JP2001177096A - Vertical semiconductor device, and manufacturing method thereof - Google Patents
Vertical semiconductor device, and manufacturing method thereofInfo
- Publication number
- JP2001177096A JP2001177096A JP35465299A JP35465299A JP2001177096A JP 2001177096 A JP2001177096 A JP 2001177096A JP 35465299 A JP35465299 A JP 35465299A JP 35465299 A JP35465299 A JP 35465299A JP 2001177096 A JP2001177096 A JP 2001177096A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- main surface
- electrode
- semiconductor device
- polished
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電力変換装置など
に用いられる縦型の電力用半導体装置、特にその製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical power semiconductor device used for a power converter or the like, and more particularly to a method of manufacturing the same.
【0002】[0002]
【従来の技術】大電流をコントロールする電力用半導体
装置は、半導体基板の利用率を高めるため、半導体基板
の両主面に電極を設け、半導体基板の厚さ方向に電流を
流すタイプのいわゆる縦型の半導体装置とされることが
多い。そして、近年、600〜1200V 耐圧の絶縁ゲ
ートバイポーラトランジスタ(以下IGBTと記す)な
どの金属−酸化膜−半導体(MOS)からなる制御電極
構造(ゲート構造とも称する)を有する電力用半導体装
置では、動作時のエネルギー損失の低減、ウェハコスト
の削減のため、エピタキシャル基板よりも安価なフロー
ティングゾーン(以下FZと記す)基板を用い、更に半
導体基板の厚さを薄くする技術が発展してきている。2. Description of the Related Art A power semiconductor device for controlling a large current is a so-called vertical type of a type in which electrodes are provided on both main surfaces of a semiconductor substrate and current flows in the thickness direction of the semiconductor substrate in order to increase the utilization rate of the semiconductor substrate. Type semiconductor device. In recent years, a power semiconductor device having a control electrode structure (also referred to as a gate structure) made of a metal-oxide-semiconductor (MOS) such as an insulated gate bipolar transistor (hereinafter referred to as an IGBT) having a withstand voltage of 600 to 1200 V operates. In order to reduce the energy loss at the time and reduce the wafer cost, a technique of using a floating zone (hereinafter, referred to as FZ) substrate which is cheaper than an epitaxial substrate and further reducing the thickness of the semiconductor substrate has been developed.
【0003】ウェハプロセスの始めから半導体基板の厚
さを薄く、例えば150μm 以下にすると、ウェハプロ
セス中に破損し易い。そのような事態を避けるため、通
常、ある程度厚いウェハを用いてMOSゲート構造、お
よびその側の主電極をすべて形成した後、ウェハプロセ
スの最後段で半導体基板の他方の主面を機械的に研磨
し、時には化学的エッチングを加えて、所望の厚さに加
工した後、裏面側の電極を形成する方法が採られてい
る。If the thickness of the semiconductor substrate is reduced from the beginning of the wafer process, for example, to 150 μm or less, the semiconductor substrate is easily damaged during the wafer process. In order to avoid such a situation, usually, the MOS gate structure and all the main electrodes on the side are formed using a somewhat thick wafer, and then the other main surface of the semiconductor substrate is mechanically polished at the last stage of the wafer process. In some cases, a method of forming the electrode on the back surface side after processing to a desired thickness by adding chemical etching sometimes is employed.
【0004】ノンパンチスルー(以下NPTと記す)型
IGBTを例にとり、その一般的な製造方法を以下に説
明する。図3(a)、(b)は従来のIGBTの製造方
法による工程順の断面図である。図3(a)は、半導体
基板の一方の主面(エミッタ側、以下表面側と呼ぶ)に
MOSゲート構造を形成した後、チャネル形成領域13
およびエミッタ領域14を形成し、エミッタ電極となる
金属薄膜3を堆積した状態のIGBTの断面図である。[0004] Taking a non-punch through (hereinafter referred to as NPT) type IGBT as an example, a general manufacturing method thereof will be described below. 3A and 3B are cross-sectional views in the order of steps according to a conventional method of manufacturing an IGBT. FIG. 3A shows that after a MOS gate structure is formed on one main surface (emitter side, hereinafter referred to as a front side) of a semiconductor substrate, a channel forming region 13 is formed.
FIG. 2 is a cross-sectional view of the IGBT in which an emitter region 14 is formed and a metal thin film 3 serving as an emitter electrode is deposited.
