JPS6150331A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6150331A
JPS6150331A JP17194584A JP17194584A JPS6150331A JP S6150331 A JPS6150331 A JP S6150331A JP 17194584 A JP17194584 A JP 17194584A JP 17194584 A JP17194584 A JP 17194584A JP S6150331 A JPS6150331 A JP S6150331A
Authority
JP
Japan
Prior art keywords
electrode
etching
mask
ion implantation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17194584A
Other languages
Japanese (ja)
Inventor
Katsuhiko Muto
勝彦 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17194584A priority Critical patent/JPS6150331A/en
Publication of JPS6150331A publication Critical patent/JPS6150331A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a semiconductor device manufacturing method with which the width of an electrode and the width between the end of the electrode and the interface of a P-N junction can be suppressed in an excellent controllability by a method wherein an electrode layer is formed on a semiconductor substrate, and an etching mask and an etching process are improved. CONSTITUTION:An electrode 2 is formed (a) on the whole surface of an N type semiconductor substrate 1, and after an etching is performed (c) using an electrode etching mask 5, a silicon oxide film 6 is formed thereon by performing a CVD method without removing the electrode etching mask 5. Then, an etching is performed on the silicon oxide film 6 by performing an etching method having a physical sputtering effect, an ion implantation mask 4 is formed (e), P type impurities are ion-implanted, and an ion-implanted layer 3 is formed (f). As an alignment operation is not necessary for the ion implantation mask 4 formed as above, it is not subjected to a technical restriction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明に、PM接合特性を用いた半導体装置の新規な製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel method for manufacturing a semiconductor device using PM junction characteristics.

従来例の構成とその問題点 PM接合特性を用いた半導体装置において、しばしば、
第1図に示したような構造を有する半導体装置を製造す
るという要請が生じる。すなわち、N型半導体基板1(
ここでに説明の便宜上N型とした。以下、N型半導体基
板を基本とした半導体装置を例にとって述べる。)上に
電極2を形成し、その周囲にP型のイオン江入層3を形
成した構造を有するもので、かつ、そのPN接合界面が
電極2の端に達しないでしかも出来るだけ近づけたいと
いう要請である。
Conventional configurations and their problems In semiconductor devices using PM junction characteristics, there are often
There arises a need to manufacture a semiconductor device having a structure as shown in FIG. That is, the N-type semiconductor substrate 1 (
Here, for convenience of explanation, it is assumed to be N type. A semiconductor device based on an N-type semiconductor substrate will be described below as an example. ) has a structure in which an electrode 2 is formed on top of the electrode 2 and a P-type ion entry layer 3 is formed around it, and the PN junction interface should not reach the edge of the electrode 2 but should be as close as possible. It is a request.

このようfx要請を従来の方法で実現しようとした場合
の°代表的な例を以下に述べる。
A typical example of an attempt to implement such an fx request using a conventional method will be described below.

(従来例1) 従来例1を第2図を用いて説明する。(Conventional example 1) Conventional example 1 will be explained using FIG. 2.

この場合、まず最初に、N型半導体基板1上にイオン注
入マスク4を形成しくa)、p型不純物をイオン注入し
てイオン注入層らを形成する(1))。
In this case, first, an ion implantation mask 4 is formed on the N-type semiconductor substrate 1 (a), and a p-type impurity is ion-implanted to form an ion-implanted layer (1)).

次に、イオン注入マスク4を除去した後、電極2をN型
半導体基板1並びにイオン注入層3上全面に形成しくC
)、べらに、電極2上に電極エツチングマスク5を形成
して(d)、電極2をエツチングして、最後に、電極エ
ツチングマスク6を除去する(e)。
Next, after removing the ion implantation mask 4, an electrode 2 is formed on the entire surface of the N-type semiconductor substrate 1 and the ion implantation layer 3.
), an electrode etching mask 5 is formed on the electrode 2 (d), the electrode 2 is etched, and finally the electrode etching mask 6 is removed (e).

しかし、この方法でに、電極2の幅およびイオン注入層
3VC挾まれたN型半導体基板1の領域の幅に比較的厳
密に抑えられるが、電極エツチングマスク6を形成する
際、上記イオン注入層3に挾まれたN型半導体基板1の
領域上に精度良く形成しなければならなV−1(以下、
このような操作をアライメント操作と呼ぶ)という技術
制約が生じる。
However, in this method, although the width of the electrode 2 and the width of the region of the N-type semiconductor substrate 1 sandwiched between the ion-implanted layers 3VC can be relatively strictly controlled, when forming the electrode etching mask 6, the width of the ion-implanted V-1 (hereinafter referred to as
This type of operation is called an alignment operation).

