JP2006024673A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
JP2006024673A
JP2006024673A JP2004200300A JP2004200300A JP2006024673A JP 2006024673 A JP2006024673 A JP 2006024673A JP 2004200300 A JP2004200300 A JP 2004200300A JP 2004200300 A JP2004200300 A JP 2004200300A JP 2006024673 A JP2006024673 A JP 2006024673A
Authority
JP
Japan
Prior art keywords
substrate
film
base
silicon
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004200300A
Other languages
Japanese (ja)
Inventor
Shingo Hashizume
真吾 橋詰
Hidekazu Nakamura
秀和 中村
Shigetoshi Soda
茂稔 曽田
Tomonari Ota
朋成 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004200300A priority Critical patent/JP2006024673A/en
Publication of JP2006024673A publication Critical patent/JP2006024673A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process in which the warp or the like of a semiconductor substrate caused by stress by an insulating film or the like deposited on a substrate surface is prevented and the cracking and breaking of the substrate are reduced when the rear of the substrate is polished and worked. <P>SOLUTION: A pnp bipolar transistor is formed on the p<SP>+</SP>-type silicon substrate 1, and an opening for a base-contact diffusion is formed to a silicon oxide film 6 on the silicon substrate 1. P (phosphorus) as an n-type impurity source is diffused at 920°C, and a base-contact diffusion region 5 is formed. A PSG film 7 as a passivation film is formed on the whole surface of the silicon substrate 1 by a CVD method, and the PSG film is fined by a heat treatment at 800°C. The silicon oxide film 6 is etched, and base and emitter contact windows 11 are formed. A metallic film 12 is evaporated and formed on the silicon substrate 1, a polishing is conducted from the rear of the substrate 1, and the substrate is thinned. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体基板にトランジスタを形成するプロセスにおいて、裏面をグラインド等で研磨する際の加工割れを低減できる半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device capable of reducing processing cracks when a back surface is polished by grinding or the like in a process of forming a transistor on a semiconductor substrate.

従来のPNPトランジスタの構造図の一例を図3に、その製造工程説明図を図4、図5に示す(例えば、特許文献1、2参照)。   An example of a structure diagram of a conventional PNP transistor is shown in FIG. 3, and an explanatory diagram of the manufacturing process is shown in FIGS. 4 and 5 (see, for example, Patent Documents 1 and 2).

図3において、PNPトランジスタはP+型シリコン基板1に形成されており、コレクタ領域2となるP-型エピタキシャル層、ベース領域3となるN型拡散層、エミッタ領域4となるP型拡散層、ベースコンタクト領域5となるN+型拡散層、シリコン酸化膜6、PSGパッシベーション膜7、エミッタ電極8、ベース電極9、コレクタ電極10で構成されている。 In FIG. 3, the PNP transistor is formed on a P + type silicon substrate 1, and includes a P type epitaxial layer serving as a collector region 2, an N type diffusion layer serving as a base region 3, a P type diffusion layer serving as an emitter region 4, The base contact region 5 includes an N + -type diffusion layer, a silicon oxide film 6, a PSG passivation film 7, an emitter electrode 8, a base electrode 9, and a collector electrode 10.

このPNPトランジスタは、以下の工程によって製造される。   This PNP transistor is manufactured by the following process.

+型シリコン基板1にコレクタ領域2となるP-型エピタキシャル層を形成し、コレクタ領域2内にベース領域3となるN型拡散層を形成する。シリコン基板1にシリコン酸化膜6を形成した後、シリコン酸化膜6のうちベース領域3上の領域にエミッタ領域形成用の開口部を形成する。 A P type epitaxial layer to be the collector region 2 is formed on the P + type silicon substrate 1, and an N type diffusion layer to be the base region 3 is formed in the collector region 2. After the silicon oxide film 6 is formed on the silicon substrate 1, an emitter region forming opening is formed in a region on the base region 3 in the silicon oxide film 6.