【0005】半導体基板1に形成されるMOSゲート構
造は、ゲート酸化膜5、導電性多結晶シリコン膜からな
るゲート電極層6、ゲート電極層6とエミッタ電極とな
る金属薄膜3とを電気的に絶縁する燐シリケートガラス
(以下PSGと記す)などの層間絶縁膜2とからなる。
このうち、ゲート酸化膜5は、厚さが通常数十nmで、1
μm 程度のゲート電極層6、層間絶縁膜2に比べて十分
薄いため、MOS構造部と半導体基板表面との段差は、
多結晶シリコン膜6と層間絶縁膜2との厚さの合計にほ
ぼ等しくなる。金属薄膜3は、例えばシリコンを微量含
んだアルミニウムをスパッタして形成する。厚さは3〜
5μm である。また、図のようにMOSゲート構造上に
も延長されることが多い。そうすると、MOSゲート構
造と半導体基板表面との段差がそのまま、金属薄膜3表
面の凹凸として残る。The MOS gate structure formed on the semiconductor substrate 1 is composed of a gate oxide film 5, a gate electrode layer 6 made of a conductive polycrystalline silicon film, and a gate electrode layer 6 and a metal thin film 3 serving as an emitter electrode. An insulating interlayer 2 made of, for example, phosphorus silicate glass (hereinafter referred to as PSG) to be insulated.
The gate oxide film 5 has a thickness of usually several tens nm,
Since it is sufficiently thinner than the gate electrode layer 6 and the interlayer insulating film 2 of about μm, the step between the MOS structure and the surface of the semiconductor substrate is
It becomes almost equal to the sum of the thicknesses of the polycrystalline silicon film 6 and the interlayer insulating film 2. The metal thin film 3 is formed, for example, by sputtering aluminum containing a small amount of silicon. The thickness is 3 ~
5 μm. In addition, as shown in the figure, it is often extended on a MOS gate structure. Then, a step between the MOS gate structure and the surface of the semiconductor substrate remains as it is on the surface of the metal thin film 3 as it is.
【0006】この後、半導体基板1の他の主面側(コレ
クタ側、以下裏面側と呼ぶ)を機械的に研磨する。この
状態で裏面を研磨すると、MOSゲート構造のある部分
は、無い部分に比べ砥石に強く押しつけられることによ
り、研磨速度に差ができ、結果として表面の構造をいく
らか反映して、裏面に段差が転写される〔同図
(b)〕。7は裏面研磨後の半導体基板である。この
際、MOSゲート構造を含む表面側には保護シール4な
どを貼ることもある。更に研磨によるダメージ層除去の
ため、裏面を機械的に研磨した後に化学的にエッチング
することもあるが、裏面に転写された段差は残る。この
後、裏面にアクセプタ型不純物のイオン注入、活性化を
おこない、蒸着等により、コレクタ電極を形成する。After that, the other main surface side (collector side, hereinafter referred to as back side) of the semiconductor substrate 1 is mechanically polished. When the back surface is polished in this state, the portion with the MOS gate structure is pressed more strongly against the grindstone than the portion without the MOS gate structure, resulting in a difference in the polishing rate. As a result, a step on the back surface reflects the surface structure to some extent. The image is transferred (FIG. 2B). Reference numeral 7 denotes a semiconductor substrate after back polishing. At this time, a protective seal 4 or the like may be attached to the front surface including the MOS gate structure. Further, in order to remove the damaged layer by polishing, the back surface is mechanically polished and then chemically etched, but the step transferred to the back surface remains. Thereafter, acceptor-type impurities are ion-implanted and activated on the back surface, and a collector electrode is formed by vapor deposition or the like.
【0007】[0007]
【発明が解決しようとする課題】前述のように、MOS
制御型デバイスでは、所望の厚さに加工する際、MOS
ゲート構造を作った後に半導体基板の裏面を機械的に研
磨する。その際、表面の構造により応力のかかりかたが
部分的に異なるため、研磨速度にむらができ、裏面に段
差が転写される。As described above, as described above, MOS
In a controlled device, when processing to the desired thickness, MOS
After forming the gate structure, the back surface of the semiconductor substrate is mechanically polished. At this time, the manner in which the stress is applied is partially different depending on the structure of the front surface, so that the polishing rate is uneven and the step is transferred to the back surface.
