ
ーム等の高エネルギービームを照射し超硬合金同
志を溶接接合することによつて、全体を一体で製
作したソリツドドリルと同等の性能を有する小径
超硬ドリルが得られることを見出した。上記溶接
において直接超硬合金同志を溶接しても良いが、
溶接部にビーム照射したとき異常に温度が上昇
し、WC相が粒成長して超硬合金の強度が低下し
て特に小径超硬ソリツドドリルの如く使用条件が
厳しいものでは致命的である。
As a result of considering the reuse of broken or used solid drills that had previously been discarded, the inventors of the present invention abutted a cemented carbide that would become the cutting edge on the tip of the body of a carbide drill. By irradiating high-energy beams such as electron beams and laser beams on the parts and welding the cemented carbide pieces together, it is possible to obtain a small-diameter carbide drill that has the same performance as a solid drill made entirely of one piece. I found it. In the above welding, cemented carbide may be directly welded together, but
When beam irradiation is applied to a welded part, the temperature rises abnormally, causing grain growth of the WC phase and reducing the strength of the cemented carbide, which is especially fatal for small-diameter solid carbide drills that are used under severe conditions.

この問題を解決するため種々検討した結果、第
2図に示す如く、超硬合金の胴部4と刃先部3の
当接面に0.2〜2mm厚の金属薄板5を挿入し、適
当な加圧冶具で軸方向に加圧状態にして、高エネ
ルギービーム6を照射し、薄板を溶接させると余
分な溶融金属は外周部に押出し、冷却凝固すれば
完全に接合して、本体の超硬合金に異常組織が発
生せず、従つて強度も全然低下しない小径超硬ソ
リツドドリルが得られることがわかつた。
As a result of various studies to solve this problem, as shown in Fig. 2, a thin metal plate 5 with a thickness of 0.2 to 2 mm was inserted into the contact surface of the cemented carbide body 4 and the cutting edge 3, and an appropriate pressure was applied. When pressurized in the axial direction with a jig and irradiated with a high-energy beam 6 to weld the thin plate, excess molten metal is pushed out to the outer periphery, and when it cools and solidifies, it is completely joined and bonded to the cemented carbide of the main body. It has been found that a small diameter solid carbide drill can be obtained in which no abnormal tissue is generated and the strength is not reduced at all.

当接面に挿入する金属としては、超硬合金の結
合金属として使用されるCo、Ni、Feのいわゆる
鉄族金属とこれらの合金また炭化物が超硬合金の
硬質粒子として使用される同期律表4a、5a、6a族
のW、Ti、Ta等の金属または2種以上の合金か
ら溶接部分又は使用条件に基づいて選択すれば良
い。これらの金属は超硬合金の構成成分であるこ
とから超硬合金との親和性に優れ、安定した接合
強度が得られる。
The metals to be inserted into the contact surface include so-called iron group metals such as Co, Ni, and Fe, which are used as bonding metals in cemented carbide, and alloys and carbides of these metals, which are used as hard particles in cemented carbide. The material may be selected from metals of groups 4a, 5a, and 6a, such as W, Ti, and Ta, or alloys of two or more, based on the welding part or usage conditions. Since these metals are constituent components of cemented carbide, they have excellent compatibility with cemented carbide and can provide stable bonding strength.

高エネルギービームとしては微細なビームを照
射できる電子ビームやレーザービームが本発明の
場合有益である。
As the high-energy beam, an electron beam or a laser beam that can irradiate a fine beam is useful in the present invention.

第3図は当接面にWの薄板を挿入して、上記に
示した本発明の方法で溶接接合した接合部の断面
の倍率200倍の顕微鏡写真であり、超硬合金3,
4にはWCの異常成長や脆化層が認められず、完
全に接合していることがわかる。
FIG. 3 is a micrograph at 200x magnification of a cross section of a joint welded using the method of the present invention described above by inserting a W thin plate into the contact surface.
In No. 4, no abnormal growth of WC or a brittle layer was observed, indicating complete bonding.

高エネルギービームは短時間で照射溶融せしめ
るため、ガス発生して接合層にボイドが発生する
場合は、溶接後に更に超硬合金の液相発生温度で
静熱間静圧処理(HIP)をすることによつて完全
にボイドを除去し、接合相へ超硬合金相のWCを
拡散することによつて完全に一体化した小径ソリ
ツドドリルを製造することができる。
High-energy beams irradiate and melt in a short period of time, so if gas is generated and voids occur in the bonding layer, hot-static pressure treatment (HIP) should be performed at the liquid phase generation temperature of the cemented carbide after welding. By completely removing voids and diffusing the cemented carbide phase WC into the welding phase, a completely integrated small-diameter solid drill can be manufactured.

又接合部の耐摩耗性、靫性が強く要求される場
合は、溶接後に超硬合金の液相生成温度(約1320
℃)以上の温度で再焼結(加熱)することによつ
て接合部にWCが拡散し超硬合金と同一組織の接
合層とすることもできる。
In addition, if wear resistance and toughness of the joint are strongly required, the liquid phase formation temperature of the cemented carbide (approximately 1320
By resintering (heating) at a temperature higher than 30°F (°C), WC can diffuse into the joint, creating a joint layer with the same structure as the cemented carbide.

