JPS59180004A - Moving blade of steam turbine - Google Patents

Moving blade of steam turbine

Info

Publication number
JPS59180004A
JPS59180004A JP5272383A JP5272383A JPS59180004A JP S59180004 A JPS59180004 A JP S59180004A JP 5272383 A JP5272383 A JP 5272383A JP 5272383 A JP5272383 A JP 5272383A JP S59180004 A JPS59180004 A JP S59180004A
Authority
JP
Japan
Prior art keywords
shield
base
erosion
blade
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5272383A
Other languages
Japanese (ja)
Inventor
Masako Nakabashi
中橋 昌子
Mitsuo Kawai
光雄 河合
Tatsuo Yamazaki
山崎 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5272383A priority Critical patent/JPS59180004A/en
Publication of JPS59180004A publication Critical patent/JPS59180004A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To produce efficiently a moving blade that has a shield and is excellent in strength at the joined section, by joining an erosion shield and a shield support using the diffusion bonding technique, and welding the shield support and a blade base. CONSTITUTION:The last stage moving blades of a steam turbine will be wasted due to cavitation erosion by high speed impingement of condensed water droplets contained in steam. To overcome this, an erosion shield (a) of a stellite alloy containing about 50% Co that is excellent in resistance to cavitation erosion is joined to a 12-Cr base steel of the blade base (b) at the forward edge of the forward end section of the blade where wastage will occur more thereby protecting the forward edge. To join the shield (a) to the blade base (b), first the shield (a) is joined to the shield support (c) by the diffusion bonding technique, and then the shield support (c) and the blade base (b) are welded. Thus, an article that is high in strength at the joined section can be obtained highly efficiently.

Description

【発明の詳細な説明】 〔発明の技術分舒〕 この発明は蒸気タービンの低圧部最終段動翼として用い
られる二ローションシールドを具備した動翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical distribution of the invention] The present invention relates to a rotor blade equipped with a two-lotion shield used as a low-pressure final stage rotor blade of a steam turbine.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

蒸気タービンの最終段動翼は蒸気中に含まれている凝縮
水滴の高速衝突によりキャビテーションエロージョン損
耗を生ずる。このため、損耗の多い翼先端前縁部には第
1図に示したように耐キャビテーションエロージヨン性
に優れたCo  を約50%含んだ通称ステライトと呼
ばれている合金で形成したエロージョンシールド(a)
を翼基体である12Cr  基調(blにAgろうある
いは溶接ζ二より接合し保護している。
The final stage rotor blades of a steam turbine suffer from cavitation erosion due to high-speed collisions of condensed water droplets contained in the steam. For this reason, the leading edge of the blade tip, which is subject to a lot of wear and tear, is equipped with an erosion shield (as shown in Figure 1) made of an alloy commonly known as stellite, which contains about 50% Co, which has excellent cavitation erosion resistance. a)
It is protected by bonding it to the 12Cr base (BL), which is the wing base, using Ag solder or welding.

ところで、前記エロージョンシールドの接合において従
来より行なわれているAgろう付では使用中蒸気中に含
まれている水分によりAgろうが腐食され接合強度が低
下し、これにともない翼の振動応力(二よる接合部の応
力が増加してエロージョンシールドが剥離する。
By the way, in the conventional Ag brazing method used to join the erosion shield, the Ag solder is corroded by the moisture contained in the steam during use, reducing the joint strength. The stress at the joint increases and the erosion shield peels off.

またTIG溶接やIDE溶接などを行なった場合にはA
gろう付に比べ接合強度は高いが、エロージョンシール
ドのCO基合金と翼基体のt2 Cr基鋼との溶融接合
部に脆化層が出来、使用中興の振動によりこの接合部の
脆化層から亀裂が発生し、二ローションシールドが剥離
するなどの不都合がある。
Also, if TIG welding or IDE welding is performed,
Although the joint strength is higher than g-brazing, an embrittled layer forms at the molten joint between the CO-based alloy of the erosion shield and the T2 Cr-based steel of the wing base, and vibrations during use cause the embrittled layer to break away from the joint. There are inconveniences such as cracks occurring and the two lotion shields peeling off.

