JPS6150326A - Semiconductor crystal growing device - Google Patents

Semiconductor crystal growing device

Info

Publication number
JPS6150326A
JPS6150326A JP17153884A JP17153884A JPS6150326A JP S6150326 A JPS6150326 A JP S6150326A JP 17153884 A JP17153884 A JP 17153884A JP 17153884 A JP17153884 A JP 17153884A JP S6150326 A JPS6150326 A JP S6150326A
Authority
JP
Japan
Prior art keywords
molecular beam
source element
beam source
reflection
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17153884A
Other languages
Japanese (ja)
Other versions
JPH0237692B2 (en
Inventor
Akihiro Shibatomi
昭洋 柴富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17153884A priority Critical patent/JPS6150326A/en
Publication of JPS6150326A publication Critical patent/JPS6150326A/en
Publication of JPH0237692B2 publication Critical patent/JPH0237692B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable to grow a crystal layer, having uniform film thickness, on the whole surface of a substrate in a short period of time by a method wherein the molecular beam, evaporated from a vertical molecular beam element reservoir part, is radiated by the help of the action of a molecular beam reflection accelerating plate, a radiant aperture part and the like. CONSTITUTION:The molecular beam source element reservoir part 1 and the molecular beam source element 2 evaporating from the above-mentioned reservoir part 1 are reflection-accelerated in the direction of the substrate to be crystal-grown. The molecular beam reflection accelerating plate 4, which can be moved in the arbitrary direction for a normal, and a radiant aperture part 6 with which the direction of the above-mentioned molecular beam is controlled are provided. The temperature of the molecular beam reflection accelerating plate 4 is maintained higher than that of the molecular beam source element reservoir part 1, and the molecular beam source element is set in such a manner that its incidence angle and radiation angle are equalized. The film thickness of the crystal layer can be made uniform by moving periodically or irregularly the molecular beam reflection accelerating plate 4 in vertical and horizontal directions or in a circular manner by the help of the action of a driving part 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分子線エピタキシャル成長(molecul
ar  beam  epitaxy:MBE)法を実
施するのに好適な半導体結晶成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to molecular beam epitaxial growth (molecular beam epitaxial growth).
The present invention relates to a semiconductor crystal growth apparatus suitable for performing an ar beam epitaxy (MBE) method.

〔従来の技術〕[Conventional technology]

一般に、MBE法を適用して良好な結晶層を得る為には
、分子線の安定化が必要である。
Generally, in order to obtain a good crystal layer by applying the MBE method, it is necessary to stabilize the molecular beam.

ところで、分子線を安定化する為には、分子線の放射面
積、放射位置、放射方向が常に一定且つ均一でなければ
ならない。
By the way, in order to stabilize the molecular beam, the radiation area, radiation position, and radiation direction of the molecular beam must always be constant and uniform.

第2図はMBE法を実施する半導体結晶成長装置の従来
例を表す要部説明図である。
FIG. 2 is an explanatory diagram of the main parts of a conventional example of a semiconductor crystal growth apparatus that implements the MBE method.

図に於いて、lは窒化硼素(BN)で作製された分子線
源元素溜め部分、2は分子線源元素、3はヒータ、7は
被結晶成長基板をそれぞれ示している。
In the figure, 1 indicates a molecular beam source element reservoir portion made of boron nitride (BN), 2 indicates a molecular beam source element, 3 indicates a heater, and 7 indicates a crystal growth substrate.

図示の半導体結晶成長装置に於ける元素溜め部分1は、
対象とする元素に依って相違するが、約400[’C)
から1500(’C)程度の範囲で選択された温度とな
るようにヒータ3で加熱され、それに依り得られた分子
が飛び出して基板7に堆積する。
The element reservoir portion 1 in the illustrated semiconductor crystal growth apparatus is
It varies depending on the target element, but about 400['C]
It is heated by a heater 3 to a temperature selected within a range of about 1,500 ('C) to about 1,500 ('C), and the resulting molecules fly out and deposit on the substrate 7.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図に示した半導体結晶成長装置では、トランペット
型ノズルを有する元素溜め部分1を斜めに配置しである
為、分子線源元素2の表面は、元素溜め部分1の軸線に
対して斜めになっている。
In the semiconductor crystal growth apparatus shown in FIG. 2, the element reservoir section 1 having a trumpet-shaped nozzle is arranged obliquely, so the surface of the molecular beam source element 2 is obliquely aligned with respect to the axis of the element reservoir section 1. It has become.

