JPS63302102A - Manufacture of turbine blade - Google Patents

Manufacture of turbine blade

Info

Publication number
JPS63302102A
JPS63302102A JP13814687A JP13814687A JPS63302102A JP S63302102 A JPS63302102 A JP S63302102A JP 13814687 A JP13814687 A JP 13814687A JP 13814687 A JP13814687 A JP 13814687A JP S63302102 A JPS63302102 A JP S63302102A
Authority
JP
Japan
Prior art keywords
junction
leaf
turbine blade
base
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13814687A
Other languages
Japanese (ja)
Inventor
Satoru Asai
知 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13814687A priority Critical patent/JPS63302102A/en
Publication of JPS63302102A publication Critical patent/JPS63302102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To strengthen the installation of a corrosion preventive leaf by fixing the corrosion preventive leaf on the junction leaf which is made of a titanium alloy while copying the form of a blade leading edge, by means of diffused junction in such a way that the back of a junction leaf base is welded by means of fusion onto the leading edge of a turbine blade made of a titanium alloy. CONSTITUTION:By the use of high pressure isotropic pressing process, a corrosion preventive leaf 11 made of, for instance, a Co base alloy consisting of Co-3%Cr-4%W-1.2%C is fixed by means of diffused junction onto a junction leaf 12 which is made of a titanium alloy so as to be extended to an appropriate length while copying the form of a leading edge, and is combined with bent-up sections 12b rising up from a base section 12a at both ends thereof. Then, the base 12a of the aforesaid junction leaf 12 is monolithically fixed on a turbine blade 13 consisting of, for instance, Ti-6%Al-4%V by means of electron beam welding. In this case, care should be taken so as to maintain a gap greater than at least, 2mm between a welded section 14 and the junction of the corrosion preventive leaf 11, thereby preventing the junction thereof from being melted by the thermal effect of electron beam welding.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はチタン合金からなるタービン翼の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a turbine blade made of a titanium alloy.

(従来の技術) 蒸気タービンの最終段落の翼においては、蒸気中のドレ
ン(水滴)の衝突により、翼の前縁が浸食され、翼形状
が変化することによりタービン性能が低下することが知
られている。そこで、従来の12Ct41などのフェラ
イト系ステンレス鋼からなるタービン翼では、CO基会
合金製浸食防止片を溶融溶接、あるいはろう付にて取り
付け、局部的に防食機能を高めることが行われ”Cいる
(Prior Art) It is known that the leading edge of the blade in the final stage of a steam turbine is eroded due to collision of condensate (water droplets) in the steam, changing the blade shape and reducing turbine performance. ing. Therefore, in conventional turbine blades made of ferritic stainless steel such as 12Ct41, corrosion prevention pieces made of CO-based alloy are attached by melt welding or brazing to locally enhance the corrosion prevention function. .

第6図にこのような浸食防止片による翼の前縁を保護す
る場合の典型的なものを示す。翼1の前縁は適当な長さ
削り取られ、ここに浸食防止片2の裏面が当接され、両
者が溶融溶接により一体化されている。なお、符号3は
溶接部を示している。
FIG. 6 shows a typical case where the leading edge of a wing is protected by such an erosion prevention piece. The leading edge of the blade 1 is shaved off to an appropriate length, the back surface of the erosion prevention piece 2 is brought into contact with this, and the two are integrated by fusion welding. In addition, the code|symbol 3 has shown the welding part.

(発明が解決しようとする問題点) 近年、蒸気タービンの性能向上を目的として軽  −量
かつ比強度の高いチタン合金をタービン翼として使用す
る研究が盛んであり、実用化されるのも間近になりつつ
ある。チタン合金は耐食性には優れるものの、衝撃を伴
う浸食に対しては劣るという性質がある。
(Problem to be solved by the invention) In recent years, there has been active research into using titanium alloys, which are lightweight and have high specific strength, as turbine blades with the aim of improving the performance of steam turbines, and practical application is imminent. It is becoming. Although titanium alloys have excellent corrosion resistance, they have a property that they are inferior to erosion accompanied by impact.

一方、チタン合金は脆い金属間化合物を形成しやすい性
質があり、Co基合金との溶融溶接が困難である。この
ため浸食防止片としては、チタン合金との溶融溶接が可
能で、かつ硬度の高いβ型のチタン合金が用いられてい
るが、しかし、このβ型のチタン合金の耐食性は、 C
o基合金に比べ1/3程度で浸食防止片としては充分と
はいえない。
On the other hand, titanium alloys tend to form brittle intermetallic compounds, making fusion welding with Co-based alloys difficult. For this reason, β-type titanium alloys, which can be melt-welded with titanium alloys and have high hardness, are used as corrosion prevention pieces. However, the corrosion resistance of this β-type titanium alloy is
It is about 1/3 compared to O-based alloys, which is not sufficient as an erosion prevention piece.

また、チタン合金に高い防食機能を与える方法として耐
食性の優れた金属炭化物や金属窒化物を高エネルギービ
ームにて照射し融合一体化する方法がある。しかしなが
ら、これらの材料は高硬度材料であるため皮膜厚さを大
きくすると、溶融時の残留応力により割れが生じ、皮膜
厚さを増すことができない、したがって、長期間使用し
た場合に浸食が進んで翼母材に欠損が生じ、効率の低下
を免れなくなる心配がある。
In addition, as a method of imparting a high anticorrosion function to titanium alloys, there is a method of irradiating metal carbides and metal nitrides with excellent corrosion resistance with a high-energy beam and fusing them together. However, since these materials are highly hard materials, if the film thickness is increased, cracks will occur due to residual stress during melting, making it impossible to increase the film thickness. There is a concern that damage may occur in the blade base material, resulting in a decrease in efficiency.

そこで、本発明の目的は上記のような従来技術の問題を
解消し、耐食性の優れた材料をチタン合金製の翼母材に
一体的に結合す゛ることのできるタービン翼の製造方法
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a turbine blade, which solves the problems of the prior art as described above and allows a material with excellent corrosion resistance to be integrally bonded to a titanium alloy blade base material. It is in.

【発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明によるタービン翼の製造方法はチタン合金材料を
用いて翼前縁に倣って適当な長さに延ばされ、かつ両端
に基部から立ち上がる折り曲げ部を備えた接合片を形成
し、次いでこの接合片に対し基部と内縁が、また折曲げ
部と両側縁がそれぞれ接すると共に、外縁が外に向かっ
て開放されるように形成された浸食防止片を拡散接合に
より固着し、さらに接合片の基部裏面をチタン合金製の
タービン翼の前轍に溶融溶接して浸食防止片とタービン
翼とを一体的に接合するようにしたことを特徴とするも
のである。
(Means for Solving the Problems) A method for manufacturing a turbine blade according to the present invention uses a titanium alloy material, is extended to an appropriate length following the leading edge of the blade, and has bent portions rising from the base at both ends. Next, diffusion bonding is performed on the erosion prevention piece, which is formed so that the base and inner edge, the bent part and both side edges are in contact with each other, and the outer edge is opened outward. The erosion prevention piece and the turbine blade are integrally joined by melt welding the back surface of the base of the joint piece to the front rut of the titanium alloy turbine blade.

(作 用) 本発明によれば、Co基合金、金属炭化物、金属窒化物
などの浸食性価れた材料を用いて製作された浸食防止片
をチタン合金からなる接合片に同相状態にて拡散接合し
、その後浸食防止片としてタービン翼に一体化するよう
にしているので、拡散接合時の処理温度は、チタン合金
の変態温度にとられれることなく施工することができ、
浸食防止片とチタン合金との接合は容易でかつ、接合温
度が高くとれるため、密着性を高めることが可能である
(Function) According to the present invention, an erosion prevention piece manufactured using a highly erodible material such as a Co-based alloy, a metal carbide, or a metal nitride is diffused in the same phase into a joining piece made of a titanium alloy. Since it is bonded and then integrated into the turbine blade as an erosion prevention piece, the processing temperature during diffusion bonding can be performed without being affected by the transformation temperature of the titanium alloy.
Since the erosion prevention piece and the titanium alloy can be easily joined together and the joining temperature can be kept high, it is possible to improve the adhesion.

また、処理温度を高くできることから、上記の耐食性の
優れた高融点材料を付与することが可能である。
Furthermore, since the processing temperature can be increased, it is possible to provide the above-mentioned high melting point material with excellent corrosion resistance.

また、直接浸食防止片を翼母材に接合しないため、ター
ビン翼の強度構成部材である植込部に熱的な悪影響を及
ぼすことがない。また、接散接合時、浸食防止片の大き
さが比較的小さいため、加圧飼御が容易で、温度分布も
均一に保つことができ、熱間等方圧加圧(HIP)を用
いた。拡散接合も行える利点がある。
Furthermore, since the erosion prevention piece is not directly bonded to the blade base material, there is no adverse thermal effect on the embedded part, which is a strength component of the turbine blade. In addition, since the size of the erosion prevention piece is relatively small during cross-bonding, pressure control is easy and temperature distribution can be maintained uniformly. . It has the advantage that diffusion bonding can also be performed.

そ−、この浸食防止片を翼母材に取り付ける際には接合
片がチタン合金製のためチタン合金同士の溶接となり、
通常用いられる溶融溶接、たとえば電子ビーム溶接を適
用することができる。この際接合片が接散接合時の加熱
により変質してぃたとしでも、溶接前に浸食防止片のみ
を熱処理にて回復させることが可能であり、翼母材との
溶接性に問題を生じることはない。
When attaching this erosion prevention piece to the blade base material, the joining pieces are made of titanium alloy, so titanium alloys must be welded together.
Commonly used fusion welding, such as electron beam welding, can be applied. At this time, even if the joint pieces are altered due to heating during dissipative welding, it is possible to restore only the erosion prevention pieces by heat treatment before welding, which causes problems in weldability with the blade base material. Never.

(第1実施例) 第1図はCo−30%Cr−4%V−1,2%CのCo
基合金により形成された浸食防止片11をTi−6%A
Q−4%Vのチタン合金からなる接合片12へ高温等方
圧加圧処理を用いて拡散接合したものを示している。な
お符号12aは基部、符号12bは折り曲げ部を示して
いる。この拡散接合時の処理温度は900℃、保持時間
は2,5Hr、加圧力は100MPa、(アルゴンガス
を用いた圧力)である。拡散接合部の引張強度について
は12Cr製のタービン翼において、Co基合金をろう
付にて取り付けた場合に比べ、充分高い値である。
(First Example) Figure 1 shows Co-30%Cr-4%V-1,2%C Co
The corrosion prevention piece 11 formed of the base alloy is Ti-6%A.
The figure shows a bonded piece 12 made of Q-4%V titanium alloy, which is diffusion-bonded using high-temperature isostatic pressure treatment. Note that the reference numeral 12a indicates a base and the reference numeral 12b indicates a bent portion. The processing temperature during this diffusion bonding was 900° C., the holding time was 2.5 hours, and the applied pressure was 100 MPa (pressure using argon gas). The tensile strength of the diffusion bonded portion is sufficiently higher than that of a 12Cr turbine blade in which a Co-based alloy is attached by brazing.

第2図は、この接合片12の基部12aをTi−6%A
Q−4%Vからなるタービン翼13に電子ビーム溶接に
て固着し、一体化させた状態を示している。
In FIG. 2, the base 12a of this joint piece 12 is made of Ti-6%A.
It is shown fixed to and integrated with a turbine blade 13 made of Q-4%V by electron beam welding.

この場合、溶接部は浸食防+h片11の接合部との間に
少なくとも2m以上間隔を保つよう配慮され、電子ビー
ム溶接の熱影響により、接合部が溶融しないようにして
いる。なお、符号I4は溶接部を示している。
In this case, care is taken to maintain a distance of at least 2 m or more between the welded part and the joined part of the erosion prevention +h piece 11, so that the joined part does not melt due to the thermal influence of electron beam welding. In addition, the code|symbol I4 has shown the welding part.

なお、第3図は浸食防止片11を一体結合したタービン
翼13の全体を示している。
Note that FIG. 3 shows the entire turbine blade 13 to which the erosion prevention piece 11 is integrally connected.

(第2実施例) 第4図は防食材料としてTiCの粉末材15を用い、こ
れをTi−6%AQ−4%Vからなる接合片16上に載
せて炭素鋼からなる容器17に包み、前記実施例同様高
温等方圧加圧処理を用いて焼結し、拡散接合される浸食
防止片18の構成を示している。
(Second Example) In FIG. 4, a TiC powder material 15 is used as an anticorrosive material, placed on a joint piece 16 made of Ti-6%AQ-4%V, and wrapped in a container 17 made of carbon steel. This figure shows the structure of an erosion prevention piece 18 that is sintered using high-temperature isostatic pressure treatment and diffusion bonded as in the previous embodiment.

すなわち、焼結されて容器17内で接合片16と一体化
された浸食防止片18がその後容器17を削ることによ
り取り出され、さらに翼前縁に倣つ形状に仕上げられて
後、第5図に示されるように電子ビーム溶接により溶融
されてタービン翼I3と一体化されるものである。なお
、符号19は溶接部を示している。
That is, the erosion prevention piece 18, which has been sintered and integrated with the joint piece 16 inside the container 17, is then taken out by scraping the container 17, and is finished into a shape that follows the leading edge of the blade, as shown in FIG. As shown in the figure, it is melted by electron beam welding and integrated with the turbine blade I3. In addition, the code|symbol 19 has shown the welding part.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明はチタン合金材料を用いて翼
前縁に倣って適当な長さに延ばされ、かつ両端に基部か
ら立ち上がる折り曲げ部を備え接合片を形成し、次いで
この接合片に対し基部と内縁が、また折り曲げと両側縁
がそれぞれ接すると共に、外縁が外に向って開放される
ように形成された浸食防止片を拡散接合により固着し、
さらに接合片の基部裏面をチタン合金製のタービン翼の
前縁に溶融溶接して浸食防止片とタービン翼とを一体的
に結合するようにしているので、たとえばGo基合金か
らなる浸食防止片をチタン合金製のタービン翼に所望の
取付強度を保持して取付けることができる。
As explained above, the present invention uses a titanium alloy material to form a joint piece that is extended to an appropriate length following the leading edge of the blade and has bent portions rising from the base at both ends, and then this joint piece is On the other hand, an erosion prevention piece formed such that the base and the inner edge are in contact with each other, the bent side and both side edges are in contact with each other, and the outer edge is opened outward is fixed by diffusion bonding,
Furthermore, the back surface of the base of the joining piece is melt-welded to the leading edge of the titanium alloy turbine blade to integrally connect the erosion prevention piece and the turbine blade. It can be attached to a titanium alloy turbine blade while maintaining the desired attachment strength.

したがって1本発明によれば、チタン合金からなるター
ビン翼の前縁における浸食事故が防止されるという優れ
た効果を奏する。
Therefore, according to the present invention, an excellent effect is achieved in that erosion accidents at the leading edge of a turbine blade made of a titanium alloy are prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る浸食防止片の一実施例を示す斜視
図、第2図はタービン翼の前縁に本発明による浸食防止
片を結合した状態を示す斜視図。 第3図はタービン翼の全体を示す構成図、第4図および
第5図は他の実施例を示す斜視図、第6図は従来接待に
よる浸食防止片を前縁に備えたタービン翼の一例を示す
斜視図である。 11、18・・・浸食防止片 12、16・・・接合片 13・・・タービン翼 15・・・粉末材 17・・・容器 代理人 弁理士  則 近 憲 佑 同     第子丸   健 /′26 第1図 第2図 第3図 第4図 第5図
FIG. 1 is a perspective view showing one embodiment of the erosion prevention piece according to the present invention, and FIG. 2 is a perspective view showing a state in which the erosion prevention piece according to the invention is coupled to the leading edge of a turbine blade. FIG. 3 is a configuration diagram showing the entire turbine blade, FIGS. 4 and 5 are perspective views showing other embodiments, and FIG. 6 is an example of a turbine blade equipped with a conventional erosion prevention piece on the leading edge. FIG. 11, 18...Erosion prevention pieces 12, 16...Joining pieces 13...Turbine blades 15...Powder material 17...Container agent Patent attorney Noriyuki Chika Yudo Ken Daishimaru/'26 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  チタン合金材料を用いて翼前縁に倣って適当な長さに
延ばされ、かつ両端に基部から立ち上がる折り曲げ部を
備えた接合片を形成し、次いでこの接合片に対し前記基
部と内縁が、また前記折り曲げ部と両側縁がそれぞれ接
すると共に、外縁が外に向かって開放されるように形成
された浸食防止片を拡散接合により固着し、さらに前記
接合片の基部裏面をチタン合金製のタービン翼の前縁に
溶融溶接して該浸食防止片とタービン翼とを一体的に接
合するようにしたことを特徴とするタービン翼の製造方
法。
A titanium alloy material is used to form a joint piece that is extended to an appropriate length following the leading edge of the wing and has bent portions rising from the base at both ends, and then the base and inner edge of the joint piece are formed. Further, an erosion prevention piece formed such that the bent portion and both side edges are in contact with each other and the outer edge is opened outward is fixed by diffusion bonding, and the back surface of the base of the bonded piece is attached to a titanium alloy turbine blade. A method for manufacturing a turbine blade, characterized in that the erosion prevention piece and the turbine blade are integrally joined by melt welding to the leading edge of the blade.
JP13814687A 1987-06-03 1987-06-03 Manufacture of turbine blade Pending JPS63302102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13814687A JPS63302102A (en) 1987-06-03 1987-06-03 Manufacture of turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13814687A JPS63302102A (en) 1987-06-03 1987-06-03 Manufacture of turbine blade

Publications (1)

Publication Number Publication Date
JPS63302102A true JPS63302102A (en) 1988-12-09

Family

ID=15215082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13814687A Pending JPS63302102A (en) 1987-06-03 1987-06-03 Manufacture of turbine blade

Country Status (1)

Country Link
JP (1) JPS63302102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010066A1 (en) * 1995-09-13 1997-03-20 Kabushiki Kaisha Toshiba Method for manufacturing titanium alloy turbine blades and titanium alloy turbine blades

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010066A1 (en) * 1995-09-13 1997-03-20 Kabushiki Kaisha Toshiba Method for manufacturing titanium alloy turbine blades and titanium alloy turbine blades
US6127044A (en) * 1995-09-13 2000-10-03 Kabushiki Kaisha Toshiba Method for producing titanium alloy turbine blades and titanium alloy turbine blades

Similar Documents

Publication Publication Date Title
TW412454B (en) Process of producing a component consisting of a gamma-titanium aluminide body jointed to a steel body
US5363554A (en) Titanium compressor blade having a wear-resistant portion
JP2006124830A (en) Erosion and wear resistant protective structure for turbine component
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
JPS5847278B2 (en) Out of the box
JPS63302102A (en) Manufacture of turbine blade
JPS6221465A (en) Double layer padding method to aluminum base metal
JP3132602B2 (en) Manufacturing method of friction welding valve
JPH0523920A (en) Junction of corrosion protective piece of turbine rotor blade
JPS59180004A (en) Moving blade of steam turbine
JP3534633B2 (en) Joint member and turbine member
JPH03271352A (en) Method for bonding ti-alloy turbine blade and ti alloy
JP4538878B2 (en) Joining method between steel and titanium
JPH0523871A (en) Joined body and joining method of titanium or titanium alloy and gold alloy
JPS59180003A (en) Moving blade of steam turbine
JP3342329B2 (en) How to join dissimilar materials
JPS5870985A (en) Joining method for different metals
JPH01182504A (en) Reforming method for surface of turbine blade
JP3812973B2 (en) Airtight joint
JPH0976079A (en) Method for joining low alloy steel shaft or steel shaft with rotary body made of titanium aluminide
JPH01182505A (en) Manufacture of turbine blade
JPS5829196B2 (en) Method for joining anti-corrosion pieces on turbine blades
JP2883055B2 (en) Insertion bonding method between hard alloy and cast iron material and heat treatment method thereof
JPS62165512A (en) Turbine blade
JPS62165506A (en) Turbine blade