上記加工が施されたシリコン基板1の近傍にエミッタP型不純物源となるボロンナイトライド板を配置し、O2/N2雰囲気中で1050℃の高温処理を行うことで、開口部からシリコン基板1内にボロンを拡散させて深さ2μm程度の浅いエミッタ拡散領域4を形成する。この際、シリコン酸化膜6の表面の一部およびエミッタ拡散領域4における基板表面が露出した部分がボロンを含んだ窒化シリコン膜13となる(図4(a))。 A boron nitride plate serving as an emitter P-type impurity source is disposed in the vicinity of the silicon substrate 1 subjected to the above-described processing, and a high temperature treatment at 1050 ° C. is performed in an O 2 / N 2 atmosphere, so that the silicon substrate is opened from the opening. Boron is diffused into 1 to form a shallow emitter diffusion region 4 having a depth of about 2 μm. At this time, a part of the surface of the silicon oxide film 6 and a portion of the emitter diffusion region 4 where the substrate surface is exposed become the silicon nitride film 13 containing boron (FIG. 4A).

次に、シリコン基板1をN2雰囲気中で1150℃の熱処理をして、深さ6μm程度の深いエミッタ領域4’を形成する(図4(b))。 Next, the silicon substrate 1 is heat-treated at 1150 ° C. in an N 2 atmosphere to form a deep emitter region 4 ′ having a depth of about 6 μm (FIG. 4B).

シリコン基板1上のシリコン酸化膜6にベースコンタクト拡散用の開口部形成し、N型不純物源のP(リン)を920℃で拡散し、ベースコンタクト拡散領域5を形成する(図4(c))。シリコン基板1の表面全体にパッシベーション膜となるP(リン)をドープした酸化シリコン膜(以下、PSG膜という)7をCVD法により形成し、800℃の熱処理によりPSG膜の緻密化を行う(図5(d))。   An opening for base contact diffusion is formed in the silicon oxide film 6 on the silicon substrate 1, and P (phosphorus) of an N-type impurity source is diffused at 920 ° C. to form a base contact diffusion region 5 (FIG. 4C). ). A silicon oxide film (hereinafter referred to as a PSG film) 7 doped with P (phosphorus) serving as a passivation film is formed on the entire surface of the silicon substrate 1 by CVD, and the PSG film is densified by heat treatment at 800 ° C. (FIG. 5 (d)).

次に、ベース及びエミッタコンタクト窓11を形成し(図5(e))、エミッタ電極8、ベース電極9を形成する(図5(f))。P型半導体基板1の裏面から研磨して、その後半導体基板の裏面にコレクタ電極10を形成してPNPトランジスタを形成した半導体基板が完成する。
特開昭53−123673号公報 特開昭62−154737号公報
Next, a base and emitter contact window 11 is formed (FIG. 5E), and an emitter electrode 8 and a base electrode 9 are formed (FIG. 5F). Polishing is performed from the back surface of the P-type semiconductor substrate 1, and then the collector electrode 10 is formed on the back surface of the semiconductor substrate to complete the semiconductor substrate on which the PNP transistor is formed.
JP-A-53-123673 Japanese Patent Laid-Open No. Sho 62-154737

トランジスタは動作する際に自ら熱を発生し、その直流増幅特性やスイッチング特性に悪影響を及ぼす。特にパワートランジスタにおいては、放熱性が高いことが望まれるために、トランジスタを形成した半導体基板を極力薄くする必要がある。   When a transistor operates, it generates heat by itself and adversely affects its DC amplification characteristics and switching characteristics. In particular, in a power transistor, since it is desired that heat dissipation is high, it is necessary to make the semiconductor substrate on which the transistor is formed as thin as possible.

しかし、図3に示すように、トランジスタを形成した半導体基板を薄くするために、半導体基板の裏面を研磨するが、研磨加工時に研磨により半導体基板裏面に発生する歪や撓み等により半導体基板に割れや欠けが発生し、半導体基板が破損し、歩留りや品質を低下させる問題が発生する。   However, as shown in FIG. 3, in order to make the semiconductor substrate on which the transistor is formed thin, the back surface of the semiconductor substrate is polished, but the semiconductor substrate is cracked due to distortion or deflection generated on the back surface of the semiconductor substrate during polishing. As a result, chipping occurs, the semiconductor substrate is damaged, and the yield and quality deteriorate.