従って、分子発生源の絶対多数方向が基板7に向かう方
向に対して必ずしも平行になっていず、その結果、分子
線強度が基板7の面内で分布を持つようになり、漫然と
成長を行った場合には、結晶層の層厚が図に破線で示し
であるようなガウシャン分布を持ったものとなる。
Therefore, the absolute majority direction of the molecular source is not necessarily parallel to the direction toward the substrate 7, and as a result, the molecular beam intensity has a distribution within the plane of the substrate 7, and the growth occurs in a random manner. In this case, the thickness of the crystal layer has a Gaussian distribution as shown by the broken line in the figure.

また、成長回数が増大すると、分子線源元素2が消費さ
れる為、その位置、即ち、高さは勿論のこと、基板7ど
の間の距離までが変化し、しかも、表面の面積が変化し
てくるので、それに伴い分子線の方向及び強度が変化し
、成長させた結晶層の膜厚不均一は更に助長される。
Furthermore, as the number of growth increases, the molecular beam source element 2 is consumed, so not only its position, that is, the height, but also the distance between the substrates 7 changes, and furthermore, the surface area changes. As a result, the direction and intensity of the molecular beam change accordingly, further promoting non-uniformity in the thickness of the grown crystal layer.

このように、従来の半導体結晶成長装置に於いて放射さ
れる分子線は安定とは言えない状態にある。
As described above, the molecular beam emitted by the conventional semiconductor crystal growth apparatus is not stable.

前記のような成長結晶層の膜厚不均一を緩和さを充分に
長く採り、分子線の放射が広がったところで結晶成長さ
せることに依り均一な層厚の結晶層を形成することが行
われているが、これでは、結晶成長時間が長くなってし
まい、実用上からは好ましくない。
It is possible to form a crystal layer with a uniform thickness by relaxing the non-uniformity of the thickness of the growing crystal layer for a sufficiently long time and allowing the crystal to grow where the molecular beam radiation spreads. However, this increases the crystal growth time, which is not preferable from a practical point of view.

更に、同様の目的をもって、結晶成長中、基板7を自転
させたり公転させることに依って、分子線を基板全面に
均等に放射させようとすることも行われているが、この
機構がかなり複雑なものであって、若し、このような機
構を不要にすることができれば、この種装置の構成は極
めて簡単化され、低価格なものとなる。
Furthermore, for the same purpose, attempts have been made to emit molecular beams evenly over the entire surface of the substrate by rotating or revolving the substrate 7 during crystal growth, but this mechanism is quite complex. If such a mechanism could be made unnecessary, the configuration of this type of device would be extremely simplified and the cost would be reduced.

更にまた、前記したように元素溜め部分1は斜めに配置
しであるから外形のねりには収容できる元素2の量が少
なく、頻繁に補給しなければならない。
Furthermore, as described above, since the element reservoir portion 1 is arranged diagonally, the amount of the element 2 that can be accommodated in the curve of the outer shape is small and must be replenished frequently.

本発明は、基板全面に亙り膜厚が均一な結晶層を実用上
から見て充分に短い時間で成長させることができ、また
、多量の元素を収容することが可能であると共に機構が
簡単である半導体結晶成長装置を提供する。
The present invention can grow a crystal layer with a uniform thickness over the entire surface of the substrate in a sufficiently short time from a practical point of view, can accommodate a large amount of elements, and has a simple mechanism. A semiconductor crystal growth apparatus is provided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に於ける半導体結晶成長装置では、筒状をなし直
立して配置された分子線源元素溜め部分と、該分子線源
元素溜め部分から蒸発する分子線源元素を被結晶成長基
板方向に反射加速し、且つ法線に対して任意の方向に運
動可能である分子線反射加速板と、該分子線反射加速板
からの分子線の方向を規制する放射開口部分とを備えて
なり、前記分子線反射加速板の温度は前記分子線源元素
溜め部分のそれに比較して高く維持され且つその位置は
法線に対する分子線源元素の入射角と放射角とが等しく
なるように設定されているものである。
The semiconductor crystal growth apparatus according to the present invention includes a cylindrical molecular beam source element reservoir section that is arranged upright, and a molecular beam source element that evaporates from the molecular beam source element reservoir section in the direction of the crystal growth substrate. The method comprises a molecular beam reflection accelerator plate that performs reflection acceleration and is movable in any direction with respect to the normal line, and a radiation aperture portion that regulates the direction of the molecular beam from the molecular beam reflection acceleration plate, The temperature of the molecular beam reflection accelerator plate is maintained higher than that of the molecular beam source element storage portion, and its position is set so that the incident angle and emission angle of the molecular beam source element with respect to the normal line are equal. It is something.

〔作用〕[Effect]

前記手段を採ると、直立して配置された分子線源元素溜
め部分から蒸発した分子線源元素からなる分子線の放射
位置及び強度等は常に安定であって、その安定性は結晶
の成長回数などには依存せず、従って、被結晶成長基板
に成長される結晶層の膜厚は極めて均一性が高く、しか
も、毎回成長に於ける再現性も良い。また、分子線源元
素溜め部分は直立して配置されるので、分子線源元素の
収容量は従来のものに比較して非常に大である。
When the above method is adopted, the radiation position and intensity of the molecular beam made of the molecular beam source element evaporated from the molecular beam source element reservoir part arranged upright is always stable, and the stability depends on the number of times the crystal grows. Therefore, the thickness of the crystal layer grown on the crystal growth substrate is extremely uniform, and the reproducibility in each growth is also good. In addition, since the molecular beam source element storage portion is arranged upright, the storage capacity of the molecular beam source element is much larger than that of the conventional one.

更にまた、被結晶成長基板は固定し、分子線反射加速板
を可動にしている構成である為、その機構は極めて簡素
なものとなる。
Furthermore, since the crystal growth substrate is fixed and the molecular beam reflection accelerator plate is movable, the mechanism is extremely simple.

〔実施例〕〔Example〕

第1図は本発明一実施例の要部切断側面図であり、第2
図に関して説明した部分と同部分は同記号で指示しであ
る。
FIG. 1 is a cutaway side view of essential parts of one embodiment of the present invention, and FIG.
The same parts as those described with respect to the figures are indicated by the same symbols.

図に於いて、4は窒化硼素からなる分子線反射加速板、
5は分子線反射加速板4の駆動部分、6は放射開口部分
、θ1は分子線反射加速板4の法線に対する分子線入射
角、θ2は分子線反射加速板4の法線に対する分子線放
射角、θ3は分子線反射加速板4から見た基板7の仰角
或いは俯角、θ4は分子線反射加速板4から見た基板7
に対する放射開口角、Aは分子線源元素2の表面積をそ
れぞれ示している。
In the figure, 4 is a molecular beam reflection accelerator plate made of boron nitride;
5 is the driving part of the molecular beam reflection accelerator plate 4, 6 is the radiation aperture part, θ1 is the molecular beam incidence angle with respect to the normal line of the molecular beam reflection accelerator plate 4, and θ2 is the molecular beam radiation with respect to the normal line of the molecular beam reflection accelerator plate 4. angle, θ3 is the elevation angle or depression angle of the substrate 7 seen from the molecular beam reflection acceleration plate 4, and θ4 is the substrate 7 seen from the molecular beam reflection acceleration plate 4.
The radiation aperture angle and A indicate the surface area of the molecular beam source element 2, respectively.

本実施例を用いて結晶層を成長させるには、元素溜め部
分1で分子線源元素2を加熱して蒸発させ、その分子線
源元素2の蒸気は分子線の形で分子線反射加速板4に依
り基板7方向に反射及び加速され、基板7に当たって堆
積するものであり、結晶成長の原理自体は従来技術と本
質的に変わりない。
In order to grow a crystal layer using this embodiment, the molecular beam source element 2 is heated and evaporated in the element reservoir 1, and the vapor of the molecular beam source element 2 is transferred in the form of molecular beams to the molecular beam reflection accelerator. The crystal growth principle itself is essentially the same as that of the prior art.

さて、前記説明したように本実施例を用いて結晶層を成
長させる場合、θ1−62.θ4〉θ3なる関係を満足
させることが必要であり、これが分子線の良好な放射を
可能にする一つの条件である。
Now, as explained above, when growing a crystal layer using this embodiment, θ1-62. It is necessary to satisfy the relationship θ4>θ3, and this is one condition that enables good emission of molecular beams.

また、前記条件に加えて、元素溜め部分1に於ける温度
をT1、分子線反射加速板4に於ける温度をT2、放射
開口部分6の温度をT3とした場合、T3≧72>TI
なる条件を満足させることも必要であり、この条件を満
たす限り蒸発した分子線源元素2は分子線反射加速板4
或いは放射開口部分6に付着することはない。
In addition to the above conditions, if the temperature in the element reservoir part 1 is T1, the temperature in the molecular beam reflection accelerator plate 4 is T2, and the temperature in the radiation aperture part 6 is T3, then T3≧72>TI
It is also necessary to satisfy the following conditions, and as long as this condition is satisfied, the evaporated molecular beam source element 2
Otherwise, it does not adhere to the radiation aperture portion 6.

前記した各条件を満足した場合、分子線の放射量及び放
射位置は分子線元素2の表面積Aに比例するので、分子
線の強度及び放射方向は非常に安定となる。
When each of the above conditions is satisfied, the radiation amount and radiation position of the molecular beam are proportional to the surface area A of the molecular beam element 2, so the intensity and radiation direction of the molecular beam are extremely stable.

図から明らかであるが、本発明に於ける元素溜め部分1
は筒状をなし、しがち、垂直に立てた状態に配置するも
のであるがら、第2図に見られる従来例のようにトラン
ペット型のものを傾斜して配置したものと比較すると、
分子線源元素2の収容量が著しく大であり、そして、成
長回数の増加と共に分子線源元素2が消費されても、そ
の表面積Aは常に一定であり、従って、分子線の強度は
分子線源元素2の消費の如何に拘わらず常に安定である
As is clear from the figure, the element reservoir portion 1 in the present invention
Although it has a cylindrical shape and tends to be placed vertically, compared to the conventional example shown in Fig. 2, which is trumpet-shaped and placed at an angle,
The capacity of the molecular beam source element 2 is extremely large, and even if the molecular beam source element 2 is consumed as the number of growth increases, its surface area A is always constant, and therefore the intensity of the molecular beam is It is always stable regardless of how the source element 2 is consumed.

本発明に於ける半導体結晶成長装置の構造に由来する分
子線の安定性については前記した通りであるが、このよ
うな安定性を得る為には、ヒータ3に依る加熱が常に一
定で温度変動がないようにする必要がある。
As mentioned above, the stability of the molecular beam derived from the structure of the semiconductor crystal growth apparatus in the present invention is as described above. It is necessary to make sure that there is no

また、分子線の放射角は分子線反射加速板4の形状に依
って大きく変化する。分子線反射加速板4が平面である
場合、放射される分子線は、分子線反射加速板4から見
た分子線源元素2の表面積へに比例する。分子線反射加
速板4と基板7との距離が短い場合は、分子線放射角を
広げる為に分子線反射加速板4を分子線側に対して凸状
にする必要があり、逆に、前記距離が長い場合は、分子
線放射角を絞る為に分子線反射加速板4を分子線側に対
して凹状にする必要がある。
Furthermore, the radiation angle of the molecular beam varies greatly depending on the shape of the molecular beam reflection accelerator plate 4. When the molecular beam reflection acceleration plate 4 is a flat surface, the emitted molecular beam is proportional to the surface area of the molecular beam source element 2 viewed from the molecular beam reflection acceleration plate 4. When the distance between the molecular beam reflection acceleration plate 4 and the substrate 7 is short, it is necessary to make the molecular beam reflection acceleration plate 4 convex toward the molecular beam side in order to widen the molecular beam radiation angle. If the distance is long, it is necessary to make the molecular beam reflection accelerator plate 4 concave toward the molecular beam side in order to narrow down the molecular beam radiation angle.

分子線の強度は、通常、放射角の中心部分が大であり、
外周に向かうに従い小になる。そこで、従来は、前記説
明したように、基板7を自転及び公転させるなどしてい
たが、本発明では、分子線反射加速板4を駆動部分5の
作用で法線方向に対して上下左右或いは円状を周期的或
いは不規則的に運動させることに依って結晶層の膜厚均
一化を可能にしている。分子線反射加速板4を駆動する
には、基板7を自転成いは公転させるような複雑な歯車
機構など必要ではなく、電磁石などを用いた磁力を利用
することに依り簡単に実現することができる。
The intensity of a molecular beam is usually large at the center of the radiation angle,
It becomes smaller towards the outer periphery. Therefore, in the past, as explained above, the substrate 7 was rotated and revolved, but in the present invention, the molecular beam reflection accelerator plate 4 is moved vertically, horizontally, horizontally, or vertically with respect to the normal direction by the action of the driving part 5. By periodically or irregularly moving the circular shape, it is possible to make the thickness of the crystal layer uniform. In order to drive the molecular beam reflection accelerator plate 4, there is no need for a complicated gear mechanism to rotate or revolve the substrate 7, and it can be easily realized by using magnetic force using an electromagnet or the like. can.

前記したところから理解できると思われるが、本発明で
は、分子線の放射方向及び放射強度は分子線反射加速板
4の形状及び運動状況に依り任意に変化させることが可
能であるから、基板7を固定したまま膜厚が均一な結晶
層を成長させることができ、従って、基板7の支持が容
易であり、また、その設置方向は任意に選択して良い。
As can be understood from the above, in the present invention, the radiation direction and radiation intensity of the molecular beam can be arbitrarily changed depending on the shape and motion condition of the molecular beam reflection accelerator plate 4. A crystal layer having a uniform thickness can be grown while fixing the substrate 7. Therefore, the substrate 7 can be easily supported, and the installation direction can be arbitrarily selected.

〔発明の効果〕〔Effect of the invention〕

本発明の半導体結晶成長装置では、筒状をなし直立して
配置された分子線源元素溜め部分と、該分子線源元素溜
め部分から蒸発する分子X源元素を被結晶成長基板方向
に反射加速し且つ法線に対して任意の方向に運動可能で
ある分子線反射加速板と、該分子線反射加速板からの分
子線の方向を規制する放射開口部分とを備えてなり、前
記分子線反射加速板の温度は前記分子線源元素溜め部分
のそれに比較して高く維持され且つその位置は法線に対
する分子線源元素の入射角と放射角とが等しくなるよう
に設定されている。
In the semiconductor crystal growth apparatus of the present invention, there is provided a molecular beam source element reservoir section that is cylindrical and arranged upright, and a molecular X source element evaporated from the molecular beam source element reservoir section that is reflected and accelerated toward the crystal growth substrate. and a molecular beam reflection accelerator plate that is movable in any direction with respect to the normal line, and a radiation aperture portion that regulates the direction of the molecular beam from the molecular beam reflection acceleration plate. The temperature of the accelerator plate is maintained higher than that of the molecular beam source element storage portion, and its position is set so that the angle of incidence and emission angle of the element of the molecular beam source with respect to the normal are equal.

この構成に依ると、直立された分子線源元素溜め部分か
ら蒸発した分子線源元素からな・る分子線は分子線反射
加速板及び放射開口部分等の作用に依り、分子vAS、
元素溜め部分と被結晶成長基板との距離を長くする等の
措置を要することなく、被結晶成長基板に均一に放射さ
れて全面に亙り均一な厚みを有する結晶層を成長させる
ことが可能である。また、分子線源元素溜め部分が直立
している為、成長回数が増大して分子線源元素が消費さ
れても、その表面積は変わらず、分子線の方向及び強度
は変化しないし、また、分子線源元素の収容量も大であ
るから頻繁に補給する必要はなくなる。更に、被結晶成
長基板は固定であり、分子線反射加速板のみが運動する
構成になっていて、機構は著しく簡単である。
According to this configuration, the molecular beam consisting of the molecular beam source element evaporated from the upright molecular beam source element reservoir section is affected by the molecular vAS,
It is possible to uniformly irradiate the crystal growth substrate and grow a crystal layer having a uniform thickness over the entire surface without requiring measures such as increasing the distance between the element reservoir and the crystal growth substrate. . In addition, since the molecular beam source element reservoir is upright, even if the number of growth increases and the molecular beam source element is consumed, its surface area remains unchanged, and the direction and intensity of the molecular beam do not change. Since the capacity of the molecular beam source element is large, there is no need for frequent replenishment. Furthermore, the crystal growth substrate is fixed and only the molecular beam reflection accelerator plate moves, so the mechanism is extremely simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例の要部切断側面図、第2図は従
来例の要部説明図をそれぞれ表している。 図に於いて、1は分子線源元素溜め部分、2は1   
     分子線源元素、3はヒータ、4は分子線反射
加速板、5は駆動部分、6は放射開口部分、θ1は分子
線反射加速Fi4の法線に対する分子線入射角、θ2は
同じく分子線放射角、θ3は分子線反射加速板4から見
た基Fi7の仰角或いは俯角、θ4は分子線反射加速板
4から見た基板7に対する放射開口角、Aは分子線源元
素2の表面積をそれぞれ示している。 特許出願人   冨士通株式会社 代理人弁理士  相 谷 昭 司 代理人弁理士  渡 邊 弘 − 第2図
FIG. 1 is a cutaway side view of a main part of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a main part of a conventional example. In the figure, 1 is the molecular beam source element reservoir, and 2 is 1
Molecular beam source element, 3 is a heater, 4 is a molecular beam reflection acceleration plate, 5 is a driving part, 6 is a radiation aperture part, θ1 is a molecular beam incidence angle with respect to the normal to molecular beam reflection acceleration Fi4, and θ2 is also a molecular beam radiation angle, θ3 is the elevation angle or depression angle of the group Fi7 seen from the molecular beam reflection acceleration plate 4, θ4 is the radiation aperture angle with respect to the substrate 7 seen from the molecular beam reflection acceleration plate 4, and A is the surface area of the molecular beam source element 2. ing. Patent Applicant Fujitsu Co., Ltd. Representative Patent Attorney Shoji Aitani Representative Patent Attorney Hiroshi Watanabe - Figure 2

Claims (1)

【特許請求の範囲】[Claims] 筒状をなし直立して配置された分子線源元素溜め部分と
、該分子線源元素溜め部分から蒸発する分子線源元素を
被結晶成長基板方向に反射加速し且つ法線に対して任意
の方向に運動可能である分子線反射加速板と、該分子線
反射加速板からの分子線の方向を規制する放射開口部分
とを備えてなり、前記分子線反射加速板の温度は前記分
子線源元素溜め部分のそれに比較して高く維持され且つ
その位置は法線に対する分子線源元素の入射角と放射角
とが等しくなるように設定されてなることを特徴とする
半導体結晶成長装置。
A cylindrical molecular beam source element reservoir section is arranged upright, and the molecular beam source element evaporated from the molecular beam source element reservoir section is reflected and accelerated in the direction of the substrate to be crystal grown, and at an arbitrary angle relative to the normal. It is equipped with a molecular beam reflection acceleration plate that can move in the direction of the molecular beam reflection acceleration plate, and a radiation aperture portion that regulates the direction of the molecular beam from the molecular beam reflection acceleration plate, and the temperature of the molecular beam reflection acceleration plate is adjusted according to the molecular beam source. 1. A semiconductor crystal growth apparatus characterized in that the element reservoir portion is maintained at a higher level than that of the element reservoir portion, and the position thereof is set so that the incident angle and the emission angle of the molecular beam source element with respect to the normal line are equal.
JP17153884A 1984-08-20 1984-08-20 Semiconductor crystal growing device Granted JPS6150326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17153884A JPS6150326A (en) 1984-08-20 1984-08-20 Semiconductor crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17153884A JPS6150326A (en) 1984-08-20 1984-08-20 Semiconductor crystal growing device

Publications (2)

Publication Number Publication Date
JPS6150326A true JPS6150326A (en) 1986-03-12
JPH0237692B2 JPH0237692B2 (en) 1990-08-27

Family

ID=15924978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17153884A Granted JPS6150326A (en) 1984-08-20 1984-08-20 Semiconductor crystal growing device

Country Status (1)

Country Link
JP (1) JPS6150326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057611A (en) * 1983-08-09 1985-04-03 Fujitsu Ltd Shutter of molecular beam source
JPS63297294A (en) * 1987-05-28 1988-12-05 Jeol Ltd Device for molecular-beam epitaxy
US7907739B2 (en) 2006-07-12 2011-03-15 Micro-Star Int'l Co., Ltd. Method of volume controlling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122766U (en) * 1978-02-15 1979-08-28
JPS54162454A (en) * 1978-06-14 1979-12-24 Fujitsu Ltd Molecular beam generating unit
JPS57156031A (en) * 1981-03-20 1982-09-27 Matsushita Electric Ind Co Ltd Formation of thin film and vacuum deposition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122766U (en) * 1978-02-15 1979-08-28
JPS54162454A (en) * 1978-06-14 1979-12-24 Fujitsu Ltd Molecular beam generating unit
JPS57156031A (en) * 1981-03-20 1982-09-27 Matsushita Electric Ind Co Ltd Formation of thin film and vacuum deposition device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057611A (en) * 1983-08-09 1985-04-03 Fujitsu Ltd Shutter of molecular beam source
JPH0554253B2 (en) * 1983-08-09 1993-08-12 Fujitsu Ltd
JPS63297294A (en) * 1987-05-28 1988-12-05 Jeol Ltd Device for molecular-beam epitaxy
US7907739B2 (en) 2006-07-12 2011-03-15 Micro-Star Int'l Co., Ltd. Method of volume controlling

Also Published As

Publication number Publication date
JPH0237692B2 (en) 1990-08-27

Similar Documents

Publication Publication Date Title
GB2181459A (en) Method and apparatus for substrate heating in an axially symmetric epitaxial deposition apparatus
JP2003160855A (en) Thin-film forming apparatus
JPS6150326A (en) Semiconductor crystal growing device
US5074246A (en) Device to cover a flat surface with a layer of uniform thickness
CN100519827C (en) Method of forming film on substrate
Kuzanyan et al. Pulsed Laser Deposition of Large‐Area Thin Films and Coatings
JPH03208887A (en) Molecular beam epitaxial growth method
CN1591783A (en) Molecular beam epitaxy growth apparatus and method of controlling same
JP2772533B2 (en) Thin film growth method
JPS6270568A (en) Sputtering method
KR20060040827A (en) Method of deposition and deposition apparatus for that method
CN114000191B (en) System and method for uniformly heating molecular beam epitaxy
JPH0151814B2 (en)
JPH0431392A (en) Device for growing molecular beam crystal
JP2765880B2 (en) MBE equipment
TW202346623A (en) Method of using a thermal laser evaporation system and thermal laser evaporation system
JPS62219511A (en) Molecular beam generation equipment
JPS61141697A (en) Molecular beam source for molecular beam crystal growth device
JPS6267167A (en) Apparatus for forming thin film
JPS60225421A (en) Evaporation source crucible for molecular beam epitaxy
JPH01239094A (en) Method for crystal growth
JPH05186293A (en) Molecular beam source cell and method for growing crystal
JPS62106616A (en) Molecular beam epitaxial deposition device
JPS6158889A (en) Crystal growth device
JPS63192860A (en) Boat for vacuum deposition