【0008】研磨後のウェハ厚さが薄くなるほど、その
影響は大きくなり、その結果、作製したデバイスの電気
的特性がばらついたり、研磨中にウェハ割れや、欠けが
起きたりなどの不具合を生じることがある。この問題に
鑑み本発明の目的は、半導体素基板の厚さが薄く、均一
で、デバイスの電気的特性がばらついたりせず、またウ
ェハ割れや、欠けを生じない半導体装置の製造方法を提
供することにある。[0008] As the thickness of the polished wafer becomes thinner, the influence thereof becomes larger. As a result, the electrical characteristics of the manufactured device vary, and defects such as cracking or chipping of the wafer during polishing occur. There is. In view of this problem, an object of the present invention is to provide a method of manufacturing a semiconductor device in which the thickness of a semiconductor substrate is thin and uniform, the electrical characteristics of the device do not vary, and the wafer does not crack or chip. It is in.
【0009】[0009]
【課題を解決するための手段】上記の課題解決のため本
発明は、半導体基板の第一の主面に第一の電極と制御電
極構造とを、第二の主面に第二の電極を有する縦型半導
体装置の製造方法において、制御電極と第一の電極を形
成した後、一旦第一の主面側の表面を平坦化し、次に半
導体基板の第二の主面側を機械的または化学的に研磨し
て所望の基板厚さにし、第二の電極を形成するものとす
る。In order to solve the above-mentioned problems, the present invention provides a semiconductor substrate having a first electrode and a control electrode structure on a first main surface and a second electrode on a second main surface. In the method of manufacturing a vertical semiconductor device having, after forming a control electrode and a first electrode, once the surface of the first main surface side is once flattened, then the second main surface side of the semiconductor substrate is mechanically or A second electrode is formed by chemical polishing to a desired substrate thickness.
【0010】そのようにすれば、先に平滑な半導体基板
の第二の主面を基準として、第一の主面側が平坦化さ
れ、次にその平坦化されされた第一の主面側を基準とし
て、第二の主面側が平坦化されるので、第二の主面側に
凹凸が残ることは無く、平滑になる。特に、第一の主面
に、制御電極構造と第一主面の半導体基板表面との段差
に比べ十分厚い、第一の主電極となる金属薄膜を形成し
た後に、その金属薄膜の表面を機械的または化学的に研
磨して平坦化し、その後に第二主面側を研磨すれば、第
一の主電極となる金属薄膜を厚くすることと、その表面
層を研磨する工程が増えるだけなので、容易に実行でき
る。In this case, the first main surface side is first flattened with reference to the second main surface of the smooth semiconductor substrate, and then the flattened first main surface side is used as a reference. As a reference, the second main surface side is flattened, so that no irregularities remain on the second main surface side, and the second main surface side becomes smooth. In particular, after a metal thin film serving as a first main electrode, which is sufficiently thicker than the step between the control electrode structure and the semiconductor substrate surface of the first main surface, is formed on the first main surface, the surface of the metal thin film is mechanically If it is polished or chemically polished and flattened, and then the second main surface side is polished, the thickness of the metal thin film that becomes the first main electrode and the process of polishing the surface layer only increase, Can be easily implemented.
【0011】第一の主電極となる金属薄膜を形成した後
に、制御電極構造と第一主面の半導体基板表面との段差
に比べ十分厚い被覆膜を第一主面上に形成し、その被覆
膜の表面を機械的または化学的に研磨して平坦化し、そ
の後に第二主面側を研磨することもできる。そのように
しても、一旦第一の主面側を平坦化した後、その面を基
準として第二の主面を研磨するので、第二の主面に凹凸
が残ることは無い。After forming the metal thin film serving as the first main electrode, a coating film thicker than the step between the control electrode structure and the semiconductor substrate surface on the first main surface is formed on the first main surface. The surface of the coating film may be mechanically or chemically polished and flattened, and then the second main surface side may be polished. Even in such a case, since the first main surface side is once flattened, and then the second main surface is polished based on the first main surface side, no irregularities remain on the second main surface.
