JPS62207590A - Manufacture of small diameter drill - Google Patents
Manufacture of small diameter drillInfo
- Publication number
- JPS62207590A JPS62207590A JP4915386A JP4915386A JPS62207590A JP S62207590 A JPS62207590 A JP S62207590A JP 4915386 A JP4915386 A JP 4915386A JP 4915386 A JP4915386 A JP 4915386A JP S62207590 A JPS62207590 A JP S62207590A
- Authority
- JP
- Japan
- Prior art keywords
- drill
- pcd
- small diameter
- chip
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 21
- 239000010432 diamond Substances 0.000 claims abstract description 21
- 238000010894 electron beam technology Methods 0.000 claims abstract description 12
- 238000003466 welding Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 11
- 239000000945 filler Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 238000005520 cutting process Methods 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 239000010949 copper Substances 0.000 abstract description 3
- 229910045601 alloy Inorganic materials 0.000 abstract 2
- 239000000956 alloy Substances 0.000 abstract 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 abstract 1
- 229910000601 superalloy Inorganic materials 0.000 abstract 1
- 238000005304 joining Methods 0.000 description 10
- 238000005219 brazing Methods 0.000 description 9
- 238000003754 machining Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 238000005553 drilling Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 238000013021 overheating Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 241000023320 Luma <angiosperm> Species 0.000 description 1
- 241000186514 Warburgia ugandensis Species 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000009763 wire-cut EDM Methods 0.000 description 1
Landscapes
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分針〕
本発明は直径2 m+i以下、とくに1m以下の小径穴
あけ用のダイヤモンド焼結体ドリル、ますこはCBN焼
結体ドリルの製造法に関するものである。[Detailed description of the invention] [Minute hand for industrial use] The present invention relates to a method for manufacturing a diamond sintered drill, Masuko's CBN sintered drill, for drilling small diameter holes of 2 m+i or less, particularly 1 m or less. be.
小径の穴あけ加工は一般に軽加工用には高速度鋼製スト
レートシャンクドリルが、軽加工用には超硬合金製ルー
マ形ドリルが用いられる。For drilling small diameter holes, a straight shank drill made of high speed steel is generally used for light machining, and a luma type drill made of cemented carbide is used for light machining.
ここに小径とは2m以下とするが、とくにlll11す
下の極細物に問題が多い。まtコルーマ形は第2図のよ
うに先端刃部2とらせん溝3とを有する所定直径のドリ
ルボデー1と、これよりも大径のシャンク4とからなる
工具形式である。Here, small diameter is defined as 2 m or less, but there are many problems especially with extremely thin objects under ll11. As shown in FIG. 2, the Columa type is a tool type consisting of a drill body 1 of a predetermined diameter having a cutting edge portion 2 and a spiral groove 3, and a shank 4 having a larger diameter than the drill body 1.
軽加工の例として電子装置の印刷配線基板の穴あけがあ
る。基板は工具を著しく損耗させる難削材であり、これ
に大量の小径穴を短時間にあけなければならない。近年
この種の加工需要が増大しているが、軽加工のため超硬
合金製のドリルをもってしても寿命は短かく、自動化、
量産化の障害となっている。An example of light machining is drilling holes in printed wiring boards for electronic devices. The substrate is a difficult-to-cut material that causes considerable wear and tear on tools, and it is necessary to drill a large number of small-diameter holes in it in a short period of time. Demand for this type of machining has increased in recent years, but even cemented carbide drills have a short lifespan due to light machining, so automation and
This is an obstacle to mass production.
超硬合金よりも耐摩耗性の1ぐれた工具材料としてダイ
ヤモンド焼結体(PCI))がある。Diamond sintered body (PCI) is a tool material that has better wear resistance than cemented carbide.
切削工具としての寿命は超硬合金の数十倍ないし百倍以
上であるから、これを小径ドリルに適用することが期待
されている。Since the life of cutting tools is several tens to a hundred times longer than that of cemented carbide, it is expected to be applied to small-diameter drills.
第3図10は一般の切削工具用として供給されるPCD
ブランクである。ダイヤモンド焼結体の層11に超硬合
金の裏打ち12を施した構成で、ダイヤモンド層11の
厚さは05、裏打ち12を含む総厚さは15ないし3、
または直径は8ないし13 (単位はいずれもmm)が
一般である。Figure 3 10 shows a PCD supplied for general cutting tools.