一方、従来より行なわれているAgろう付や溶接に変わ
る方法として、拡散接合が考えられるが、長さが約17
M、幅が20〜30cmもある最終段動翼にエロージョ
ンシールドを拡散接合する場合、拡散接合を行う真空槽
が非常に大きなものとなり、作業がしにくいこと、また
表面吸看ガスの除去に時間がかかること、加熱物が大き
いことから熱量の損失が多いことなど工業上不都合があ
る。
On the other hand, diffusion bonding can be considered as an alternative to conventional Ag brazing and welding, but the length is approximately 17 mm.
M. When diffusion bonding an erosion shield to the final stage rotor blade, which has a width of 20 to 30 cm, the vacuum chamber for diffusion bonding is very large, making it difficult to work, and it takes a long time to remove surface absorption gas. There are industrial disadvantages such as high heat consumption and large heat loss due to the large size of the heated object.

〔本発明の目的〕[Object of the present invention]

本発明は上記点に准みなされたもので耐キャビテーショ
レエロージョン性に優れたCO基合金よす成ル二ロージ
ョンシールドとエロージョンシールド支持体とが拡散接
合されており、かつ二ローションシールド支持体と翼基
体とが溶接接合された構造を有することを特徴とした蒸
気タービン最終段動翼を提供するものである。
The present invention is based on the above-mentioned points, and is made of a CO-based alloy having excellent cavitation erosion resistance.A two-layer erosion shield and an erosion shield support are diffusion-bonded, and the two-lotion shield support and The present invention provides a steam turbine final stage rotor blade characterized by having a structure in which a blade base body is welded and joined.

ます液相拡散接合用フィラーメタルとして、代表的には
Ni を主成分とする合金に、B、P、8iなどの融点
低下元素を添加した数十μm厚さのフィラーメタルを接
合部に介在させる。これらのフィラーメタルは、母材(
たとえばNi基合金、Fe基合金など)の融点より数十
度低い温度で溶融し、したがって、接合部をフィラーメ
タルの融点より高くかつ母材の融点より低い温度に加熱
することにより、該フィラーメタルを溶融して母材をぬ
らし、はじめころう接の効果を得る。その後さらに長時
間、該温度を保持してB、8i、Pなどを母材に拡散せ
しめる。そのとき、フィラーメタルは等温凝固現象を起
こし、強力な接合部を形成する。
As a filler metal for liquid phase diffusion bonding, a filler metal with a thickness of several tens of micrometers, typically made by adding melting point lowering elements such as B, P, and 8i to an alloy mainly composed of Ni, is interposed in the bonding part. . These filler metals are
For example, Ni-based alloys, Fe-based alloys, etc.) are melted at a temperature several tens of degrees lower than the melting point of the filler metal. Wet the base metal by melting it to obtain the effect of soldering. Thereafter, the temperature is maintained for a longer period of time to diffuse B, 8i, P, etc. into the base material. At that time, the filler metal undergoes an isothermal solidification phenomenon and forms a strong joint.

拡散接合法の特徴は、■母材の溶融による脆化層を生じ
ない。■接合部強度に優れる。■圧接な)どと比較して
加圧力が小さくて良いため、複雑形状部材の接合が容易
である。など多数挙げられる。
The characteristics of the diffusion bonding method are: (1) No brittle layer is created due to melting of the base material. ■Excellent joint strength. ■Compared to pressure welding, etc., the pressing force is small, making it easy to join complex-shaped members. There are many others.

特に、液相拡散接合法は、同相拡散接合法と比較して、
接合時にフィラーメタルが溶融して接合部の微細な間隙
を満たすため、原理的に加圧の必要がなく、また接合表
面仕上げ精度が緩和できるため、複雑形状部材の接合に
対してより有効である。
In particular, the liquid phase diffusion bonding method, compared to the same phase diffusion bonding method,
During joining, the filler metal melts and fills the minute gaps in the joint, so in principle there is no need to apply pressure, and the joining surface finish accuracy can be relaxed, making it more effective for joining complex-shaped parts. .