【0012】表層膜としては、フォトレジストを用いる
ことができる。フォトレジストは、半導体プロセスで頻
繁に用いられる材料であり、取扱に慣れた材料であり、
かつ適当な硬さを有している。更に、半導体基板の第二
の主面側を機械的または化学的に研磨し、その表面層に
不純物を導入した後、第二の電極を形成するものとす
る。As the surface film, a photoresist can be used. Photoresist is a material that is frequently used in semiconductor processes and is a material that is used to handling,
And it has appropriate hardness. Furthermore, the second main surface side of the semiconductor substrate is mechanically or chemically polished, and impurities are introduced into the surface layer, and then the second electrode is formed.
【0013】半導体基板の第二の主面側を研磨して所定
の厚さにした後、第二の主面側の電極形成に適する不純
物を導入すれば、安定した接触が得られる。縦型半導体
装置としては、半導体基板の第一の主面に第一の電極と
制御電極構造とを、第二の主面に第二の電極を有する縦
型半導体装置において、第一の電極が制御電極構造上に
延長され、その表面が研磨された一平面となっているも
のとする。After the second main surface of the semiconductor substrate is polished to a predetermined thickness and then impurities suitable for forming an electrode on the second main surface are introduced, stable contact can be obtained. As a vertical semiconductor device, in a vertical semiconductor device having a first electrode and a control electrode structure on a first main surface of a semiconductor substrate and a second electrode on a second main surface, the first electrode is It is assumed that the electrode extends on the control electrode structure and has a polished flat surface.
【0014】そのような半導体装置は、第二の主面に第
一の主面側の影響を受けた凹凸が無いため、研磨時のウ
ェハ割れや、欠けが少なく、また作製したデバイスの電
気的特性がばらつきが少なくなる。特に、金属−絶縁膜
−半導体基板(MOS)からなる制御電極構造を有する
縦型半導体装置は、制御電極構造による段差が避けられ
ないが、 第一の主面側が平滑にされているので、その
問題が克服される。In such a semiconductor device, since the second main surface has no irregularities affected by the first main surface side, there are few wafer cracks and chips during polishing, and the electrical characteristics of the manufactured device are small. Characteristics have less variation. In particular, in a vertical semiconductor device having a control electrode structure composed of a metal-insulating film-semiconductor substrate (MOS), a step due to the control electrode structure is inevitable, but since the first main surface side is smoothed, The problem is overcome.
【0015】更に、半導体基板の厚さが150μm 以下
であるものは、僅かな凹凸の影響を受けやすく、割れや
すいが、そのような薄い基板の半導体装置でも割れ難く
なる。Furthermore, a semiconductor substrate having a thickness of 150 μm or less is susceptible to slight irregularities and is liable to break, but even a semiconductor device having such a thin substrate is unlikely to break.
【0016】[0016]
【発明の実施の形態】以下に図面を参照しながら本発明
の実施の形態を説明する。 〔実施例1〕図1(a)〜(c)は本発明の製造方法に
よる工程順の断面図である。図1(a)は、半導体基板
の一方の主面(エミッタ側、以下表面側と呼ぶ)にMO
Sゲート構造を形成し、金属薄膜3を堆積した後のIG
BTの断面図である。例えば1200V クラスのIGB
Tの場合、半導体基板の厚さは250μm である。Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIGS. 1A to 1C are sectional views in the order of steps according to the manufacturing method of the present invention. FIG. 1A shows an example in which one main surface (emitter side, hereinafter referred to as a front side) of a semiconductor substrate has an MO.
IG after forming S gate structure and depositing metal thin film 3
It is sectional drawing of BT. For example, IGB of 1200V class
In the case of T, the thickness of the semiconductor substrate is 250 μm.
【0017】半導体基板1に不純物を導入し接合構造を
形成した後、ゲート酸化膜5、導電性多結晶シリコン膜
からなるゲート電極層6、PSGの層間絶縁膜2とから
なるMOSゲート構造を設け、その上にエミッタ電極と
なる金属薄膜8を成膜する。例えば、ゲート酸化膜5は
厚さ80nmであり、ゲート電極層6、層間絶縁膜2はい
ずれも厚さ約1 μm である。このようにゲート酸化膜5
は、ゲート電極層6、層間絶縁膜2に比べて十分薄いた
め、MOS構造部と半導体基板表面との段差は、多結晶
シリコン膜6と層間絶縁膜2との厚さの合計にほぼ等し
い。金属薄膜8の厚さは最初10μm とする。After an impurity is introduced into the semiconductor substrate 1 to form a junction structure, a MOS gate structure including a gate oxide film 5, a gate electrode layer 6 made of a conductive polycrystalline silicon film, and an interlayer insulating film 2 of PSG is provided. Then, a metal thin film 8 serving as an emitter electrode is formed thereon. For example, the gate oxide film 5 has a thickness of 80 nm, and the gate electrode layer 6 and the interlayer insulating film 2 each have a thickness of about 1 μm. Thus, the gate oxide film 5
Is sufficiently thinner than the gate electrode layer 6 and the interlayer insulating film 2, the step between the MOS structure and the surface of the semiconductor substrate is substantially equal to the total thickness of the polycrystalline silicon film 6 and the interlayer insulating film 2. The thickness of the metal thin film 8 is initially 10 μm.