(従来例2) 従来例2を第3図を用いて説明する。(Conventional example 2) Conventional example 2 will be explained using FIG. 3.

この場合、まず最初[、N型半導体基板1上全’   
     t[’!極、。ッ喧、)、電極。上、電極、
In this case, first, [, the entire surface of the N-type semiconductor substrate 1'
t['! very,. ), electrode. Top, electrode;
.

チングマスク6を形成した後(b)、電極2をエツチン
グする。このとき、電極2汀ある程度(イオン注入層3
を形成した後のPM接合界面と電極2の端との間の求め
られる程度)の幅、横方向にオーバーエツチングさせて
おく(C)。そして、最後に、電極層・フチンダマスク
6をイオン注入マスク4として、P型不純物をイオン注
入して、イオン注入層3を形成した後、イオン注入マス
ク4を除去する(d)。
After forming the etching mask 6 (b), the electrode 2 is etched. At this time, the electrode 2 level is to some extent (ion implantation layer 3
After forming the PM bonding interface and the edge of the electrode 2, over-etching is performed in the lateral direction to a desired width (C). Finally, using the electrode layer/framework mask 6 as the ion implantation mask 4, P-type impurities are ion-implanted to form the ion implantation layer 3, and then the ion implantation mask 4 is removed (d).

この方法に、従来例1に比べ、アライメント操作を必要
とせず、また、電極エツチングマスク5がイオン注入マ
スク4を兼ねているため、マスク形成の際のリングラフ
ィ工程が1回で済む、等の利点を有する。しかし、電極
2の端がPN接合界面に達しないようにするために、電
極2をエツチングする際、横方向にオーバーエツチング
させるという操作を行っている。このことに、従来例1
において、アライメント操作を行って、電極2の端から
PN接合界面までの幅を制御するのに比べその幅により
小きく抑えられる可能性げめるものの、制御性が良いと
げ言えず、また、電極そのものの幅の制御性に関しても
決して良いとげ言えない。なぜならば、横方向ヘオーバ
ニエ、フチングが進む速度あるいにその前面の形状に、
電極2とN型半導体基板1および電極エツチングマスク
6との密着強度、電極2の厚さ等に大きく影響され、再
現性に欠け、また、求める横方向オーバーエンチング幅
の終点検出もけっして容易でにないからである。
Compared to Conventional Example 1, this method does not require an alignment operation, and since the electrode etching mask 5 also serves as the ion implantation mask 4, only one phosphorography process is required when forming the mask. has advantages. However, in order to prevent the end of the electrode 2 from reaching the PN junction interface, when etching the electrode 2, an operation of over-etching in the lateral direction is performed. In this regard, conventional example 1
Although it is possible to reduce the width by controlling the width from the edge of the electrode 2 to the PN junction interface by performing an alignment operation, it is difficult to say that the controllability is good. I can't say enough good things about the controllability of its width. This is because the lateral heave, the speed at which the border advances, and the shape of its front surface.
It is greatly affected by the adhesion strength between the electrode 2 and the N-type semiconductor substrate 1 and the electrode etching mask 6, the thickness of the electrode 2, etc., and lacks reproducibility, and it is by no means easy to detect the end point of the desired lateral over-etching width. This is because there is no such thing.

以上、従来節1および2で示したように、求められる要
請に対してに、一長一短があり、より良い製造方法の確
立が望まれる分けである。
As described above in Conventional Sections 1 and 2, there are advantages and disadvantages in meeting the required requirements, and it is desirable to establish a better manufacturing method.

発明の目的 本発明に従来例の説明において示したような問題点を解
決するためKH,アライメント操作を必要とせずに、か
つ、電極幅並びに電極の端からPN接合界面までの幅を
制御性良く抑えることのできる半導体装置の製造方法を
提供せんとするものである。
Purpose of the Invention In order to solve the problems shown in the explanation of the conventional example, the present invention provides a KH, which does not require an alignment operation and has good controllability of the electrode width and the width from the end of the electrode to the PN junction interface. It is an object of the present invention to provide a method of manufacturing a semiconductor device that can reduce the amount of energy required.

発明の構成 本発明に半導体基板るるいにエピタキシャル層あるいげ
非晶質層上に電極層を形成し、エツチングマスクをマス
クとして、ニーlチングを行った後、電極層及びエツチ
ングマスクを除去せずに、CVD法により上記電極エツ
チングマスクと同質の薄膜を全面に形成する。
Structure of the Invention The present invention involves forming an electrode layer on an epitaxial layer or an amorphous layer of a semiconductor substrate, performing nealing using an etching mask as a mask, and then removing the electrode layer and the etching mask. First, a thin film having the same quality as the electrode etching mask is formed over the entire surface by CVD.