本発明の小径超硬ソリツドドリルは折損又は使
用後の再利用が可能ばかりでなく、第2図の胴部
4と刃先部3を別々に製作しておき本発明の方法
によつて溶接接合するものであり、第1図の如く
一体のものより製造し易い形状で製造でき、必要
時組合せて所要のソリツドドリルとすることがで
きるため生産管理上のメリツトがある。
The small-diameter solid carbide drill of the present invention is not only reusable after breakage or use, but also allows the body portion 4 and the cutting edge portion 3 shown in Fig. 2 to be manufactured separately and welded together by the method of the present invention. As shown in FIG. 1, these drills can be manufactured in a shape that is easier to manufacture than the one-piece drill, and they can be combined to form the required solid drill when necessary, which is advantageous in terms of production control.

更に又、本発明のソリツドドリルは、胴部と刃
先部とでその使用条件に合わせて材質成分の異る
超硬合金の組合せで従来の一体型小径ドリルより
も優れた小径超硬ソリツドドリルを提供すること
ができる等工業的価値が高い。
Furthermore, the solid drill of the present invention provides a small-diameter solid carbide drill that is superior to conventional integrated small-diameter drills by combining cemented carbide alloys with different material compositions in the body and the cutting edge depending on the conditions of use. It has high industrial value.

次に実施例によつて説明する。 Next, an example will be explained.

実施例 1 第2図に示す如く折損もしくは使用済みの超硬
合金ドリルから胴部4を加工し、その端面に別途
製作した超硬合金刃先部3を板厚0.6mmのCo板5
を挿入介在せしめ、軸方向に加圧状態にして当接
部に電子ビーム6を照射した。電子ビームは
60KV、10mA、真空度10-2Torr、時間2秒の条
件で行つた。
Example 1 As shown in Fig. 2, a body part 4 was machined from a broken or used cemented carbide drill, and a separately manufactured cemented carbide cutting edge part 3 was attached to the end face of the body part 4, and a Co plate 5 with a thickness of 0.6 mm was attached.
was inserted, and the contact portion was irradiated with an electron beam 6 while being pressurized in the axial direction. The electron beam
The test was carried out under the conditions of 60 KV, 10 mA, vacuum degree of 10 -2 Torr, and time of 2 seconds.

接合面は第3図の写真と同じように完全に接合
されていた。これを所定寸法(d:0.8mm、D1
0.8、D2:3.2mm、L:38.1mm、L1:8mm)に仕上
加工して、プリント基板の穴あけテストを行つた
ところ、従来の一体型超硬ソリツドドリルと全く
同じ性能を示した。
The joint surfaces were completely joined as shown in the photograph in Figure 3. This is set to the specified dimensions (d: 0.8 mm, D 1 ;
0.8, D 2 : 3.2 mm, L: 38.1 mm, L 1 : 8 mm), and a printed circuit board drilling test was performed, and it showed exactly the same performance as a conventional integrated solid carbide drill.

実施例 2 実施例1で接合したドリルを1350℃、2気圧の
アルゴンガス中で30分加熱処理したところ、その
接合部の断面組織は胴部の超硬合金の組織と区別
がつかない、即ちCo中にWCが拡散していた。そ
して従来の一体の超硬ソリツドドリルと全く同じ
性能を示した。
Example 2 When the drill jointed in Example 1 was heat-treated in argon gas at 1350°C and 2 atm for 30 minutes, the cross-sectional structure of the joint was indistinguishable from the structure of the cemented carbide of the body. WC was diffused throughout Co. And it showed exactly the same performance as a conventional solid carbide drill.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一体型小径超硬ソリツドドリル
の正面図、第2図は本発明のソリツドドリルの製
造法を説明するための正面図、第3図は本発明品
の実施例の接合部の200倍拡大の顕微鏡による断
面組織図である。 1,3:刃先部、2,4:胴部、5:金属薄
板、6:高エネルギービーム、5′:接合溶接
部、d:ドリル径、D1:ネツク径、D2:胴部
径、L:全長、L1:刃長。
Fig. 1 is a front view of a conventional integrated small-diameter solid carbide drill, Fig. 2 is a front view for explaining the manufacturing method of the solid drill of the present invention, and Fig. 3 is a 200 mm front view of the joint part of the embodiment of the product of the present invention. It is a cross-sectional tissue diagram taken with a microscope at double magnification. 1, 3: cutting edge, 2, 4: body, 5: thin metal plate, 6: high energy beam, 5': joint weld, d: drill diameter, D 1 : neck diameter, D 2 : body diameter, L: Total length, L1 : Blade length.

Claims (1)

【特許請求の範囲】 1 超硬合金からなるソリツドドリルにおいて、
刃先部と胴部との間の当接面にCo、NiまたはFe
もしくは、周期率表4a、5a、6a族の金属から選ば
れた1種又は2種以上の合金板または金属板をは
さみ軸方向に加圧状態で該薄板部に電子ビームま
たはレーザービームを照射し、溶解、凝固せしめ
て接合することを特徴とする小径超硬ソリツドド
リル。 2 超硬合金からなるソリツドドリルの製造法に
おいて、刃先部と胴部との間の当接面にCo、Ni
またはFeもしくは、周期率表4a、5a、6a族の金
属から選ばれた1種又は2種以上の合金板または
金属板をはさみ、軸方向に加圧状態で該薄板部に
電子ビームまたはレーザービームを照射し、溶
解、凝固せしめ、しかるのちに超硬合金の液相生
成温度にて再焼結あるいは熱間静圧処理すること
を特徴とする小径超硬ソリツドドリルの製造法。
[Claims] 1. A solid drill made of cemented carbide,
Co, Ni or Fe on the contact surface between the cutting edge and body
Alternatively, one or more alloy plates or metal plates selected from metals in groups 4a, 5a, and 6a of the periodic table are sandwiched, and the thin plate portion is irradiated with an electron beam or a laser beam under pressure in the axial direction. A small-diameter solid carbide drill that is characterized by being melted, solidified, and joined. 2 In the manufacturing method of solid drills made of cemented carbide, Co and Ni are added to the contact surface between the cutting edge and the body.
Or sandwich Fe or one or more alloy plates or metal plates selected from metals in groups 4a, 5a, and 6a of the periodic table, and apply an electron beam or laser beam to the thin plate part under pressure in the axial direction. A method for producing a small-diameter solid carbide drill, which is characterized by irradiating, melting and solidifying the cemented carbide, and then re-sintering or hot static pressure treatment at the liquid phase formation temperature of the cemented carbide.
JP57043265A 1982-03-17 1982-03-17 Small diameter cemented carbide solid drill and manufature thereof Granted JPS58160008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57043265A JPS58160008A (en) 1982-03-17 1982-03-17 Small diameter cemented carbide solid drill and manufature thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57043265A JPS58160008A (en) 1982-03-17 1982-03-17 Small diameter cemented carbide solid drill and manufature thereof

Publications (2)

Publication Number Publication Date
JPS58160008A JPS58160008A (en) 1983-09-22
JPS6150713B2 true JPS6150713B2 (en) 1986-11-05

Family

ID=12659007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57043265A Granted JPS58160008A (en) 1982-03-17 1982-03-17 Small diameter cemented carbide solid drill and manufature thereof

Country Status (1)

Country Link
JP (1) JPS58160008A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152308A (en) * 1984-12-27 1986-07-11 Sumitomo Electric Ind Ltd Small-sized twist drill made of hard sintered material
JPH03205752A (en) * 1990-01-05 1991-09-09 Nissin Electric Co Ltd Ion implanter
KR100932002B1 (en) 2007-06-04 2009-12-15 유림전기(주) Router bits
EP2959851B1 (en) * 2014-06-27 2017-01-25 Technosprings Italia S.r.l. Flexible intramedullary reamer

Also Published As

Publication number Publication date
JPS58160008A (en) 1983-09-22

Similar Documents

Publication Publication Date Title
US4686080A (en) Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same
US4340650A (en) Multi-layer composite brazing alloy
JP5552543B2 (en) Zygote
JP2018104769A (en) Method for manufacturing tip member of heating tool and tip member of heating tool
JP2007118084A (en) SILVER/ALUMINUM/COPPER/TITANIUM/NICKEL BRAZING ALLOY FOR BRAZING WC-Co TO TITANIUM ALLOY
Hoye et al. Machining of GTAW additively manufactured Ti-6Al-4V structures
JPS6150713B2 (en)
US4492846A (en) Process for the production of bonded hard alloys
JP4230025B2 (en) Clad mold for hot press and manufacturing method thereof
KR100325355B1 (en) A method for brazing WC-Co and tool steel
JPS6294211A (en) Composite fine size drill
JPS59180004A (en) Moving blade of steam turbine
RU2424875C2 (en) Hard-alloy tip and method of its production
JPH05293641A (en) Method for joining titanium carbide sintered alloy and stainless steel
CN113634839A (en) Cu/INVAR/Ni composite solder for heterogeneous connection of hard alloy and steel and laser melting brazing process thereof
WANG et al. TIG-MIG indirect arc welding process
JPH11294058A (en) Brazed cutting tool excellent in bonding strength
JPS59147774A (en) Joining method of sintered hard alloy and steel
JPS62207590A (en) Manufacture of small diameter drill
Atieh et al. Manufacturing and Assembly for Vacuum Technology
JPS58224086A (en) Diffusion joining method of heat resistant super alloy
JPS591104A (en) Composite sintered tool and manufacturing method thereof
JPS5884188A (en) Composite sintered body tool and manufacture
JP2001241285A (en) Excavation tool having cutting blade piece with excellent high-temperature joint strength
JPS5838683A (en) Manufacture of composite abrasion resistance member