It is blank. It has a structure in which a layer 11 of diamond sintered body is provided with a lining 12 of cemented carbide, the thickness of the diamond layer 11 is 0.5 mm, the total thickness including the lining 12 is 15 to 3,
Or, the diameter is generally 8 to 13 (all units are mm).
ブランク10を加工して刃部を形成したPCD「チップ
」を、鋼などのシャンクに銀鑞付けして各種の切削工具
を構成する。第3図の超硬合金部12はダイヤモンド焼
結体11を補強するとともに、チップをシャンクに鍜鑞
付けすることを可能とする。ただしダイヤモンド焼結体
は700℃以上に加熱すると劣化するので、銀鑞付の作
業には配慮を要する。この事情もあって、鑞付強度が不
足してチップが脱落することもある。Various types of cutting tools are constructed by machining a blank 10 to form a PCD "chip" to form a cutting part and silver-brazing it to a shank made of steel or the like. The cemented carbide part 12 shown in FIG. 3 not only reinforces the diamond sintered body 11 but also makes it possible to braze the tip to the shank. However, since the diamond sintered body deteriorates when heated above 700°C, care must be taken when applying silver brazing. Due to this reason, the brazing strength may be insufficient and the chip may fall off.
小径ドリル用としては第5図のPCDブランク30があ
る。ダイヤモンド焼結体部31と超硬合金部32とから
なる丸棒状のブランク3゜の直径は最小1 mm程度ま
で各種、長さはダイヤモンド焼結体31を先端刃部とす
るドリルボデーを製作するに十分である。For small diameter drills, there is a PCD blank 30 shown in FIG. A drill body is manufactured in which a round bar-shaped blank 3° consisting of a diamond sintered body part 31 and a cemented carbide part 32 has various diameters up to a minimum of about 1 mm, and lengths have the diamond sintered body 31 as the cutting edge part. is sufficient.
一般のPCD工具の製造技術はほぼ完成しており、また
第5図のPCDブランク3oも供給されているにも拘ら
ず、小径ドリル:ζ関しては上述の難点のため実用化に
至っていない。Although the manufacturing technology for general PCD tools has been almost completed and the PCD blank 3o shown in FIG. 5 is also available, the small diameter drill ζ has not been put into practical use due to the above-mentioned difficulties.
第3図のPCDブランク10がら小径ドリルを製作する
には、ブランク10の板面に垂直に第4図20の小円柱
を截り出し、乙のPCD「チップ」20をドリル先端部
とする。ダイヤモンド焼結体部21の厚さは小径ドリル
の先端刃部を形成するに十分である。第6図のようにチ
ップ20の超硬合金部22を超硬合金部材40に接合し
てルーマ形の工員形状とする。部材40は所定径のボデ
一部41と、規格径のシャンク部42との一体構造であ
る。接合後、ドリル先端刃部とボデーのらせん溝とを加
工して第2図のような小径ドリルを完成する。To manufacture a small diameter drill from the PCD blank 10 of FIG. 3, cut out a small cylinder as shown in FIG. 4 20 perpendicularly to the plate surface of the blank 10, and use the PCD "chip" 20 shown in FIG. 2 as the tip of the drill. The thickness of the diamond sintered body portion 21 is sufficient to form the tip of a small diameter drill. As shown in FIG. 6, the cemented carbide portion 22 of the chip 20 is joined to the cemented carbide member 40 to form a lumer-shaped worker shape. The member 40 has an integral structure including a body portion 41 having a predetermined diameter and a shank portion 42 having a standard diameter. After joining, the drill tip and the spiral groove of the body are machined to complete the small diameter drill as shown in Fig. 2.
PCDチップ20とボデ一部41との接合43は前述の
ように従来は銀鑞付によるが、チップ20は極めて微小
のtコめ接合部43の加熱によりチップ全体が高温とな
り易く、ダイヤモンド焼結体21を劣化させる危険が大
きい。また接合面積が小さいため十分な接合強度が得ら
れない。ドリルは穴あけ加工時には強いねじり応力を受
けるに対し、銀鑞付部の剪断強度が不足で、型加工用ド
リルとしての使用に耐えない。Conventionally, the bond 43 between the PCD chip 20 and the body part 41 is made by silver brazing, as described above, but the chip 20 tends to reach a high temperature as a whole due to heating of the extremely small T-coat joint 43, so diamond sintering is required. There is a great risk of deteriorating the body 21. Furthermore, since the bonding area is small, sufficient bonding strength cannot be obtained. The drill is subjected to strong torsional stress during drilling, but the shear strength of the silver brazed part is insufficient, making it unusable as a mold drilling drill.