上記課題を解決するため、本発明の半導体装置の製造方法は、半導体素子を形成した半導体基板の表面全体に金属膜を形成する工程と、前記金属膜で覆われた前記半導体基板の裏面を研磨して前記半導体基板を薄くする工程を備えている。   In order to solve the above problems, a method of manufacturing a semiconductor device according to the present invention includes a step of forming a metal film on the entire surface of a semiconductor substrate on which a semiconductor element is formed, and polishing a back surface of the semiconductor substrate covered with the metal film. And a step of thinning the semiconductor substrate.

前記研磨工程の後に、前記金属膜をパターニングして前記半導体素子の電極あるいは配線を形成する工程を備えているのが好ましい。   It is preferable that a step of patterning the metal film to form an electrode or a wiring of the semiconductor element is provided after the polishing step.

前記半導体基板の表面に前記金属膜と異なる絶縁層あるいは金属層が形成されており、前記金属膜を形成することによって、前記絶縁層あるいは金属層によって前記半導体基板に加えられた応力が緩和されることがさらに好ましい。   An insulating layer or a metal layer different from the metal film is formed on the surface of the semiconductor substrate, and the stress applied to the semiconductor substrate by the insulating layer or the metal layer is relieved by forming the metal film. More preferably.

本発明は、トランジスタのベース及びエミッタ電極として使用する金属膜を蒸着した状態で、半導体基板の裏面を研磨することで、研磨時に半導体裏面に発生する歪や撓みを緩和でき、結果として半導体基板の割れや欠けを低減でき、歩留りや品質の安定したトランジスタを形成することができる。   In the present invention, by polishing the back surface of the semiconductor substrate in a state where the metal film used as the base and emitter electrodes of the transistor is deposited, distortion and deflection generated on the back surface of the semiconductor during polishing can be reduced. Breaking and chipping can be reduced, and a transistor with stable yield and quality can be formed.

本発明によれば、裏面研磨加工によって半導体基板強度が低下した場合にも、基板の割れや欠けの発生を防止でき、歩留まりを向上させることができる。   According to the present invention, even when the strength of the semiconductor substrate is reduced due to the back surface polishing, it is possible to prevent the substrate from being cracked or chipped and to improve the yield.

本発明の実施の形態におけるPNPトランジスタの製造工程説明図を図1、図2に示す。   FIGS. 1 and 2 are explanatory diagrams of the manufacturing process of the PNP transistor in the embodiment of the present invention.

+型シリコン基板1にコレクタ領域2となるP-型エピタキシャル層を、コレクタ領域2内にベース領域3となるN型拡散層を形成した後、シリコン酸化膜6を堆積する。ベース領域3上の酸化シリコン膜6にエミッタ領域形成用の開口部を形成し、熱処理炉(図示せず)内で、シリコン基板1とエミッタP型不純物源となるボロンナイトライド板を交互に配置し、O2とN2雰囲気中で1050℃の高温処理を行うことで、基板1の表面にボロンを含んだ窒化シリコン膜13と深さ2μm程度の浅いエミッタ拡散領域4を形成する(図1(a))。 After forming a P type epitaxial layer to be the collector region 2 on the P + type silicon substrate 1 and an N type diffusion layer to be the base region 3 in the collector region 2, a silicon oxide film 6 is deposited. An opening for forming an emitter region is formed in the silicon oxide film 6 on the base region 3, and the silicon substrate 1 and a boron nitride plate serving as an emitter P-type impurity source are alternately arranged in a heat treatment furnace (not shown). Then, a silicon nitride film 13 containing boron and a shallow emitter diffusion region 4 having a depth of about 2 μm are formed on the surface of the substrate 1 by performing a high temperature treatment at 1050 ° C. in an O 2 and N 2 atmosphere (FIG. 1). (A)).

続けて、シリコン基板1をN2雰囲気中で1150℃の高温処理を行うことにより深さ6μm程度の深いエミッタ領域4’を形成する(図1(b))。 Subsequently, the silicon substrate 1 is subjected to a high-temperature treatment at 1150 ° C. in an N 2 atmosphere to form a deep emitter region 4 ′ having a depth of about 6 μm (FIG. 1B).

シリコン基板1上のシリコン酸化膜6にベースコンタクト拡散用の開口部を形成し、N型不純物源のP(リン)を920℃で拡散し、ベースコンタクト拡散領域5を形成する(図1(c))。   An opening for base contact diffusion is formed in the silicon oxide film 6 on the silicon substrate 1, and P (phosphorus) of an N-type impurity source is diffused at 920 ° C. to form a base contact diffusion region 5 (FIG. 1 (c) )).

シリコン基板1全面にパッシベーション膜となるPSG膜7をCVD法により形成し、800℃の熱処理によりPSG膜の緻密化を行う(図2(d))。   A PSG film 7 serving as a passivation film is formed on the entire surface of the silicon substrate 1 by CVD, and the PSG film is densified by heat treatment at 800 ° C. (FIG. 2D).

次にシリコン酸化膜6をエッチングしてベース及びエミッタコンタクト窓11を形成する(図2(e))。   Next, the silicon oxide film 6 is etched to form a base and emitter contact window 11 (FIG. 2E).

シリコン基板1上に金属膜12を蒸着形成し、基板1の裏面から研磨を行い、基板を薄くする(図2(f))。   A metal film 12 is deposited on the silicon substrate 1 and polished from the back surface of the substrate 1 to thin the substrate (FIG. 2 (f)).

その後、金属膜12を加工して、シリコン基板1の表面にエミッタ電極8、ベース電極9を形成し、シリコン基板1の裏面にコレクタ電極10を形成してPNPトランジスタを形成する(図2(g))。   Thereafter, the metal film 12 is processed to form an emitter electrode 8 and a base electrode 9 on the surface of the silicon substrate 1, and a collector electrode 10 is formed on the back surface of the silicon substrate 1 to form a PNP transistor (FIG. 2 (g) )).

本実施の形態によれば、基板表面に金属膜を全面的に形成されているので、それまでの工程、特にPSG膜の堆積および緻密化に伴って基板に加わった応力を緩和することができ、その状態でP型シリコン基板1の裏面研磨を行うため、基板の割れや欠けを抑制できる。   According to the present embodiment, since the metal film is formed on the entire surface of the substrate, the stress applied to the substrate due to the steps up to that point, particularly the deposition and densification of the PSG film, can be relaxed. In this state, the backside polishing of the P-type silicon substrate 1 is performed, so that cracking and chipping of the substrate can be suppressed.

このことについてもう少し詳しく説明する。   This will be explained in a little more detail.

半導体素子は、半導体基板上にいろいろな種類の膜を堆積し、それらを加工することによって形成されるが、堆積された膜の応力が基板に加わることにより、基板に反りを生じる。基板が数百μmと十分に厚いときは膜応力による反り量も小さいが、裏面研磨等を行って基板が100μm程度まで薄くなると基板の反り量も大きくなり、基板の機械的強度が大きく低下してしまう。このような状態で基板の追加加工や搬送等を行うとその衝撃で基板の割れや欠けを生じ製品歩留まりが大きく低下してしまう。   A semiconductor element is formed by depositing various types of films on a semiconductor substrate and processing them. However, when the stress of the deposited film is applied to the substrate, the substrate is warped. When the substrate is sufficiently thick at several hundred μm, the amount of warpage due to film stress is small, but when the substrate is thinned to about 100 μm by performing backside polishing etc., the amount of warpage of the substrate increases and the mechanical strength of the substrate decreases greatly End up. If additional processing or conveyance of the substrate is performed in such a state, the impact causes the substrate to be cracked or chipped, resulting in a significant decrease in product yield.

一方、本実施の形態のように、基板上に形成された膜応力の総和が小さくなった状態で裏面研磨を行えば、基板が薄くなっても反り量自体を小さくでき、基板の割れや欠けを防止できる。このことにより、製品歩留まりが大きく向上するのである。   On the other hand, if the back surface polishing is performed with the total film stress formed on the substrate being small as in this embodiment, the warpage amount itself can be reduced even if the substrate is thin, and the substrate is cracked or chipped. Can be prevented. This greatly improves the product yield.

また、本実施の形態のように金属膜を裏面研磨後に加工して配線や電極となせば、プロセスの簡略化が図れ、コスト低減にもつながる。   Further, if the metal film is processed after the back surface polishing to form wirings and electrodes as in this embodiment, the process can be simplified and the cost can be reduced.

表1に従来と本発明の製造方法による半導体基板の割れ及び欠けの発生率比較を示す。   Table 1 shows a comparison of the occurrence rate of cracks and chips in a semiconductor substrate according to the conventional method and the manufacturing method of the present invention.

Figure 2006024673
Figure 2006024673

表1からわかるように本発明の方法によれば、基板の割れ、欠けともに半減できることがわかった。   As can be seen from Table 1, according to the method of the present invention, it was found that both cracking and chipping of the substrate can be halved.

なお、本実施の形態ではPNPトランジスタが形成された場合を例にとって説明したが、その他の半導体素子、例えば、ダイオードやMOSトランジスタなどが形成されていてもよい。   In this embodiment, the case where the PNP transistor is formed has been described as an example. However, other semiconductor elements such as a diode or a MOS transistor may be formed.

また、トランジスタ等を接続する配線としてWSixやW配線を用いた場合にも、基板へ引っ張り応力が強く加わるが、Al等の圧縮応力を有する膜を堆積して、そのまま研磨すれば本実施の形態と同様の効果を奏する。 Also, when WSi x or W wiring is used as a wiring for connecting a transistor or the like, a tensile stress is strongly applied to the substrate, but if a film having a compressive stress such as Al is deposited and polished as it is, this embodiment There is an effect similar to the form.

本発明の半導体装置の製造方法は、基板の裏面研磨等で生じる割れや欠けを防止でき、低コストの製造が図れる方法として有用である。   The method for manufacturing a semiconductor device of the present invention is useful as a method that can prevent cracking and chipping caused by backside polishing of a substrate and can be manufactured at low cost.

本発明の実施の形態におけるPNPトランジスタの製造工程説明図Manufacturing process explanatory drawing of the PNP transistor in embodiment of this invention 本発明の実施の形態におけるPNPトランジスタの製造工程説明図Manufacturing process explanatory drawing of the PNP transistor in embodiment of this invention PNPトランジスタの断面構造図Cross-sectional structure of PNP transistor 従来のPNPトランジスタの製造方法を示す図The figure which shows the manufacturing method of the conventional PNP transistor 従来のPNPトランジスタの製造方法を示す図The figure which shows the manufacturing method of the conventional PNP transistor

符号の説明Explanation of symbols

1 P+型シリコン基板
2 コレクタ領域
3 ベース領域
4 エミッタ領域
4’ 深いエミッタ領域
5 ベースコンタクト領域
6 シリコン酸化膜
7 PSGパッシベーション膜
8 エミッタ電極
9 ベース電極
10 コレクタ電極
11 コンタクト窓
12 金属膜
1 P + type silicon substrate 2 Collector region 3 Base region 4 Emitter region 4 'Deep emitter region 5 Base contact region 6 Silicon oxide film 7 PSG passivation film 8 Emitter electrode 9 Base electrode 10 Collector electrode 11 Contact window 12 Metal film

Claims (3)

半導体素子を形成した半導体基板の表面全体に金属膜を形成する工程と、
前記金属膜で覆われた前記半導体基板の裏面を研磨して前記半導体基板を薄くする工程を備えた半導体装置の製造方法。
Forming a metal film over the entire surface of the semiconductor substrate on which the semiconductor element is formed;
A method of manufacturing a semiconductor device, comprising: a step of polishing a back surface of the semiconductor substrate covered with the metal film to thin the semiconductor substrate.
前記研磨工程の後に、前記金属膜をパターニングして前記半導体素子の電極あるいは配線を形成する工程を備えた請求項1記載の半導体装置の製造方法。 2. The method for manufacturing a semiconductor device according to claim 1, further comprising a step of forming an electrode or a wiring of the semiconductor element by patterning the metal film after the polishing step. 前記半導体基板の表面に前記金属膜と異なる絶縁層あるいは金属層が形成されており、
前記金属膜を形成することによって、前記絶縁層あるいは金属層によって前記半導体基板に加えられた応力が緩和されることを特徴とする請求項1または2記載の半導体装置の製造方法。
An insulating layer or a metal layer different from the metal film is formed on the surface of the semiconductor substrate,
3. The method of manufacturing a semiconductor device according to claim 1, wherein the stress applied to the semiconductor substrate by the insulating layer or the metal layer is relaxed by forming the metal film.
JP2004200300A 2004-07-07 2004-07-07 Manufacturing method for semiconductor device Pending JP2006024673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200300A JP2006024673A (en) 2004-07-07 2004-07-07 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004200300A JP2006024673A (en) 2004-07-07 2004-07-07 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JP2006024673A true JP2006024673A (en) 2006-01-26

Family

ID=35797748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200300A Pending JP2006024673A (en) 2004-07-07 2004-07-07 Manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JP2006024673A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258329A (en) * 1988-08-24 1990-02-27 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2001177096A (en) * 1999-12-14 2001-06-29 Fuji Electric Co Ltd Vertical semiconductor device, and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258329A (en) * 1988-08-24 1990-02-27 Mitsubishi Electric Corp Manufacture of semiconductor device
JP2001177096A (en) * 1999-12-14 2001-06-29 Fuji Electric Co Ltd Vertical semiconductor device, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN100524630C (en) Gate electrode dopant activation method for semiconductor manufacturing
JPH077005A (en) Adjustment of semiconductor wafer for uniform and repeatable high-speed heat treatment
JP2011091100A (en) Method of manufacturing silicon carbide semiconductor device
CN1297256A (en) Semiconductor device and its mfg. method
US20100186808A1 (en) Plating through tunnel dielectrics for solar cell contact formation
CN1581439A (en) Semiconductor device and method for manufacturing semiconductor device
CN113436969A (en) Method for manufacturing semiconductor device
CN1508840A (en) Medium separable semiconductor device and its manufactruing method
JP5866827B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
US20100193900A1 (en) Soi substrate and semiconductor device using an soi substrate
US20040063263A1 (en) Manufacturing method of semiconductor devices
CN106575610B (en) Method for manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
JP2915433B2 (en) Semiconductor integrated circuit device
JP2006024673A (en) Manufacturing method for semiconductor device
TWI337390B (en) Method for semiconductor device performance enhancement
JP2003197633A (en) Manufacturing method for semiconductor device
JP4834309B2 (en) Manufacturing method of semiconductor device
JPH0529250A (en) Silicon carbide semiconductor device
JP2006059929A (en) Method of manufacturing semiconductor device
JP2002100773A (en) Semiconductor device and its manufacturing method
WO2009094570A2 (en) Plating through tunnel dielectrics for solar cell contact formation
JP6708087B2 (en) Method of manufacturing semiconductor device
CN114551323B (en) Semiconductor device and forming method
JPH06224290A (en) Manufacture of semiconductor device
US10784109B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

RD01 Notification of change of attorney

Effective date: 20070820

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A02 Decision of refusal

Effective date: 20101228

Free format text: JAPANESE INTERMEDIATE CODE: A02