【0018】図3の従来の方法と異なる点は、金属薄膜
3を、MOS構造部の段差に比べて十分厚く堆積してい
ることである。次に、厚く堆積した金属薄膜8を、約
0.05μm のダイヤモンド、またはアルミナ粒子を含
む研磨剤を用いて約4μm 研磨し、表面を平坦化する
〔図1(b)〕。9は表面を平坦化した金属薄膜であ
る。こうしてMOS構造部を含む表面側を平坦化するこ
とができる。初期の金属薄膜8の厚さが、MOS構造部
の段差以下であると、当然のことながら完全な平坦化が
できない。削り代が大きい程工程上簡便であるため、金
属薄膜8の厚さはMOS構造部の段差の二倍以上である
ことが望ましい。The difference from the conventional method of FIG. 3 is that the metal thin film 3 is deposited sufficiently thicker than the step of the MOS structure. Next, the thick metal thin film 8 is polished by about 4 μm using an abrasive containing about 0.05 μm diamond or alumina particles to flatten the surface [FIG. 1 (b)]. 9 is a metal thin film whose surface is flattened. Thus, the surface including the MOS structure can be flattened. If the initial thickness of the metal thin film 8 is smaller than the step of the MOS structure, it is natural that complete flattening cannot be performed. It is desirable that the thickness of the metal thin film 8 be at least twice as large as the step of the MOS structure because the larger the cutting allowance is, the easier the process is.
【0019】更に、機械的研磨により半導体基板1の裏
面を研磨し、厚さ150μm にする〔図1(c)〕。こ
のとき、基準となるのは平坦化された表面側であるた
め、MOS構造部の段差に影響されずに裏面側を平坦に
研磨することができる。10は裏面側を研磨した半導体
基板である。この後、従来と同じく、裏面にアクセプタ
型不純物のイオン注入、活性化をおこない、蒸着等によ
り、コレクタ電極を作製する。Further, the back surface of the semiconductor substrate 1 is polished by mechanical polishing to a thickness of 150 μm (FIG. 1C). At this time, since the reference is the flattened front side, the back side can be polished flat without being affected by the step of the MOS structure. Reference numeral 10 denotes a semiconductor substrate whose back surface is polished. Thereafter, as in the conventional case, ion implantation and activation of acceptor-type impurities are performed on the back surface, and a collector electrode is formed by vapor deposition or the like.
【0020】このような製造方法をとることにより、従
来法によるIGBTに見られた厚さの差に基づく特性の
ばらつき、ウェハの割れ、欠け、が解消されただけでな
く、更に100μm程度にまで、薄くすることが可能に
なった。 〔実施例2〕図2(a)〜(c)は本発明の別の製造方
法による工程順の断面図である。By adopting such a manufacturing method, not only the variance in characteristics based on the difference in thickness observed in the conventional IGBT but also the cracking and chipping of the wafer are eliminated, and furthermore, it is reduced to about 100 μm. It became possible to make it thinner. [Embodiment 2] FIGS. 2A to 2C are cross-sectional views in the order of steps according to another manufacturing method of the present invention.
【0021】通常の工程と同様にMOS構造部を含む表
面側の構造を全て作製した後に、MOS構造部と、半導
体基板との段差よりも十分厚く、例えば5μmの厚さの
フォトレジスト11を塗布する〔図2(a)〕。フォト
レジスト11の厚さは、前述の理由により、MOS構造
部の段差と半導体基板表面との段差の二倍以上であるこ
とが望ましい。After all the structures on the front side including the MOS structure are formed in the same manner as in the ordinary process, a photoresist 11 having a thickness sufficiently larger than the step between the MOS structure and the semiconductor substrate, for example, a thickness of 5 μm is applied. [FIG. 2 (a)]. It is desirable that the thickness of the photoresist 11 be at least twice as large as the step between the MOS structure and the surface of the semiconductor substrate for the above-described reason.