第5図のPCDブランク30は、これを加工してドリル
先端を含むドリルボテ−を一体に製作し得るので上述の
難点はないが、シャンクとの接合に問題がある。第7図
のようにシャンク50の先端の穴51にPCDブランク
30を挿入、固定するに銀鑞付あるいは圧入の方法があ
る。The PCD blank 30 shown in FIG. 5 does not have the above-mentioned difficulties because it can be processed to integrally manufacture a drill body including the drill tip, but there is a problem in joining it to the shank. As shown in FIG. 7, the PCD blank 30 can be inserted and fixed into the hole 51 at the tip of the shank 50 by silver brazing or press fitting.
wI鑞付の場合は、ダイヤモンド焼結体31は加熱部3
3から十分に離れているtコめ過熱のおそれは少く、ま
た鑞付面積が大きいので接合強度も十分である。しかし
第8rI!Jシヤンク50の穴51とブランク33との
間には少くとも鑞材52の侵入する間隙を要し、いわゆ
る遊びのある嵌合となって、第8図に誇張して描くよう
にブランク30は倒れを伴って固定される。In the case of wI brazing, the diamond sintered body 31 is heated in the heating section 3.
3, there is little risk of overheating, and since the brazed area is large, the joint strength is sufficient. But the 8th rI! There must be at least a gap between the hole 51 of the J shank 50 and the blank 33 for the solder material 52 to enter, resulting in a fit with so-called play, and the blank 30 is It is fixed with a fall.
圧入法では鋼製のシャンク50の穴51はブランク30
よりも僅かに小径とし、これにブランク30を押込む。In the press-fitting method, the hole 51 of the steel shank 50 is blank 30.
The blank 30 is pushed into this diameter.
シャンク50は穴51を強制的に拡大された状態でブラ
ンク30を受入れるが、このためのシャンクの局部的変
形は必ずしも均一でないために矢張り第8図に類する倒
れが起る。また押込みの強圧力のtコめにダイヤモンド
焼結体31が破損することもある。The shank 50 receives the blank 30 with the hole 51 forcibly enlarged, but the local deformation of the shank for this purpose is not necessarily uniform, resulting in collapse as shown in FIG. Further, the diamond sintered body 31 may be damaged due to the strong pressure of pushing.
銀鑞付、圧入いずれの方法においても倒れは避けられな
い。所定のドリル径よりも若干太いブランク30をシャ
ンクに接合後ブランク30を研削して所定径で、かつシ
ャックと同軸となるよう加工する工程が、第8図の倒れ
のために著しく困難になる。倒れに比例して研削量が多
くなるばかりでなく、シャンクをチャックして回転する
と先端が振れるtコめ、研削圧によりブランク30が折
損する危険を避けるには加工は極めて徐々に行なわなけ
ればならない。Collapse is unavoidable with both silver brazing and press fitting methods. The process of joining the blank 30, which is slightly thicker than the predetermined drill diameter, to the shank and then grinding the blank 30 so that it has the predetermined diameter and is coaxial with the shank becomes extremely difficult due to the inclination shown in FIG. Not only does the amount of grinding increase in proportion to the inclination, but also the tip shakes when the shank is chucked and rotated, so the machining must be done extremely gradually to avoid the risk of the blank 30 breaking due to the grinding pressure. .
1例として直径0.8 mm 、長さ12mmのブラン
クの先端の偏心が36μmあった時に、これを修正する
研削加工に約4時間を要した。細心の注意を要する4時
間の工程は小径ドリルの製造能率を著しく低下し製造原
価を増大して、到底許容されない。As an example, when the tip of a blank with a diameter of 0.8 mm and a length of 12 mm had an eccentricity of 36 μm, it took about 4 hours to perform the grinding process to correct this. The four-hour process, which requires careful attention, significantly reduces the manufacturing efficiency of small-diameter drills and increases manufacturing costs, which is completely unacceptable.
