JPS59180003A - Moving blade of steam turbine - Google Patents

Moving blade of steam turbine

Info

Publication number
JPS59180003A
JPS59180003A JP5272283A JP5272283A JPS59180003A JP S59180003 A JPS59180003 A JP S59180003A JP 5272283 A JP5272283 A JP 5272283A JP 5272283 A JP5272283 A JP 5272283A JP S59180003 A JPS59180003 A JP S59180003A
Authority
JP
Japan
Prior art keywords
base
blade
diffusion bonding
steam turbine
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5272283A
Other languages
Japanese (ja)
Inventor
Masako Nakabashi
中橋 昌子
Tatsuo Yamazaki
山崎 達雄
Mitsuo Kawai
光雄 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5272283A priority Critical patent/JPS59180003A/en
Publication of JPS59180003A publication Critical patent/JPS59180003A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain a blade that is excellent in strength at the joined section and will not be formed with an embrittled layer on the blade base due to the melting, by joining a Co base alloy, which is excellent in resistance to cavitation erosion, to the forward edge of the forward end section of the blade using the diffusion bonding process. CONSTITUTION:The last stage moving blades of a steam turbine will be wasted due to cavitation erosion by high speed impingement of condensed water droplets contained in steam. To overcome this, an erosion shield (a) of a stellite alloy containing about 50% Co that is excellent in resistance to cavitation erosion is joined to a 12-Cr base steel of the blade base (b) at the forward edge of the forward end section of the blade where wastage can occur more thereby protecting the forward edge. The diffusion bonding technique is used to join the shield (a) to the vane base (b). Therefore, a vane that is excellent in strength at the joined section and will not be formed with an embrittled layer due to the melting of the vane base (b).

Description

【発明の詳細な説明】 [発明の技術分野] この発明は蒸気タービンの低圧部最終段動翼として用い
られるエロージョンシールドを具備した動翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rotor blade equipped with an erosion shield used as a low-pressure final stage rotor blade of a steam turbine.

[発明の技術的背景とその問題点] 蒸気タービンの最終段動翼は蒸気中C二含まれている凝
縮水滴の高速衝突によりキャビテーションエロージョン
損耗を生ずる。このため損耗の多い糎、先端前縁部にt
ri第1図に示したようg二、耐キャビテーションエロ
ージョン性C二優れたCoを約50%含んだ通称ステラ
イトと呼ばれている合金で形成したエロージョンシール
ド(a)を翼基体の120r基鋼(b)にAtろう付あ
るいは溶接(二より接合し保饅している。なお図中(c
)は翼埋込部である。
[Technical Background of the Invention and its Problems] The final stage rotor blades of a steam turbine suffer cavitation erosion wear due to high-speed collisions of condensed water droplets containing C2 in the steam. For this reason, there is a lot of wear and tear on the starch, and the front edge of the tip is
As shown in Fig. 1, the erosion shield (a) is made of an alloy commonly known as stellite, which contains about 50% Co and has excellent cavitation erosion resistance. (b) is At brazed or welded (two-way jointed and secured. In the figure (c)
) is the wing embedded part.

ところで、前記エロージョンシールドの接合C;おいて
、従来より行なわれているAIろう付では使用中蒸気中
1m、含剪れる水分ミニよりAIろうが腐食され接合強
度が低下し、これにともない翼の振動による接合部の応
力が増加してエロージョンシールドが剥離する。
By the way, in the above-mentioned erosion shield joining C, in the conventional AI brazing, the AI brazing is corroded by the water contained in the steam at 1 m during use, and the joint strength decreases. The stress at the joint due to vibration increases and the erosion shield peels off.

また、TIG溶接やBB浩接などを行なった場合C二は
Atろう付l二比べ接合強度は高いが、エロージョンシ
ールドのCo基合金と翼基体の120r基銅との溶融接
合部に脆化層が出来、使用中興の振動によりこの接合部
の脆化層から亀裂が発生しエロージョンシールドが剥離
するなどの不都合がある。
In addition, when TIG welding or BB wide welding is performed, the joint strength of C2 is higher than that of At brazing L2, but there is a brittle layer at the molten joint between the Co-based alloy of the erosion shield and the 120R-based copper of the wing base. During use, vibrations may cause cracks to form in the brittle layer of this joint, causing the erosion shield to peel off.

特にFeを主成分とする翼基体C,コバルトを主成分と
するエロージョンシールドを設けた場合、接合部C二お
いてFθイオンとCOイオンが相互に電極反応を生じ、
その結果翼全体が侵食され亀裂の進展をさらに促進する
欠点がある。
In particular, when a wing base C containing Fe as the main component and an erosion shield containing Co as the main component are provided, Fθ ions and CO ions mutually cause an electrode reaction at the joint C2.
As a result, the entire blade is eroded, further accelerating the growth of cracks.

[本発明の目的] 本発明は上記点に鑑みてなされたもので、少なくとも翼
先端前縁一部C二耐キャビテーションエロージョン性に
優れたコバルト基合金を拡散接合して成るエロージョン
シールドを有することを特徴とした蒸気タービン最終段
動翼を提供するものである。
[Object of the present invention] The present invention has been made in view of the above points, and includes an erosion shield formed by diffusion bonding a cobalt-based alloy having excellent cavitation erosion resistance at least in a portion of the leading edge of the blade tip. This provides a distinctive steam turbine final stage rotor blade.

[本発明の概要] 本発明者らは、前記エロージョンシールドを有する動s
1一ついて、鋭意研究を重ねた結果耐キャビテーション
エロージヨン性に優れたcO基合金を翼基体に拡散接合
法を用いて接合するととC二より、接合部強度の優れた
、また翼基体fユ溶融S二よる脆化層の生成しない、良
好な翼の得られることを見いだし本発明を発明するに至
った。特にFe基合金の翼全体C二対してけFe、CO
基以外の例えばN1基のフィラーメタルを用いて拡散接
合を行なうこと1こより、翼基体の電極反応C二よる侵
食を抑制する有用な真が得られる。
[Summary of the present invention] The present inventors have developed a dynamic system having the above-mentioned erosion shield.
After intensive research, we found that if a cO-based alloy with excellent cavitation erosion resistance is bonded to the wing base using the diffusion bonding method, the strength of the joint will be superior to C2, and the wing base f unit will be bonded. It was discovered that a good blade without the formation of a brittle layer due to molten S2 could be obtained, and the present invention was invented. In particular, for the entire blade C2 of Fe-based alloy, Fe, CO
By performing diffusion bonding using a filler metal other than the N1 group, for example, a useful method for suppressing erosion of the wing base due to the electrode reaction C2 can be obtained.

拡散接合法は母材の融点よりも低い温度に、接合部と加
熱して、おもに元素の拡散現象を利用して金属を接合し
、母材なみの強Kを持つ接合部を得る方法である。拡散
接合法は大きく分けて同相拡散接合法と液相拡散接合法
の2櫛類がある。前者は、母材どうじを直接あるいは薄
い金属のフィラーメタルを母材間に介在させ、その後接
合部を母材の融点以下の温度に加熱加圧し、接合部母材
表面あるいは金属フィラーメタル表面をクリープ変形さ
せ母材どうじを密着させたのち、さらに拡散熱処理を施
して接合部を均質化させる方法である0 後者は、TLP法(Trarsient  LifI−
uid PhaBeBondlnp ) l AD法(
Actlv、2tea Diffusion BOnd
inp )などとも称せられる方法で、従来、おもに行
なわれている方法は次のとうりである。
Diffusion bonding is a method of joining metals by heating the joint to a temperature lower than the melting point of the base material, mainly utilizing the diffusion phenomenon of elements, and obtaining a joint with a strong K equivalent to that of the base material. . Diffusion bonding methods can be roughly divided into two types: in-phase diffusion bonding and liquid-phase diffusion bonding. In the former method, the base metals are connected directly or a thin filler metal is interposed between the base metals, and then the joint is heated and pressurized to a temperature below the melting point of the base metal, causing the surface of the base metal or filler metal at the joint to creep. This is a method in which the base metals are deformed and brought into close contact with each other, and then a diffusion heat treatment is applied to homogenize the joint.
uid PhaBeBondlnp ) l AD method (
Actlv, 2tea Diffusion BOnd
This method is also called ``inp'', and the method that has been mainly used in the past is as follows.

まず、液相拡散接合用フィラーメタルとして、代表的に
は、 Niを主成分とする合金c、B、p、stなどの
融点低下元素を添加した数十μm厚さのフィラーメタル
を接合部C二介在させる。これらのフィラーメタルは、
母材(たとえばN1基合金、 Fe基合金など)の融点
より数十度低い温度で溶融し、したがって、接合部をフ
ィラーメタルの融点より高く、かつ母材の融点より低い
温度に加熱することl二より、該フィラーメタルを溶融
して母材をぬらし、まずはじめC二ろう材の効果を得る
。さらシ二長時間、該温度を保持してB、 Si、 P
などを母材に拡散せしめる。そのとき、フィラーメタル
は等温凝固現象を起こし、強力な接合部を形成する。
First, as a filler metal for liquid phase diffusion bonding, a filler metal having a thickness of several tens of micrometers is typically used to add melting point lowering elements such as Ni-based alloy c, B, p, and st. Two intervening. These filler metals are
It melts at a temperature several tens of degrees lower than the melting point of the base metal (for example, N1-based alloy, Fe-based alloy, etc.), and therefore the joint is heated to a temperature higher than the melting point of the filler metal and lower than the melting point of the base metal. From step 2, the filler metal is melted and wetted onto the base metal to first obtain the effect of the C2 filler metal. B, Si, P
etc. are diffused into the base material. At that time, the filler metal undergoes an isothermal solidification phenomenon and forms a strong joint.

拡散接合法の特徴は、■母材の溶融による脆化層を生じ
ない。■接合部強度に優れる。■圧接などと比較して、
加圧力が小さくて良いため、複雑形状部材の接合が容易
である。など多数挙けられる。特に、液相拡散接合法は
、固相拡散接合法と比較して、接合時Cニフイラーメタ
ルが溶融して接合部の微細な間隙を満たすため、原理的
i二加圧の必要がなく、また、接合表面仕上げ精度が緩
和できるため、複雑形状部材の接合に対してより有効で
ある。
The characteristics of the diffusion bonding method are: (1) No brittle layer is created due to melting of the base material. ■Excellent joint strength. ■Compared to pressure welding, etc.
Since only a small pressing force is required, members with complex shapes can be easily joined. There are many others. In particular, in the liquid phase diffusion bonding method, compared to the solid phase diffusion bonding method, the C filler metal melts during bonding and fills the minute gaps in the bonded area, so there is no need for pressurization in principle. In addition, since the joining surface finish accuracy can be relaxed, it is more effective for joining complex-shaped members.

さて、次C二本発明のエロージョンシールドを有する蒸
気タービン最終段動翼について説明する。
Next, a steam turbine final stage rotor blade having an erosion shield according to the present invention will be described.

捷ず、所望の翼基材とこれに接合する耐キャビテーショ
ンエロージョン性f二優れたCo基合金部材の接合面を
研胸したのち、フィラーメタルと共1−説脂洗浄する。
The joint surfaces of the desired wing base material and the Co-based alloy member with excellent cavitation erosion resistance f2 are polished without being separated, and then washed together with the filler metal using lubricant.

次いで前記各材料を、密着した状態で固定する。フィラ
ーメタルの供給法として。
Next, each of the materials is fixed in close contact with each other. As a filler metal supply method.

通常は、数十μm厚この非晶質薄板あるいは合金粉末を
有機バインダーなどでシート状に固めたものなどが用い
られるが特別に清浄度が要求される、あるいは接合面形
状が複雑で前記フィラーメタル薄板の固定が困難な場合
などは、たとえば蒸着法(特願昭56−87429 )
 、 Lpc法などを用いて供給する方法もある。
Usually, this amorphous thin plate or alloy powder hardened into a sheet shape with an organic binder or the like is used, but there are cases where special cleanliness is required or the shape of the joint surface is complicated, and the filler metal is used. If it is difficult to fix a thin plate, for example, vapor deposition method (Japanese Patent Application No. 87429/1989) may be used.
There is also a method of supplying using the LPC method.

また、フィラーメタルの棹類については、例えば現在多
用されているs 120r m ’二対しては、Fe。
In addition, for filler metal rods, for example, Fe is used for the currently widely used s 120r m '2.

COを主成分とする金属以外の例えば、Niを主成分と
するフィラーメタルを用いることが有用である。すなわ
ち、ll1eあるいはcoを主成分とするフィラーメタ
ルを用いて拡散接合を行なった場合、Fe基翼基体ある
いはOO基エロージョンシールド材のいずれかが、 F
eあるいはaO基フイラーメタルと隣接するため、翼の
使用時(−5FeイオンとO。
For example, it is useful to use filler metals other than metals mainly composed of CO, such as filler metals mainly composed of Ni. That is, when diffusion bonding is performed using a filler metal containing ll1e or co as a main component, either the Fe-based wing base or the OO-based erosion shield material becomes F.
Since it is adjacent to the e- or aO-based filler metal, when the blade is used (-5Fe ions and O.

イオンの電極反応が生じ、F’e基翼基体基体食される
不都合が生じる。しかしながら、例えば、Niを主成分
とするフィラーメタルを用いて拡散接合を行なうことに
よりFθ基基糸基体CO基エロージョンシールドの中間
(ユNil二富む層が形成され、この1−がバリヤーの
役割を果たし、電柚反応を抑制する。ここで用いるフィ
ラーメタルは、翼基体とエロージョンシールドとのバリ
ヤーと々りうる金属でかつ、拡散接合に適するものであ
れば棹類な問わない。
An electrode reaction of ions occurs, resulting in the inconvenience that the F'e base material is eaten away. However, for example, by performing diffusion bonding using a filler metal containing Ni as a main component, a Ni-rich layer is formed between the Fθ-based base thread base and the CO-based erosion shield, and this 1- layer plays the role of a barrier. The filler metal used here can be any metal as long as it can act as a barrier between the wing base and the erosion shield and is suitable for diffusion bonding.

次いで、前記密着固定された部材を不活性雰囲気中で加
熱して保持する。圧力は0101〜50 Kt/jで良
い。剪た雰囲気は真空、不活性ガスなどの酸化防止雰囲
気であればよい。温度は、フィラーメタルの種類、およ
び拡散接合の種類(固相あるいは液相拡散接合)「二よ
り選択されるが、通常は、600°〜1300℃位の範
囲である。保持時間も同様に選択されるが通常は1分〜
100時間程度である。
Next, the tightly fixed members are heated and held in an inert atmosphere. The pressure may be 0101 to 50 Kt/j. The pruning atmosphere may be an oxidation-preventing atmosphere such as vacuum or inert gas. The temperature is selected from two types, depending on the type of filler metal and the type of diffusion bonding (solid phase or liquid phase diffusion bonding), but is usually in the range of 600° to 1300°C.The holding time is also selected in the same way. However, it usually takes 1 minute or more.
It takes about 100 hours.

なお、この接合時、接合部で接合が完了した時点で、圧
力を除血して一体化した構造物を、別の不活性雰囲気中
に移して再加熱し拡散熱処理を行なってもよい。
Note that during this bonding, when the bonding is completed at the bonded portion, the pressure may be removed and the integrated structure may be transferred to another inert atmosphere and reheated to perform diffusion heat treatment.

以上のようにしてCO基エロージョンシールトヲ有する
、本発明による。蒸気タービン最゛終段動翼を得ること
が出来る。
The present invention has a CO-based erosion shield as described above. A steam turbine final stage rotor blade can be obtained.

甘た、本発明1′″−係る蒸気タービン最終段動洲の基
体としては、前記12 Or基鋼の他、Ti合金なども
含まれることはむろんである。
Of course, the base material of the final stage driving shaft of the steam turbine according to the present invention 1'' may include, in addition to the above-mentioned 12 Or base steel, a Ti alloy.

[発明の実施例] 単純形状の試験片を用いて本発明の有効性11ついて検
討を行なった。
[Example of the Invention] The effectiveness of the present invention 11 was investigated using a simple-shaped test piece.

13φで長さが50藷の120r fl14 (11,
30r −2,5N1−o、3v  0.6Mo −0
,13c −1,6Mn −0,2Si−0,03N−
残部Fe −)の試験片および13φで長さ5朋のCO
基合金(通称ステライト: 5.ONi −28,00
r −20、Ow −0,90a−残部co −)の試
験片を用意し両者の接合面を#600エメリー紙1−て
研磨し、その後トリクレンおよびアセトンにて脱脂洗浄
し念。
120r fl14 (11,
30r -2,5N1-o, 3v 0.6Mo -0
,13c -1,6Mn -0,2Si-0,03N-
A test piece with the remainder Fe -) and a CO with a diameter of 13 mm and a length of 5 mm.
Base alloy (commonly known as stellite: 5.ONi -28,00
A test piece of r-20, Ow-0,90a-remainder co-) was prepared, and the joint surfaces of both were polished with #600 emery paper, and then thoroughly degreased and cleaned with trichloride and acetone.

また、150r  4B  ’l’i部N1なる組成で
、厚さ40μmのフィラーメタルを、同じくトリクレン
およびアセトンにて脱脂洗浄し友。次いで、これらの試
験片とフィラーメタルを密着固定しs  2XIOTO
rrの真空ホットプレス中に設置した。さらC二、接合
部を0.1V4/−に加圧し、1180℃で1時間保持
した。
Also, a 40 μm thick filler metal with a composition of 150r 4B 'l'i part N1 was degreased and cleaned using trichlene and acetone. Next, these test pieces and filler metal were closely fixed and s2XIOTO
rr vacuum hot press. Further, in C2, the joint portion was pressurized to 0.1 V4/- and held at 1180° C. for 1 hour.

その後1050℃×2時間および620°C,x 2時
間の熱処理を施した後ガス冷却を行なった。
Thereafter, heat treatment was performed at 1050°C for 2 hours and at 620°C for 2 hours, followed by gas cooling.

かくして得られた接合材は512or鋼試験片とステラ
イト試験片との間に、約40μmのNiに富む層が形成
され、試験片に脆化層は見られなかった。
In the thus obtained bonding material, a Ni-rich layer of approximately 40 μm was formed between the 512or steel test piece and the Stellite test piece, and no brittle layer was observed in the test piece.

また、接合強度は、常温で10〜30Kf/−以上であ
り、これは従来のApろうの強度の3〜10倍にも達す
る。
Further, the bonding strength is 10 to 30 Kf/- or more at room temperature, which is 3 to 10 times the strength of conventional Ap solder.

さらに、接合部の腐食試験を行なったところ、AJろう
に見られるような、水分による腐食はほとんどなく、腐
食試験結果も良好であった。
Furthermore, when a corrosion test was conducted on the joint, there was almost no corrosion due to moisture, as seen in AJ brazing, and the corrosion test results were good.

るO 第1図RuO Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)少すくとも翼先端前縁部C二耐キャビテーション
エロージョン性C二優れたCO基合金を拡散接合して成
るエロージョンシールドを有することを特徴とした蒸気
タービン令費物動翼
(1) A steam turbine rotor blade characterized by having at least an erosion shield formed by diffusion bonding a CO-based alloy with excellent cavitation erosion resistance at the leading edge of the blade tip.
JP5272283A 1983-03-30 1983-03-30 Moving blade of steam turbine Pending JPS59180003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5272283A JPS59180003A (en) 1983-03-30 1983-03-30 Moving blade of steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5272283A JPS59180003A (en) 1983-03-30 1983-03-30 Moving blade of steam turbine

Publications (1)

Publication Number Publication Date
JPS59180003A true JPS59180003A (en) 1984-10-12

Family

ID=12922806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5272283A Pending JPS59180003A (en) 1983-03-30 1983-03-30 Moving blade of steam turbine

Country Status (1)

Country Link
JP (1) JPS59180003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883219A (en) * 1988-09-01 1989-11-28 Anderson Jeffrey J Manufacture of ink jet print heads by diffusion bonding and brazing
US4900394A (en) * 1985-08-22 1990-02-13 Inco Alloys International, Inc. Process for producing single crystals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900394A (en) * 1985-08-22 1990-02-13 Inco Alloys International, Inc. Process for producing single crystals
US4883219A (en) * 1988-09-01 1989-11-28 Anderson Jeffrey J Manufacture of ink jet print heads by diffusion bonding and brazing

Similar Documents

Publication Publication Date Title
KR100474467B1 (en) Nickel Brazing Material
JP5734272B2 (en) Double brazing member comprising at least one first layer of Ni-based brazing and at least one second layer containing an active element, method of manufacturing the double brazing member and use of the double brazing member
JP3145428B2 (en) Improved high temperature brazing alloy and its use
US3197858A (en) Process for diffusion-bonding
US5476723A (en) Coated superalloy component
JPS59209498A (en) Method of combining metallic part
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
WO2008082825A2 (en) A method of applying braze filler metal powders to substrates for surface cleaning and protection
RU2572948C2 (en) Composite powder for combination or surfacing by diffusion brazing of components from superalloys
EP0222004B1 (en) Copper-zinc-manganese-nickel alloys
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
JPS59180004A (en) Moving blade of steam turbine
JPS59180003A (en) Moving blade of steam turbine
JPS58188585A (en) Joining method of al material and dissimilar metallic material
US6720086B1 (en) Liquid interface diffusion bonding of nickel-based superalloys
JPS6090879A (en) Ceramic and metal bonding method
JPS62113802A (en) Turbine blade
US3147089A (en) Alloy brazing composition and method of brazing
CN115194275B (en) Method for brazing dissimilar metals of titanium alloy and nickel-based superalloy
JPH0147279B2 (en)
CN115846788A (en) Low-temperature brazing method for NiTi shape memory alloy and 316L stainless steel
JPS62167866A (en) Turbing blade
JPS62165506A (en) Turbine blade
JPH07498B2 (en) Diamond joining method for cutting tools
JPS63302102A (en) Manufacture of turbine blade