【0022】フォトレジスト11の表面側を3〜4μm
研磨して平坦化する〔同図(b)〕。12は表面を平坦
化したフォトレジストである。実施例1と同様に、機械
的研磨により半導体基板1の裏面を研磨し、厚さ150
μm にする〔同図(c)〕。10は裏面側を平坦化した
半導体基板である。裏面側を研磨した後に、表面側のフ
ォトレジストは剥離した後、裏面にアクセプタ型不純物
のイオン注入、活性化をおこない、蒸着等により、コレ
クタ電極を作製する。The surface side of the photoresist 11 is 3 to 4 μm
It is polished and flattened [FIG. Reference numeral 12 denotes a photoresist whose surface is flattened. As in the first embodiment, the back surface of the semiconductor substrate 1 is polished by mechanical polishing to a thickness of 150 mm.
μm [(c) in the figure]. Reference numeral 10 denotes a semiconductor substrate having a flat back surface. After polishing the back side, the photoresist on the front side is peeled off, ion implantation and activation of acceptor type impurities are performed on the back side, and a collector electrode is formed by vapor deposition or the like.
【0023】このような製造方法により、実施例1の方
法と同様の効果が得られた。また、表面側の研磨代とす
る被覆膜は、フォトレジストに限らず、ポリイミド樹脂
膜などでも良い。According to such a manufacturing method, the same effect as the method of the first embodiment was obtained. Further, the coating film used as the polishing allowance on the front side is not limited to the photoresist, but may be a polyimide resin film or the like.
【0024】[0024]
【発明の効果】以上説明したように本発明によれば、制
御電極と第一の電極を形成した後、一旦第一の主面側の
表面を平坦化し、次に半導体基板の第二の主面側を機械
的または化学的に研磨して所望の基板厚さにし、第二の
電極を形成することにより、裏面側の表面形状を平坦化
することができ、電気的特性のばらつきやウェハの割
れ、欠けを低減することができる。As described above, according to the present invention, after forming the control electrode and the first electrode, the surface on the first main surface side is once flattened, and then the second main surface of the semiconductor substrate is formed. The surface side is mechanically or chemically polished to a desired substrate thickness, and the second electrode is formed, whereby the surface shape on the back side can be flattened, and variations in electrical characteristics and wafer Cracks and chips can be reduced.
【0025】平滑面を得るために、制御電極構造と第一
主面の半導体基板表面との段差に比べ十分厚い、第一の
主電極となる金属薄膜、或いはフォトレジストなどの被
覆膜を用いることができ、特に低損失のMOS構造の制
御電極を有する電力用半導体デバイスを可能にする、極
めて有用な発明である。In order to obtain a smooth surface, a metal thin film serving as the first main electrode or a coating film such as a photoresist, which is sufficiently thicker than a step between the control electrode structure and the semiconductor substrate surface of the first main surface, is used. This is an extremely useful invention that enables a power semiconductor device having a control electrode having a MOS structure with low loss, in particular.
【図1】(a)〜(c)は本発明によるIGBTの製造
方法を説明するための主な工程順の断面図FIGS. 1A to 1C are cross-sectional views in the order of main steps for explaining a method of manufacturing an IGBT according to the present invention.
【図2】(a)〜(c)は本発明による別の製造方法を
説明するための主な工程順の断面図FIGS. 2A to 2C are cross-sectional views in the main order of steps for explaining another manufacturing method according to the present invention.
【図3】(a)〜(c)は従来IGBTの製造方法の工
程順の断面図FIGS. 3A to 3C are cross-sectional views in the order of steps of a conventional method for manufacturing an IGBT.