本発明の目的は高精度、高性能の小径PCDドリルを経
済的に提供することにある。An object of the present invention is to economically provide a small diameter PCD drill with high precision and high performance.
本発明の小径PCDドリルにおいては、第5図のPCD
ブランク30を用いる第7,8図の構成は倒れの問題を
伴うのでこれを避け、PCDの小片チップ20を用いる
第6図の構成を採る。チップ20と部材40との接合4
3は、銀鑞付は前述のように不可である。本発明はこれ
に替えて、ダイヤモンド焼結体21を過熱劣化させるこ
となり、シかも十分の強度が得られる接合法を確立した
ものである。すなわちニッケルを溶加材とする電子ビー
ム溶接による接合を特徴とする。In the small diameter PCD drill of the present invention, the PCD drill shown in FIG.
The structure shown in FIGS. 7 and 8 using the blank 30 involves the problem of falling, so this is avoided, and the structure shown in FIG. 6 using the small chip 20 of PCD is adopted. Joining of chip 20 and member 40 4
3, silver brazing is not possible as mentioned above. In place of this, the present invention has established a joining method that does not cause the diamond sintered body 21 to deteriorate due to overheating, but can still provide sufficient strength. That is, it is characterized by joining by electron beam welding using nickel as a filler material.
接合の後はボデ一部全域を研削して所定の直径に仕上げ
、先端刃部5とらせん溝6とを加工して第1図の小径ド
リルを完成する。らせん溝6はPCDチップ20のダイ
ヤモンド焼結体部21、超硬合金部22から、超硬合金
部材4゜のドリルボデ一部41にわたって連続して刻設
する乙とになる。After joining, the whole part of the body is ground to a predetermined diameter, and the cutting edge part 5 and the spiral groove 6 are machined to complete the small diameter drill shown in FIG. 1. The spiral groove 6 is continuously carved from the diamond sintered body part 21 and the cemented carbide part 22 of the PCD chip 20 to the drill body part 41 of the cemented carbide member 4°.
第6図の構成の接合ではPCDチップ20の後端と超硬
部材40の先端とが共に軸芯に直角ならば接合後の倒れ
はない。多少の倒れはあってもチップ20が短寸のため
先端21の傷心はごく少ない。接合部43におけるチッ
プ2oと=7−
ボデー41との芯ずれは後述の治具により極小におさえ
ることができる。In the joining structure shown in FIG. 6, if the rear end of the PCD chip 20 and the tip of the carbide member 40 are both perpendicular to the axis, there will be no collapse after joining. Even if the tip 20 falls down to some extent, damage to the tip 21 is extremely rare because the tip 20 is short. Misalignment between the chip 2o and the =7- body 41 at the joint portion 43 can be kept to a minimum using a jig to be described later.
これによりPCDチップ20の径に見込む加工余裕分は
借手で済み加工量は第8図のような倒れのある場合に(
らべて極めて少い。加えて、超硬部材40が正確にl8
に加工されていればこの部に振れ止めを当てることによ
り折損の危険がなく PCDチップ部の加工に十分の研
削圧を加えることができる。As a result, the machining allowance expected for the diameter of the PCD chip 20 can be handled by the lessee, and the machining amount can be reduced as shown in Fig. 8 (
There are very few in comparison. In addition, the carbide member 40 is accurately l8
If the PCD chip is machined, by applying a steady rest to this part, there is no risk of breakage and sufficient grinding pressure can be applied for processing the PCD chip part.
以上のようにPCDチップ20を接合した第6図の構成
は第5図のPCDブランク30を用いる第7,8図の構
成よりも、接合後の加工工程において甚t!有利である
が、銀鑞付による従来の接合法では前述の欠点があって
実用に至らなかった。本発明はニッケルを溶加材とする
電子ビーム溶接によりこの構成を実用化したものである
。The configuration shown in FIG. 6 in which the PCD chips 20 are bonded as described above is much more effective in the processing process after bonding than the configuration in FIGS. 7 and 8 in which the PCD blank 30 in FIG. 5 is used! Although advantageous, the conventional joining method using silver brazing has the above-mentioned drawbacks and has not been put into practical use. The present invention puts this configuration into practical use by electron beam welding using nickel as a filler material.