次に、物理的スパッタリング効果を有するエツチング方
法を用いること等により、エツチングマスクを用いるこ
となしに、上記電極層上並びに電極側面に精度良く均一
な薄膜を残すようなエツチングを行う。そして、最後に
上述のように形成した薄膜をマスクとして、イオン注入
を行うものである。
Next, by using an etching method having a physical sputtering effect or the like, etching is performed to leave a uniform thin film with high precision on the electrode layer and on the side surfaces of the electrode without using an etching mask. Finally, ion implantation is performed using the thin film formed as described above as a mask.

実施例の説明 本発明の実施例を第4図を用いて説明する。Description of examples An embodiment of the present invention will be described using FIG. 4.

まず、最初に、N型半導体基板1上全面に電極2を厚さ
0.5μm程度形成する(1゜次に、電極エツチングマ
スク5と(2てシリコン酸化膜を0.3μm程度、電極
2上全面に形成し、リングラフィ工程を通じてマスクパ
ターンを形成した後(b)、電極2のエツチングを行う
(0)。そして、電極エツチングマスク5を除去せずに
、その上に、CVD法を用いてシリコン酸化膜6を形成
する。本実施例でに、cvn法の中でも側面付着効果の
大きいと考えられるプラズマCVD法あるいに光CVD
法を用いて、高妊方向0.8μm程度の厚さを有するシ
リコン酸化膜6を形成したところ、電極2および電極エ
ツチングマスク6の側面にも厚さ0.5μm程度の均一
なシリコン酸化膜6を形成することが出来た(d)。ま
た、電極エツチングマスク5を除去せずに、シリコン酸
化膜6を形成することにより、電極エツチングマスク5
の除去工程が省けることだけでなく、N型半導体基板1
上の薄膜の厚さよりも、電極2上の薄膜の厚さの方が、
電極エツチングマスク5の厚さ分だけ厚くすることが出
来るという利点が生じる。この具体的効果に後に述べる
First, an electrode 2 with a thickness of about 0.5 μm is formed on the entire surface of the N-type semiconductor substrate 1 (1 degree). After forming the mask pattern on the entire surface through a phosphorography process (b), the electrode 2 is etched (0).Then, without removing the electrode etching mask 5, a CVD method is applied thereon. A silicon oxide film 6 is formed.In this embodiment, a plasma CVD method or a photo CVD method, which is considered to have a large side surface adhesion effect among the CVN methods, is used.
When a silicon oxide film 6 having a thickness of about 0.8 μm in the high etching direction was formed using the etching method, a uniform silicon oxide film 6 with a thickness of about 0.5 μm was also formed on the side surfaces of the electrode 2 and the electrode etching mask 6. was able to be formed (d). Furthermore, by forming the silicon oxide film 6 without removing the electrode etching mask 5, the electrode etching mask 5 can be removed.
In addition to eliminating the removal process of N-type semiconductor substrate 1,
The thickness of the thin film on electrode 2 is greater than the thickness of the thin film on top.
There is an advantage that the thickness can be increased by the thickness of the electrode etching mask 5. The specific effects of this will be discussed later.

シリコン酸化膜6を形成した後、エツチングマスクを用
いることなしに、物理的スハノタリング1      
効果を有16”y f 7 f方法を1”1・パ1°′
I 酸化膜6をエツチングして、イオン注入マスク4を
形成する(e)。物理的スパッタリング効果を有するエ
ツチング方法として汀、N型半導体基板1表面への損傷
が少なく、かつ、H型半導体基板1との選択性が高いエ
ンチングが行えるという特徴を有するRIE法あるいH
FtIBE法を用いて行った。また、物理的スパッタリ
ング効果を有していることから、エツチングの進む方向
にほとんど高さ方向になるため、エツチングマスクヲ用
いなくとも、エツチング後の電極2および電極エンチン
グマスク6の側面に形成でれているシリコン酸化膜6の
厚芒ケ、エツチング前のそれと比べてほとんど変化がな
い。すなわち、イオン注入マスク4のうち電極2の側面
に形成されている部分の厚さに、はとんど、C1VD法
によるシリコン酸化膜6の形成の際に決定きれ、その制
御性に、従来例2に示したような横方向オーバーエツチ
ング効果によって形成された幅の制御性よりも優れたも
のとなる。
After forming the silicon oxide film 6, physical shaving 1 is performed without using an etching mask.
Effect 16"y f 7 f method 1"1・pa 1°'
I Etch the oxide film 6 to form the ion implantation mask 4 (e). As an etching method having a physical sputtering effect, the RIE method or H method is characterized in that it causes little damage to the surface of the N-type semiconductor substrate 1 and can perform etching with high selectivity with respect to the H-type semiconductor substrate 1.
This was done using the FtIBE method. Furthermore, since it has a physical sputtering effect, it is etched almost in the height direction in the direction in which the etching progresses, so it can be formed on the side surfaces of the electrode 2 and the electrode etching mask 6 after etching without using an etching mask. There is almost no change in the thickness of the silicon oxide film 6 compared to that before etching. That is, the thickness of the portion of the ion implantation mask 4 formed on the side surface of the electrode 2 can be determined at the time of forming the silicon oxide film 6 by the C1VD method, and its controllability is better than that of the conventional example. The controllability of the width formed by the lateral overetching effect as shown in FIG.

また、この横方向オーバーエツチング効果を用いていな
いということば、電極20幅の制御性という観点からも
、従来例2に比べて優れたものと言える。
Furthermore, it can be said that this example is superior to Conventional Example 2 from the viewpoint of not using the lateral overetching effect and from the viewpoint of controllability of the width of the electrode 20.

ところで、CVD法によるシリコン酸化膜eの形成のと
ころで述べた利点により、シリコン酸化膜6のエツチン
グ後、電極2上には、電極エツチングマスク5が元の厚
さを残したま1残るが、このことに、後の工程でイオン
注入をする際、電極エツチングマスク5のみでイオン注
入マスクの役割を十分果たし、電極2の厚さに関わらず
、注入イオンが電極2ろるいに電極2直下のN型半導体
基板1中へ侵入するのを防ぐことが出来るという具体的
効果を与える。
By the way, due to the advantages mentioned above in forming the silicon oxide film e by the CVD method, after etching the silicon oxide film 6, the electrode etching mask 5 remains on the electrode 2 with the original thickness remaining. In addition, when ion implantation is performed in a later process, the electrode etching mask 5 alone can sufficiently play the role of an ion implantation mask, and regardless of the thickness of the electrode 2, the implanted ions can be implanted into the N-type layer directly under the electrode 2. This provides a specific effect of being able to prevent intrusion into the semiconductor substrate 1.

以上のようにして形成されたイオン注入マスク4げ、そ
の形成過程において、従来例1のようにアライメント操
作を必要としていないため、このことから生じる技術的
制約をまったく受けないという利点が生じる。
The ion implantation mask 4 formed as described above does not require an alignment operation unlike the conventional example 1 in its formation process, and therefore has the advantage of not being subject to any technical constraints arising from this.

最後に、P型不純物をイオン注入して、イオン注入層3
を形成した後、イオン注入マスク4を除去する(f)。
Finally, P-type impurities are ion-implanted to form the ion-implanted layer 3.
After forming the ion implantation mask 4, the ion implantation mask 4 is removed (f).

このとき、イオン注入マスク4を用いてイオン注入を行
っているため、イオン注入方法としてげ、非収束イオン
ビームを用いたイオン注入方法で良い− 発明の詳細 な説明して来たように、本発明に、半導体基板あるい汀
エビタキンヤル層めるいに非晶質層表面上に電極層を形
成、エツチング後、電極層の工、チングマスクとして用
いた薄膜を除去することなく、CVD法による同質の薄
膜形成、および、上記薄膜の、物理的スパノタリ/グ効
果を有するエツチング方法を用いた、エツチングを行う
ことにより形成した、イオン注入マスクを用いて、イオ
ン注入を行うことにより、アライメント操作を必要とせ
ずに、かつ、電極幅並びに電極の端からPM接合界面ま
での幅を制御性良く抑えられ、しかも、電極の端からP
N接合界面までの幅が、アライメント操作によって行う
ことが可能な幅よりも小さく抑えられるという、具体的
効果を与えるものである。
At this time, since the ion implantation is performed using the ion implantation mask 4, the ion implantation method may be an ion implantation method using a non-focused ion beam. In the present invention, an electrode layer is formed on the surface of a semiconductor substrate or an amorphous layer, and after etching, a homogeneous layer is formed by CVD without removing the thin film used as a etching mask. Forming a thin film, and performing ion implantation using an ion implantation mask formed by etching the thin film using an etching method that has a physical spattering effect, eliminating the need for alignment operations. The electrode width and the width from the edge of the electrode to the PM bonding interface can be controlled with good control.
This provides a concrete effect in that the width to the N-junction interface can be suppressed to be smaller than the width that can be achieved by alignment operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図iPN接合特性を用いた半導体装置の断面図、第
2図(Δ)〜(e)げ従莱例の製造方法を示した工程断
面図、第3図(&)〜(d)H別の従来例の製造方法を
示した工程断面図、第4図(&)〜(f)a本発明の製
造方法を示した工程断面図である。 1 ・ N型半導体基板、2・・・・・電極、3・・・
・・イオン注入層、4・ イオン注入マスク、6・・・
・電極エツチングマスク、6・ ・シリコン酸化膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第2図 @ 4 図
Figure 1 is a cross-sectional view of a semiconductor device using iPN junction characteristics, Figure 2 (Δ) to (e) is a process cross-sectional view showing the manufacturing method of the conventional example, and Figure 3 is (&) to (d) H. FIGS. 4A to 4F are process sectional views showing another conventional manufacturing method, and FIGS. 4A to 4F are process sectional views showing the manufacturing method of the present invention. 1. N-type semiconductor substrate, 2...electrode, 3...
...Ion implantation layer, 4. Ion implantation mask, 6...
・Electrode etching mask, 6. ・Silicon oxide film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 2 @ Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)一方導電型の第1層上に電極層を形成し、この電
極層上に任意のパターンを有する第1薄膜を形成して、
この第1薄膜をマスクとして、上記電極の露出部分をエ
ッチングする工程と、上記第1薄膜と同質の第2薄膜を
CVD法により全面に形成する工程と、上記第2薄膜を
物理的スパッタリング効果を有するエッチング方法を用
いて、垂直エッチングする工程と、上記第1、第2薄膜
をマスクとしてイオン注入を行ない、他方導電型拡散層
を前記第1層に形成する工程を有する半導体装置の製造
方法。
(1) Forming an electrode layer on the first layer of one conductivity type, forming a first thin film having an arbitrary pattern on this electrode layer,
A step of etching the exposed portion of the electrode using this first thin film as a mask, a step of forming a second thin film of the same quality as the first thin film on the entire surface by CVD, and a step of physically sputtering the second thin film. A method for manufacturing a semiconductor device, comprising the steps of performing vertical etching using an etching method according to the present invention, and performing ion implantation using the first and second thin films as masks, and forming a conductive type diffusion layer in the first layer.
(2)物理的スパッタリング効果を有するエッチング方
法が、RIE(ReactiveIonEtching
)法又はRIBE(ReactiveIonBeamE
tch−ing)法であることを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。
(2) An etching method that has a physical sputtering effect is RIE (Reactive Ion Etching).
) method or RIBE (ReactiveIonBeamE
2. The method of manufacturing a semiconductor device according to claim 1, wherein the method is a tch-ing method.
JP17194584A 1984-08-18 1984-08-18 Manufacture of semiconductor device Pending JPS6150331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17194584A JPS6150331A (en) 1984-08-18 1984-08-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17194584A JPS6150331A (en) 1984-08-18 1984-08-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6150331A true JPS6150331A (en) 1986-03-12

Family

ID=15932712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17194584A Pending JPS6150331A (en) 1984-08-18 1984-08-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6150331A (en)

Similar Documents

Publication Publication Date Title
JPS5933880A (en) Semiconductor device
US5397733A (en) Method for the construction of field oxide film in semiconductor device
US4775644A (en) Zero bird-beak oxide isolation scheme for integrated circuits
JPS6150331A (en) Manufacture of semiconductor device
JPS61271839A (en) Pattern forming method
JPH06326091A (en) Formation method for field oxide film in semiconductor element
JPH0715991B2 (en) Method for manufacturing semiconductor device
JP2001177096A (en) Vertical semiconductor device, and manufacturing method thereof
JPS6289324A (en) Manufacture of semiconductor device
JPS6387741A (en) Manufacture of semiconductor device
JPH0258778B2 (en)
JPS60189235A (en) Production of semiconductor device
JPH0265155A (en) Manufacture of semiconductor device
KR0167260B1 (en) Manufacture of semiconductor device
JPH04101413A (en) Method of forming semiconductor recrystalline layer
JPS58122769A (en) Manufacture of semiconductor device
JPS61107740A (en) Manufacture of semiconductor device
JPS6116545A (en) Manufacture of semiconductor integrated device
JPS60213029A (en) Manufacture of semiconductor device
JPH0153500B2 (en)
JPS60101944A (en) Manufacture of substrate insulated and isolated with dielectric material
JPS62120017A (en) Manufacture of semiconductor device
JPS62124742A (en) Manufacture of device
JPS61270872A (en) Manufacture of semiconductor device
JPH01204414A (en) Manufacture of semiconductor device