1 半導体基板 2 層間絶縁膜 3 金属薄膜 4 保護シール 5 ゲート酸化膜 6 導電性多結晶シリコン膜 7 裏面研磨後の半導体基板 8 厚く堆積した金属薄膜 9 平坦化した金属薄膜 10 裏面研磨した半導体基板 11 厚く塗布したフォトレジスト 12 平坦化したフォトレジスト 13 チャネル形成領域 14 エミッタ領域 DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Interlayer insulating film 3 Metal thin film 4 Protective seal 5 Gate oxide film 6 Conductive polycrystalline silicon film 7 Backside polished semiconductor substrate 8 Thickly deposited metal thin film 9 Flattened metal thin film 10 Backside polished semiconductor substrate 11 Thickly applied photoresist 12 Planarized photoresist 13 Channel formation region 14 Emitter region
Claims (8)
御電極構造とを、第二の主面に第二の電極を有する縦型
半導体装置の製造方法において、制御電極と第一の電極
を形成した後、一旦第一の主面側の表面を平坦化し、次
に半導体基板の第二の主面側を機械的または化学的に研
磨して所望の基板厚さにし、第二の電極を形成すること
を特徴とする縦型半導体装置の製造方法。In a method for manufacturing a vertical semiconductor device having a first electrode on a first main surface of a semiconductor substrate and a control electrode structure, and a second electrode on a second main surface, the control electrode and the control electrode structure are provided. After forming one electrode, the surface on the first main surface side is once flattened, and then the second main surface side of the semiconductor substrate is mechanically or chemically polished to a desired substrate thickness. A method for manufacturing a vertical semiconductor device, comprising forming two electrodes.
半導体基板表面との段差に比べ十分厚い、第一の主電極
となる金属薄膜を形成した後に、その金属薄膜の表面を
機械的または化学的に研磨して平坦化し、その後に第二
主面側を研磨することを特徴とする請求項1記載の半導
体装置の製造方法。2. A method according to claim 1, further comprising: forming a metal thin film on the first main surface, which is sufficiently thick compared to a step between the control electrode structure and the surface of the semiconductor substrate on the first main surface, to be the first main electrode; 2. The method of manufacturing a semiconductor device according to claim 1, wherein the surface is polished mechanically or chemically to flatten the surface, and then the second principal surface is polished.
に、制御電極構造と第一主面の半導体基板表面との段差
に比べ十分厚い被覆膜を第一主面上に形成し、その被覆
膜の表面を機械的または化学的に研磨して平坦化し、そ
の後に第二主面側を研磨することを特徴とする請求項1
記載の半導体装置の製造方法。3. After forming a metal thin film serving as a first main electrode, a coating film sufficiently thicker than a step between the control electrode structure and the semiconductor substrate surface on the first main surface is formed on the first main surface. 2. The method according to claim 1, wherein the surface of the coating film is mechanically or chemically polished to flatten the surface, and then the second main surface is polished.
The manufacturing method of the semiconductor device described in the above.
とを特徴とする請求項3記載の半導体装置の製造方法。4. The method according to claim 3, wherein a photoresist is used as the coating film.
化学的に研磨し、その表面層に不純物を導入した後、第
二の電極を形成することを特徴とする請求項1ないし4
のいずれかに記載の縦型半導体装置の製造方法。5. The semiconductor device according to claim 1, wherein the second main surface of the semiconductor substrate is mechanically or chemically polished, and impurities are introduced into the surface layer, and then the second electrode is formed. 4
The method for manufacturing a vertical semiconductor device according to any one of the above.
御電極構造とを、第二の主面に第二の電極を有する縦型
半導体装置において、第一の電極が制御電極構造上に延
長され、その表面が研磨された一平面であることを特徴
とする縦型半導体装置。6. A vertical semiconductor device having a first electrode and a control electrode structure on a first main surface of a semiconductor substrate and a second electrode on a second main surface, wherein the first electrode is a control electrode. A vertical semiconductor device extending on a structure and having a polished flat surface.
なる制御電極構造を有することを特徴とする請求項6に
記載の縦型半導体装置。7. The vertical semiconductor device according to claim 6, having a control electrode structure composed of a metal-insulating film-semiconductor substrate (MOS).