すなわち第1に電子ビームは極めて微小の局部に高エネ
ルギーを集中するので、接合部43のみが短時間に温度
が上昇して溶接を完了し、B−
先端のダイヤモンド焼結体21は過熱することがない。First, since the electron beam concentrates high energy in a very small local area, the temperature of only the joint 43 rises in a short time and welding is completed, and the diamond sintered body 21 at the tip of B- becomes overheated. There is no.
第2に溶接は真空中で行なわれるので、フラックスを要
せず、溶接部に異物、気泡などの欠陥もなく、健全な液
溶ができる。Second, since welding is carried out in a vacuum, no flux is required, and there are no defects such as foreign objects or bubbles in the welded area, and a sound solution can be formed.
上記の効果に加えて、第3にニッケルを溶加材とするこ
とにより十分な溶接強度が得られる。In addition to the above effects, thirdly, by using nickel as a filler metal, sufficient welding strength can be obtained.
下表は抗折試験法による溶接強度測定例である。The table below shows an example of welding strength measurement using the bending test method.
試験片は直径2mの丸棒とし、支点間距離30鴎の中央
に印加する荷重の、破断時の値である。The test piece is a round bar with a diameter of 2 m, and the value is the value at break of the load applied to the center of the fulcrum with a distance between fulcrums of 30.
表の左欄は一体の超硬合金棒、右欄は同材質、同寸法で
あるが、中央でニッケルを溶加材として電子ビーム溶接
した試験片の溶接部に荷重した場合である。各5回の測
定値を総合して、溶接部の強度は一体の超硬合金と変ら
ないことがわかる。The left column of the table shows the case where a load is applied to the welded part of a test piece made of a single piece of cemented carbide, and the right column made of the same material and the same dimensions, but electron beam welded with nickel as filler material in the center. Combining the five measurements, it can be seen that the strength of the welded part is the same as that of a single piece of cemented carbide.
第6図の構成におけるPCDチップ20は第5図ブラン
ク30を趙硬合金部32で切断しても得られるが、前述
のように第3図の板状のブランク10から截り出すのが
よく、その方法はワイヤ放電加工法がよい。第3図のP
CDブランク10はバイトや各種のフライスなどの材料
としての需要に応じて大量に製造されているので品質、
供給とも安定しているからである。The PCD chip 20 having the configuration shown in FIG. 6 can be obtained by cutting the blank 30 shown in FIG. The best method for this is wire electrical discharge machining. P in Figure 3
CD blanks 10 are manufactured in large quantities to meet demand as materials for cutting tools and various types of milling cutters, so quality and
This is because the supply is stable.
また1個のブランク10から多数のチップ20をとるこ
とができるので経済的でもある。Furthermore, since a large number of chips 20 can be obtained from one blank 10, it is also economical.
超硬合金部材40は、ドリルボデ一部41がシャンク部
42と正確に開基となるよう製作することは困難ではな
い。また大量に製造されている第2図のルーマ形超硬ド
リルの半製品を流用することもできる。必要ならばPC
Dチップ20、超硬部材40ともに、接合すべき端面を
軸芯に直角に研磨する。It is not difficult to manufacture the cemented carbide member 40 so that the drill body portion 41 and the shank portion 42 are accurately aligned. Further, the semi-finished product of the lumer type carbide drill shown in FIG. 2, which is manufactured in large quantities, can also be used. PC if necessary
The end faces of both the D-chip 20 and the carbide member 40 to be joined are polished perpendicular to the axis.
第9図のチャック60に、シャンク部42で超硬部材4
0を保持し、溶加材のニッケル板61を挾んでPCDチ
ップ20を載せる。銅製の治具62はPCDチップzO
を超硬部材40と開基に位置決めすると同時に軽い圧力
Pを加える。すなわち治具62はチャック60と開基を
保って上下動を可能とする支持装置(図示せず)に支持
されている。The chuck 60 shown in FIG.
0, and place the PCD chip 20 on the filler metal nickel plate 61 between them. The copper jig 62 is a PCD chip zO
is positioned at the base of the carbide member 40, and at the same time, a light pressure P is applied. That is, the jig 62 is supported by a support device (not shown) that allows vertical movement while keeping the jig 62 open to the chuck 60.
以上の構成を電子ビーム溶接装置の真空中に置き、接合
部61に焦点を結ぶ電子ビーム63を照射すれば一瞬に
溶接が完了する。銅製の位置決め治具62はPCDチッ
プ20のダイヤモンド焼結体部21に接触しているので
熱は治具62に流入してダイヤモンド焼結体の過熱防止
にも役立つ。If the above-described configuration is placed in a vacuum of an electron beam welding device and the electron beam 63 is irradiated to focus on the joint 61, welding is completed in an instant. Since the copper positioning jig 62 is in contact with the diamond sintered body portion 21 of the PCD chip 20, heat flows into the jig 62 and also helps prevent the diamond sintered body from overheating.
第9図の構成を多数円周上または直線上に配列し、遂次
電子ビーム照射位置に送ることにより、多数の溶接を真
空を破ることなく連続して行うことができる。By arranging a large number of the configurations shown in FIG. 9 on a circumference or in a straight line and sequentially sending them to the electron beam irradiation position, a large number of welds can be performed in succession without breaking the vacuum.
本発明は、長寿命の期待をもって要望されながら実現さ
れなかった小径PCDドリルの工業的経済的供給を可能
にした点で、電子工業界などへの貢献が大きい。The present invention has made a significant contribution to the electronics industry and the like in that it has enabled the industrial and economical supply of small-diameter PCD drills, which had been desired with the expectation of long life but had not been realized.
なお、本発明の趣旨はCBN焼結体を刃先とする小径ド
リルにも適用できることは明らかである。It is clear that the gist of the present invention can also be applied to a small diameter drill whose cutting edge is a CBN sintered body.
第1図は本発明に係る製造法によって製作した小径ドリ
ルの一例を示す側面図、第2図は従来の小径ドリルの側
面図、第3図は一般のPCDブランクの斜視図、第4図
は第3図のブランクより截り出したPCDチップの斜視
図、第5図は従来の小径ドリル用PCDブランクの斜視
図、第6図は第4図に示すPCDチップを超硬合金部材
に接合した側面図、第7図は第5図のPCDブランクに
よる構成の断面図、第8図はシャンクの穴にPCDブラ
ンクを挿込んだ状態を誇張して画いた断面図、第9図は
本発明の実施例を示す説明図である。
20・・・PCDチップ 40・・・超硬部材 60゜
62・・・治具 63・・・電子ビーム第1図
第2図
第Aウ 第つ図
第1図
9θ
第4図
第6図
第q図Fig. 1 is a side view showing an example of a small diameter drill manufactured by the manufacturing method according to the present invention, Fig. 2 is a side view of a conventional small diameter drill, Fig. 3 is a perspective view of a general PCD blank, and Fig. 4 is a side view showing an example of a small diameter drill manufactured by the manufacturing method according to the present invention. Figure 3 is a perspective view of a PCD chip cut out from the blank, Figure 5 is a perspective view of a conventional PCD blank for a small diameter drill, and Figure 6 is a PCD chip shown in Figure 4 bonded to a cemented carbide member. 7 is a cross-sectional view of the configuration using the PCD blank shown in FIG. 5, FIG. 8 is an exaggerated cross-sectional view of the state in which the PCD blank is inserted into the hole of the shank, and FIG. It is an explanatory view showing an example. 20... PCD chip 40... Carbide member 60° 62... Jig 63... Electron beam q diagram
Claims (3)
これに続くドリルボデーの先端小部分をなす超硬合金部
とからなる長さ3mm以下のPCDチップを、ドリルボ
デーの大部分とシャンクとの一体の超硬合金部材に、ニ
ッケルを溶加材として電子ビーム溶接したことを特徴と
する小径ドリルの製造法。(1) A diamond sintered body forming the tip of the drill,
Next, a PCD tip with a length of 3 mm or less consisting of a cemented carbide part that forms a small portion of the tip of the drill body is attached to the cemented carbide member that is integrated with the majority of the drill body and the shank, using nickel as a filler material. A method for manufacturing a small diameter drill characterized by electron beam welding.
た板状のPCDブランクから板面に垂直の小円柱を截り
出してPCDチップとすることを特徴とする特許請求の
範囲第1項に記載の小径ドリルの製造法。(2) Claim 1, characterized in that a PCD chip is made by cutting out small cylinders perpendicular to the plate surface from a plate-shaped PCD blank in which a diamond sintered body layer is lined with cemented carbide. A method for manufacturing a small diameter drill as described in Section.
特徴とする特許請求の範囲第1項または第2項に記載の
小径ドリルの製造法。(3) The method for manufacturing a small-diameter drill according to claim 1 or 2, characterized in that the drill tip portion is made of a CBN sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4915386A JPS62207590A (en) | 1986-03-06 | 1986-03-06 | Manufacture of small diameter drill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4915386A JPS62207590A (en) | 1986-03-06 | 1986-03-06 | Manufacture of small diameter drill |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62207590A true JPS62207590A (en) | 1987-09-11 |
Family
ID=12823151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4915386A Pending JPS62207590A (en) | 1986-03-06 | 1986-03-06 | Manufacture of small diameter drill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62207590A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002144132A (en) * | 2001-01-26 | 2002-05-21 | Gn Tool Kk | Ball end mill |
WO2005077587A1 (en) * | 2004-01-16 | 2005-08-25 | Element Six Limited | Diamond bonding |
WO2018056288A1 (en) * | 2016-09-20 | 2018-03-29 | 本田技研工業株式会社 | Pcd drill and manufacturing method for same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5865588A (en) * | 1981-10-15 | 1983-04-19 | Sumitomo Electric Ind Ltd | Production of joined sintered hard alloy |
-
1986
- 1986-03-06 JP JP4915386A patent/JPS62207590A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5865588A (en) * | 1981-10-15 | 1983-04-19 | Sumitomo Electric Ind Ltd | Production of joined sintered hard alloy |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002144132A (en) * | 2001-01-26 | 2002-05-21 | Gn Tool Kk | Ball end mill |
WO2005077587A1 (en) * | 2004-01-16 | 2005-08-25 | Element Six Limited | Diamond bonding |
WO2018056288A1 (en) * | 2016-09-20 | 2018-03-29 | 本田技研工業株式会社 | Pcd drill and manufacturing method for same |
JPWO2018056288A1 (en) * | 2016-09-20 | 2019-03-28 | 本田技研工業株式会社 | PCD drill and manufacturing method thereof |
CN109715324A (en) * | 2016-09-20 | 2019-05-03 | 本田技研工业株式会社 | PCD drill bit and its manufacturing method |
CN109715324B (en) * | 2016-09-20 | 2020-09-22 | 本田技研工业株式会社 | PCD drill bit and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5235935B2 (en) | Cutting tool insert and method for producing the same | |
JP5818819B2 (en) | Bars and how to make bars | |
US4686080A (en) | Composite compact having a base of a hard-centered alloy in which the base is joined to a substrate through a joint layer and process for producing the same | |
JP4244072B2 (en) | Machine tool and manufacturing method thereof | |
JPWO2012114641A1 (en) | Cutting tool and manufacturing method thereof | |
JP5278325B2 (en) | Cutting blade, method for forming cutting blade, and manufacturing method thereof | |
JP5013896B2 (en) | Method of manufacturing throwaway drill holder, throwaway drill holder, throwaway drill using the same, and cutting method using the same | |
US10322457B2 (en) | Ceramic milling cutter | |
JPS62207590A (en) | Manufacture of small diameter drill | |
JP4017992B2 (en) | Cutting tool manufacturing method | |
CN109877551A (en) | PCD table rank rose reamer processing technology | |
CN210147381U (en) | PCD and hard alloy composite drill bit | |
CN108994363A (en) | The manufacturing method of polycrystalline diamond entirety cutting tool | |
KR102152036B1 (en) | Solder Thin Plate Structure | |
KR100325355B1 (en) | A method for brazing WC-Co and tool steel | |
JP2010036296A (en) | Single crystal diamond cutting tool and method for manufacturing same | |
JP4489276B2 (en) | Chip oil hole forming method and wire electric discharge machine used therefor | |
JPS6242728B2 (en) | ||
JPS637467Y2 (en) | ||
JPS637468Y2 (en) | ||
JPS58160008A (en) | Small diameter cemented carbide solid drill and manufature thereof | |
JPH11294058A (en) | Brazed cutting tool excellent in bonding strength | |
KR100398777B1 (en) | Structure for combining cutting edge of cutting tool to manufacture boll-seat in piston of car compressor | |
KR20240061775A (en) | Diamond cutting tool manufacturing method | |
JPH0422961Y2 (en) |