〔本発明の概要〕[Summary of the invention]

すなわち、本発明に係る蒸気タービン最終段動翼は第2
図に示したようにエロージョンシールド(a)とエロー
ジョンシールド支り体(C1を拡散接合したのち、エロ
ージョンシールド支持体を翼基体(b)に溶接接合した
構造を有する蒸気タービン最終段動翼である。
That is, the steam turbine final stage rotor blade according to the present invention
As shown in the figure, this is a steam turbine final stage rotor blade having a structure in which the erosion shield (a) and the erosion shield support (C1) are diffusion bonded, and then the erosion shield support is welded to the blade base (b). .

拡散接合法は母材の融点よりも低い温度g二接合部を加
熱して、おもに元素の拡散現象を利用して母材金属を接
合し母材なみの強度を持つ接合部を得る方法である。拡
散接合法は大きく分けて固相拡散接合法と液相拡散接合
法の2種類がある。前者は、母材どうしを直接あるいは
薄い金属のフィラーメタルを母材間に介在させ、その後
接合部を母材の融点以下の温度に加熱、加圧し接合部母
材表面あるいは金属フィラーメタル表面をクリープ変形
させ母材どうしを密着させたのち、さらに拡散熱処理を
施して接合部を均質化させる方法である。
Diffusion bonding is a method in which the base metals are heated to a temperature lower than the melting point of the base metal (g), and the base metals are joined using the diffusion phenomenon of the elements to obtain a joint that has the same strength as the base metal. . Diffusion bonding methods can be roughly divided into two types: solid phase diffusion bonding and liquid phase diffusion bonding. In the former method, the base metals are connected directly or a thin filler metal is interposed between the base metals, and then the joint is heated and pressurized to a temperature below the melting point of the base metal, causing the surface of the base metal or filler metal at the joint to creep. In this method, after the base materials are deformed and brought into close contact with each other, a diffusion heat treatment is further performed to homogenize the joint.

後者はTLP法(Trarsient Liquid 
Phase Bon−ding ) 、 A D法(A
ctivated Diffusion Bondin
g )などとも称せられる方法で、従来おもに行なわれ
ている方法は次のとうりである。
The latter is the TLP method (Trasient Liquid
Phase Bonding), AD method (A
activated Diffusion Bondin
g), etc., and the methods commonly used in the past are as follows.

次に本発明のエロージョンシールドを有する蒸気タービ
ン最終段動翼について説明する。
Next, a steam turbine final stage rotor blade having an erosion shield according to the present invention will be explained.

まず所望のエロージョンシールド支持体と耐キャビ7−
−vヨンエロージヨン性に優れたCO基合金部材の接合
面を研磨したのち、各部材の接合面およびフィラーメタ
ルを脱脂洗浄する。次いで前記各材料を密着した状態で
固定する。フィラーメタルの供給法としては、数十μm
厚さの非晶質薄板材あるいは、合金粉末を有機バインダ
ーなどでシート状にしたものなどが多く使われているが
特別に清浄度が要求される、あるいは接合面形状が14
雑で前記薄板状フィラーメタルの固定が困難な場合など
は、たとえば蒸着法(特願昭56−87429)、ば現
在多用されている12Cr 基調に対しては、Fe。
First, the desired erosion shield support and anti-cavity 7-
After polishing the joint surfaces of CO-based alloy members with excellent erosion properties, the joint surfaces of each member and the filler metal are degreased and cleaned. Next, each of the materials is fixed in close contact with each other. The filler metal supply method is several tens of μm.
Amorphous thin plate materials with a thickness of 14 mm or sheets made of alloy powder with an organic binder are often used, but special cleanliness is required or the joint surface shape is 14 mm.
If it is difficult to fix the thin filler metal due to roughness, for example, vapor deposition method (Japanese Patent Application No. 87429/1988) may be used.For example, in contrast to the currently widely used 12Cr base, Fe may be used.

COを主成分とする金属以外の例えば、N1を主成分と
するフィラーメタルを用いることが有用である。すなわ
ち、FeあるいはCOを主成分とするフィラーメタルを
用い七拡散接合を行なった場合、Fe基翼基体あるいは
CO基エロージョンシ−ル)’ JFAのいずれかが、
FeあるいはCo基フィラーメタルと隣接するため、舅
の使用時に、FeイオンとCoイオンの電極反応が生じ
、Fe基基糸基体侵食される不都合が生じる。しかしな
がら、例えば、Ni  を主成分とするフィラーメタル
を用いて拡散接合を行なうことによりFe基翼基とCo
基エロージョンシールドの中間にNiに富む層が形成さ
れ、この層がバリヤーの役割を果たし、電極反応を抑制
する。ここで用いるフィラーメタルは翼基体と二ローシ
ョンシールドのバリヤーとなりうる金属でかつ拡散接合
l−適するものであれば種類を問わない。
For example, it is useful to use filler metals other than metals containing CO as a main component, such as filler metals containing N1 as a main component. In other words, when diffusion bonding is performed using a filler metal containing Fe or CO as the main component, either the Fe-based wing base or the CO-based erosion seal)' JFA,
Since it is adjacent to Fe or Co-based filler metal, an electrode reaction between Fe ions and Co ions occurs during use, resulting in the inconvenience that the Fe-based base thread substrate is eroded. However, for example, by performing diffusion bonding using a filler metal containing Ni as a main component, Fe base and Co
A Ni-rich layer is formed in the middle of the base erosion shield, which acts as a barrier and suppresses electrode reactions. The filler metal used here is of any type as long as it can serve as a barrier between the wing base and the lotion shield and is suitable for diffusion bonding.

次いで、前記密着固定された部祠な不活性雰囲気中で加
熱して保持する。圧力は0.O1〜50に9/−で良い
。また雰囲気は真空、不活性ガスなどの酸化防止雰囲気
であればよい。温度は、フィラーメタルの種類および拡
散接合の種類(固相あるいは液相拡散接合)により選択
されるが、通常は6000〜1300℃位の範囲である
。保持時間も同様に選択されるが、通常は1分〜100
時間程度である。
Then, it is heated and held in a clean, inert atmosphere while being tightly fixed. The pressure is 0. 9/- is fine for O1-50. Further, the atmosphere may be an oxidation-preventing atmosphere such as a vacuum or an inert gas. The temperature is selected depending on the type of filler metal and the type of diffusion bonding (solid phase or liquid phase diffusion bonding), but is usually in the range of about 6000 to 1300°C. The retention time is chosen similarly, but typically ranges from 1 minute to 100 minutes.
It takes about an hour.

なお、この接合時、接合部で接合が完了した時点で、圧
力を除荷して一体化した構造物を別の不活性雰囲気中に
移して再加熱し拡散熱処理を行なってもよい。
Note that during this bonding, when the bonding is completed at the bonded portion, the pressure may be removed and the integrated structure may be moved to another inert atmosphere and reheated to perform diffusion heat treatment.

以上のようにして、 Co基エロージョンシールドを有
するエロージョンシールド支持体を得ることが出来る。
In the manner described above, an erosion shield support having a Co-based erosion shield can be obtained.

次いで、前記エロージョンシールド支持体を翼基体に通
常の’I’IG溶接あるいはEB溶接などの方法により
溶接する。かくして、耐キヤビテーシヨンエロージヨン
シールドを備えた本発明による蒸気タービン最終段動翼
が得られる。
Next, the erosion shield support is welded to the wing base by conventional 'I'IG welding or EB welding. In this way, a steam turbine final stage rotor blade according to the present invention equipped with an anti-cavitation erosion shield is obtained.

なお、本発明に係る蒸気タービン最終段動翼の基体とし
ては、前述した12cr基鋼の他Ti合金なども含まれ
ることはむろんである。
Note that, of course, the base body of the steam turbine final stage rotor blade according to the present invention includes Ti alloys in addition to the above-mentioned 12cr base steel.

〔本発明の実施例〕[Example of the present invention]

第2図fa)に示す形状のCO基合金(ステライト: 
5.0Ni−28,0Cr−20,0W−0,9C−残
部Co  )部材、および第2図(C)に示す形状の1
2cr@ (L 1.3Cr−2,5N i −0,3
V−0,6Mo−0,13C−1,6Mn−0,2S 
i−0,03N−残部Fe )製(7) 工o −ジョ
ンシールド支持体の接合面を#600エメリー紙にて研
暦したのち、トリクレンとアセトンで脱脂洗浄4した。
CO-based alloy (Stellite:
5.0Ni-28,0Cr-20,0W-0,9C-remaining Co) member, and 1 of the shape shown in FIG. 2(C)
2cr@(L 1.3Cr-2,5N i -0,3
V-0,6Mo-0,13C-1,6Mn-0,2S
The bonding surface of the (7) John shield support made of i-0,03N (balance of Fe) was polished with #600 emery paper, and then degreased and washed with trichlene and acetone.

また、15cr−48−残部Njなる厚さ40μmのフ
ィラーメタルを同様にトリクレンとアセトンで脱脂洗浄
した。次いでこれらの部材とフィラーメタルを密着固定
して、2 X 10−’の真空中で1180℃で1時間
加熱した。加圧は、平均0.2 Ky /−で行なった
。その後、1050℃×2時間および620℃×2時間
の熱処理を施し、ガス冷却した。
Further, a filler metal of 15cr-48-remainder Nj having a thickness of 40 μm was similarly degreased and cleaned with trichlene and acetone. Next, these members and filler metal were closely fixed and heated at 1180° C. for 1 hour in a 2×10 −’ vacuum. Pressure was applied at an average of 0.2 Ky/-. Thereafter, heat treatment was performed at 1050°C for 2 hours and at 620°C for 2 hours, followed by gas cooling.

かくして得られた接合材は12cr銅の支持体とステラ
イトのエロージョンシールドの間に、約40μmのN1
に富む層が形成され、脆化層は見られず、また接合強度
も従来のAgろう接品の3〜lO倍に達する、lO〜3
0q/−以上の強度を有していた。
The thus obtained bonding material has approximately 40 μm of N1 between the 12 cr copper support and the stellite erosion shield.
A layer rich in silver is formed, no brittle layer is observed, and the bonding strength is 3 to 10 times that of conventional Ag soldered products.
It had a strength of 0q/- or more.

また、接合部の腐食試験を行なったところAgろうに見
られたような、水分による腐食もなく、腐食試験結果も
良好であった。
Further, when a corrosion test was conducted on the joint, there was no corrosion due to moisture, which is the case with Ag solder, and the results of the corrosion test were also good.

次いで、エロージョンシールドを拡散接合した前記支持
体を支持体と同様の12Cr鋼製のモデル翼基体に大気
中でEB溶接を行ない、エロージョンシールドを具備し
た本発明による蒸気タービン最終段モデル翼を得た。
Next, the support body with the erosion shield diffusion bonded was EB welded to a model blade base made of 12Cr steel similar to the support body in the atmosphere to obtain a steam turbine final stage model blade according to the present invention equipped with an erosion shield. .

【図面の簡単な説明】[Brief explanation of the drawing]

第り図は従来の動翼の斜視図、第2図は本発明動翼の斜
視図である。 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 第2図
FIG. 2 is a perspective view of a conventional rotor blade, and FIG. 2 is a perspective view of the rotor blade of the present invention. Agent: Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 耐キャビチーVヨンエロージョン性に優れたコバルト基
合金より成るエロージョンシールドとエロージョンシー
ルド支持体とが拡散接合されており、かつエロージョン
シールド支持体と糞基体とが溶接接合された構造を有す
ることを特徴とした蒸気タービンm動翼。
An erosion shield made of a cobalt-based alloy with excellent cavity erosion resistance and an erosion shield support are diffusion bonded, and the erosion shield support and the substrate are welded and bonded. steam turbine rotor blades.
JP5272383A 1983-03-30 1983-03-30 Moving blade of steam turbine Pending JPS59180004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5272383A JPS59180004A (en) 1983-03-30 1983-03-30 Moving blade of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5272383A JPS59180004A (en) 1983-03-30 1983-03-30 Moving blade of steam turbine

Publications (1)

Publication Number Publication Date
JPS59180004A true JPS59180004A (en) 1984-10-12

Family

ID=12922833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5272383A Pending JPS59180004A (en) 1983-03-30 1983-03-30 Moving blade of steam turbine

Country Status (1)

Country Link
JP (1) JPS59180004A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200309A (en) * 1985-03-01 1986-09-04 Mitsubishi Heavy Ind Ltd Turbine blade
WO2002101204A1 (en) * 2001-06-11 2002-12-19 Hitachi, Ltd. Turbine blade and turbine power generating equipment
EP2584149A3 (en) * 2011-10-20 2016-07-27 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade with erosion shield plate
RU181071U1 (en) * 2017-10-12 2018-07-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") WORKING BLADE FOR THE LAST STEPS OF CONDENSATION STEAM TURBINES
RU2757300C1 (en) * 2021-03-02 2021-10-13 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" (ОАО "ВТИ") Method for brazing a wear-resistant stellite pad on the leading edge of a steel rotor blade of a steam turbine (options)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200309A (en) * 1985-03-01 1986-09-04 Mitsubishi Heavy Ind Ltd Turbine blade
WO2002101204A1 (en) * 2001-06-11 2002-12-19 Hitachi, Ltd. Turbine blade and turbine power generating equipment
EP2584149A3 (en) * 2011-10-20 2016-07-27 Mitsubishi Hitachi Power Systems, Ltd. Turbine blade with erosion shield plate
RU181071U1 (en) * 2017-10-12 2018-07-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") WORKING BLADE FOR THE LAST STEPS OF CONDENSATION STEAM TURBINES
RU2757300C1 (en) * 2021-03-02 2021-10-13 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" (ОАО "ВТИ") Method for brazing a wear-resistant stellite pad on the leading edge of a steel rotor blade of a steam turbine (options)

Similar Documents

Publication Publication Date Title
US7575418B2 (en) Erosion and wear resistant protective structures for turbine components
JP4831379B2 (en) Method for applying a wear-resistant material to a turbine blade and turbine blade having the wear-resistant material
US4219592A (en) Two-way surfacing process by fusion welding
KR100474467B1 (en) Nickel Brazing Material
JP3145428B2 (en) Improved high temperature brazing alloy and its use
US20080160332A1 (en) Method of applying braze filler metal powders to substrates for surface cleaning and protection
JP2005214197A (en) Method for restoring dimension of article and preform for performing same
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
JPH11156559A (en) Welding method of hardenable nickel base alloy
JP4865206B2 (en) Fusion welding method and welded article
AL-Nafeay et al. Overview of joining and repairing techniques of ni-based superalloy for industrial gas turbine applications
JPS59180004A (en) Moving blade of steam turbine
US3067508A (en) Method of forming brazed structures
JPH10280907A (en) Steam turbine rotor blade
Ellison et al. Powder metallurgy repair of turbine components
JPS59180003A (en) Moving blade of steam turbine
JPS62113802A (en) Turbine blade
Ellison et al. Powder metallurgy repair of turbine components
US2994125A (en) Hard surface metal structure
US3147089A (en) Alloy brazing composition and method of brazing
JPH01182504A (en) Reforming method for surface of turbine blade
JPH05285675A (en) Method for repairing moving blade
YE et al. Brazing of IC10 superalloy with Ni-based brazing fillers using Hf and Zr as melting-point depressants
JPS5839228B2 (en) Composite hot tool material and its manufacturing method
JPS62167866A (en) Turbing blade