ことを特徴とする請求項6または7に記載の縦型半導体
装置。8. The vertical semiconductor device according to claim 6, wherein the thickness of the semiconductor substrate is 150 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35465299A JP4465760B2 (en) | 1999-12-14 | 1999-12-14 | Method for manufacturing vertical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35465299A JP4465760B2 (en) | 1999-12-14 | 1999-12-14 | Method for manufacturing vertical semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001177096A true JP2001177096A (en) | 2001-06-29 |
JP4465760B2 JP4465760B2 (en) | 2010-05-19 |
Family
ID=18439000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35465299A Expired - Lifetime JP4465760B2 (en) | 1999-12-14 | 1999-12-14 | Method for manufacturing vertical semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4465760B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094295A (en) * | 2001-09-27 | 2003-04-03 | Sony Corp | Semiconductor wafer grinding method, semiconductor wafer and protection material for semiconductor wafer |
JP2006024673A (en) * | 2004-07-07 | 2006-01-26 | Matsushita Electric Ind Co Ltd | Manufacturing method for semiconductor device |
JP2006147739A (en) * | 2004-11-18 | 2006-06-08 | Fuji Electric Holdings Co Ltd | Method of manufacturing semiconductor device |
WO2010064382A1 (en) * | 2008-12-02 | 2010-06-10 | 昭和電工株式会社 | Semiconductor device and semiconductor device manufacturing method |
JP2013026380A (en) * | 2011-07-20 | 2013-02-04 | Disco Abrasive Syst Ltd | Processing method |
WO2022186192A1 (en) * | 2021-03-02 | 2022-09-09 | 三菱電機株式会社 | Semiconductor element, electric power conversion device, and manufacturing method for semiconductor element |
-
1999
- 1999-12-14 JP JP35465299A patent/JP4465760B2/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094295A (en) * | 2001-09-27 | 2003-04-03 | Sony Corp | Semiconductor wafer grinding method, semiconductor wafer and protection material for semiconductor wafer |
JP2006024673A (en) * | 2004-07-07 | 2006-01-26 | Matsushita Electric Ind Co Ltd | Manufacturing method for semiconductor device |
JP2006147739A (en) * | 2004-11-18 | 2006-06-08 | Fuji Electric Holdings Co Ltd | Method of manufacturing semiconductor device |
WO2010064382A1 (en) * | 2008-12-02 | 2010-06-10 | 昭和電工株式会社 | Semiconductor device and semiconductor device manufacturing method |
JP2010135392A (en) * | 2008-12-02 | 2010-06-17 | Showa Denko Kk | Semiconductor device and method of manufacturing the same |
US8513674B2 (en) | 2008-12-02 | 2013-08-20 | Showa Denko K.K. | Semiconductor device and method of manufacturing the same |
JP2013026380A (en) * | 2011-07-20 | 2013-02-04 | Disco Abrasive Syst Ltd | Processing method |
WO2022186192A1 (en) * | 2021-03-02 | 2022-09-09 | 三菱電機株式会社 | Semiconductor element, electric power conversion device, and manufacturing method for semiconductor element |
Also Published As
Publication number | Publication date |
---|---|
JP4465760B2 (en) | 2010-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2661089B2 (en) | Material layer flattening method | |
JP2831745B2 (en) | Semiconductor device and manufacturing method thereof | |
US5262346A (en) | Nitride polish stop for forming SOI wafers | |
JP2000183157A (en) | Manufacture of soi wafer | |
JP2000331899A (en) | Method for forming soi wafer and soi wafer | |
JP2001177096A (en) | Vertical semiconductor device, and manufacturing method thereof | |
US20050136615A1 (en) | Methods of forming polished material and methods of forming isolation regions | |
JPH08250713A (en) | Insulated-gate field-effect transistor and manufacture thereof | |
JPS6118148A (en) | Manufacture of semiconductor device | |
US4030952A (en) | Method of MOS circuit fabrication | |
CN1941386A (en) | Semiconductor device | |
JPH0530052B2 (en) | ||
CN111029297B (en) | Method for forming semiconductor device | |
JPH0621054A (en) | Manufacture of integrated circuit provided with flattened polycrystalline silicon gate | |
JPS59150421A (en) | Manufacture of semiconductor device | |
JP4651172B2 (en) | Manufacturing method of semiconductor device | |
JPH08330553A (en) | Soi wafer and manufacture of semiconductor integrated circuit device using the same | |
JP2001144273A (en) | Method for fabricating semiconductor device | |
JPH0645429A (en) | Manufacture of semiconductor device | |
JP2709200B2 (en) | Method for manufacturing semiconductor device | |
JPH06124944A (en) | Semiconductor device | |
JPH09181077A (en) | Semiconductor device and manufacturing method thereof | |
JPS63257244A (en) | Semiconductor device and manufacture thereof | |
JPH02268443A (en) | Semiconductor device | |
JPH05304150A (en) | Fabrication of semiconductor integrated circuit device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060117 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081216 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091020 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100215 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4465760 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |