JPH0431392A - Device for growing molecular beam crystal - Google Patents

Device for growing molecular beam crystal

Info

Publication number
JPH0431392A
JPH0431392A JP13344990A JP13344990A JPH0431392A JP H0431392 A JPH0431392 A JP H0431392A JP 13344990 A JP13344990 A JP 13344990A JP 13344990 A JP13344990 A JP 13344990A JP H0431392 A JPH0431392 A JP H0431392A
Authority
JP
Japan
Prior art keywords
mounting surface
molecular beam
substrate mounting
substrate attached
attached face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13344990A
Other languages
Japanese (ja)
Inventor
Hiroshi Okada
浩 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13344990A priority Critical patent/JPH0431392A/en
Publication of JPH0431392A publication Critical patent/JPH0431392A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To simultaneously grow a large amount of crystal having uniform thickness of film, etc., by constituting a substrate attached face of a manipulator consisting of an inside substrate attached face vertical to a revolving shaft and an inclined outside substrate attached face and making isointensity line of molecular beam move approximately along the outside substrate attached face. CONSTITUTION:A manipulator 11 consists of an inside substrate attached face 14 formed in a face approximately vertical to a central line 11a, a revolving shaft and an inclined outside substrate attached face 15 made in the periphery of the inside substrate attached face and substrate heaters 13a and 13b are fixed at the back of the faces. A line 12a in the molecular beam direction, passing through the center of a molecular beam source 12, crosses the inside substrate attached face by angle alphaat the middle point (crossing point) 14a of the center and an end of the inside substrate attached face 14 and an inclination angle of the outside substrate attached face 15 against the line 12a of the molecular beam direction is made approximately at a right angle. Consequently, the outside substrate attached face 15 is inclined approximately along the isointensity line 12b of molecular beam and a large amount of crystal having uniform film thickness similar to the inside substrate attached face 14 is simultaneously grown.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複数の基板をマニピュレータの基板装着面
に装着し、基板上に分子線源からの分子線を照射して結
晶を成長させる分子線結晶成長装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method for attaching a plurality of substrates to the substrate mounting surface of a manipulator, and irradiating the substrates with molecular beams from a molecular beam source to grow crystals. This invention relates to a line crystal growth apparatus.

[従来の技術] 第3図は、従来の分子線結晶成長装置を示す概略断面図
である。第3図を参照して、マニピュレータ1の内部に
は基板加熱ヒータ3が設けられており、マニピュレータ
1の基板装着面4には複数の基板が装着される。分子線
源には、この基板装着面4のほぼ中央を中心として分子
線を照射するように設けられている。
[Prior Art] FIG. 3 is a schematic cross-sectional view showing a conventional molecular beam crystal growth apparatus. Referring to FIG. 3, a substrate heater 3 is provided inside the manipulator 1, and a plurality of substrates are mounted on the substrate mounting surface 4 of the manipulator 1. The molecular beam source is provided so as to irradiate the molecular beam approximately at the center of the substrate mounting surface 4 .

第4図は、第3図に示す従来の装置における分子線の等
強度線を示す概略断面図である。第2図に示すように等
強度線2bは基板装着面4に対して不均一であるが、マ
ニピュレータ1はその中心線1aを中心に回転している
ので、半径方向の強度分布が相殺されて均一になる。
FIG. 4 is a schematic cross-sectional view showing isointensity lines of molecular beams in the conventional apparatus shown in FIG. 3. As shown in FIG. 2, the equal intensity lines 2b are non-uniform with respect to the board mounting surface 4, but since the manipulator 1 is rotating around its center line 1a, the intensity distribution in the radial direction is canceled out. It becomes uniform.

[発明が解決しようとする課題] しかしながら、従来の分子線結晶成長装置で量産化を図
るために多くの基板を基板装着面に並べて結晶成長させ
ようとする場合、多くの基板を並べれるようにするため
には、基板装着面4の面積を大きくし、なおかつ分子線
源2の口径を大きくしなければならない。したがって、
従来の装置ではかなり大型な装置となってしまうという
問題があった。
[Problem to be solved by the invention] However, when trying to grow crystals by arranging many substrates on the substrate mounting surface in order to achieve mass production using a conventional molecular beam crystal growth apparatus, it is difficult to arrange many substrates on the substrate mounting surface. In order to achieve this, it is necessary to increase the area of the substrate mounting surface 4 and also to increase the diameter of the molecular beam source 2. therefore,
The problem with conventional devices is that they are quite large.

さらに、基板装着面や分子線源の口径が大型化すると、
基板温度が不均一になったり、あるいは分子線源からの
分子線の強度が不安定になるという問題を生じ、この結
果、結晶の膜厚が不均一になるという問題もあった。
Furthermore, as the substrate mounting surface and the diameter of the molecular beam source become larger,
Problems arise in that the substrate temperature becomes non-uniform or the intensity of the molecular beam from the molecular beam source becomes unstable, resulting in a problem in that the film thickness of the crystal becomes non-uniform.

この発明の目的は、従来のように大型化することなく、
膜厚等を均一にして一度に多数の結晶を同時に成長させ
ることのできる分子線結晶成長装置を提供することにあ
る。
The purpose of this invention is to avoid increasing the size as in the past.
It is an object of the present invention to provide a molecular beam crystal growth apparatus capable of growing a large number of crystals at once while making the film thickness uniform.

[課題を解決するための手段] この発明の分子線結晶成長装置は、複数の基板をマニピ
ュレータの基板装着面に装着し、マニピュレータを回転
させることによって基板の相対的な位置を回転移動させ
ながら分子線源からの分子線を基板に照射し、基板上に
結晶を成長させる分子線結晶成長装置であり、マニピュ
レータの基板装着面は、マニピュレータの回転軸を中心
とし、かつ該回転軸にほぼ垂直な面から形成させる内側
基板装着面と、内側基板装着面の周囲に形成され、かつ
分子線源に向いて傾斜した外側基板装着面とを備え、外
側基板装着面が分子線源からの分子線の等強度線にほぼ
沿うように傾斜していることを特徴としている。
[Means for Solving the Problems] In the molecular beam crystal growth apparatus of the present invention, a plurality of substrates are mounted on the substrate mounting surface of a manipulator, and the relative positions of the substrates are rotationally moved by rotating the manipulator. This is a molecular beam crystal growth device that irradiates a substrate with molecular beams from a radiation source to grow crystals on the substrate. The outer substrate mounting surface has an inner substrate mounting surface formed from a surface and an outer substrate mounting surface formed around the inner substrate mounting surface and inclined toward the molecular beam source, and the outer substrate mounting surface receives the molecular beam from the molecular beam source. It is characterized by being sloped almost along the isointensity line.

この発明に従う好ましい実施例の1つにおいては、分子
線源の中心を通る分子線方向の線が、内側基板装着面の
中心と分子線源の設けられている側と反対側の内側基板
装着面の端部との間のほぼ中間点で内側基板装着面に対
し角度αで交差し、外側基板装着面は内側基板装着面に
対しほぼ90−αの角度で傾斜している。
In one of the preferred embodiments according to the present invention, a line in the direction of the molecular beam passing through the center of the molecular beam source is between the center of the inner substrate mounting surface and the inner substrate mounting surface on the opposite side to the side where the molecular beam source is provided. The outer board mounting surface is inclined at an angle of approximately 90-.alpha. to the inner board mounting surface at an angle .alpha.

[作用] この発明に従う分子線結晶成長装置では、内側基板装着
面の周囲に形成される外側基板装着面が分子線源に向い
て傾斜しており、分子線源からの分子線の等強度線にほ
ぼ沿うように傾斜している。
[Function] In the molecular beam crystal growth apparatus according to the present invention, the outer substrate mounting surface formed around the inner substrate mounting surface is inclined toward the molecular beam source, and the isointensity line of the molecular beam from the molecular beam source is It is sloped almost along the

このため、外側基板装着面に装着される基板には、はぼ
等しい強度の分子線が照射され、膜厚等の均一な結晶が
成長する。
Therefore, the substrate mounted on the outer substrate mounting surface is irradiated with molecular beams of approximately equal intensity, and crystals with uniform thickness etc. grow.

外側基板装着面は内側基板装着面に対し分子線源に向い
て傾斜して形成されている。このため、基板装着面とし
て従来と同じ面積であっても、1平面内ではないので、
従来よりも小型化することができる。
The outer substrate mounting surface is formed to be inclined toward the molecular beam source with respect to the inner substrate mounting surface. Therefore, even if the board mounting surface has the same area as before, it is not within one plane.
It can be made smaller than before.

第1図は、この発明の一実施例を示す概略断面図である
。第1図を参照して、マニピュレータ11は、回転軸で
ある中心線11aにほぼ垂直な面から形成させる内側基
板装着面14と内側基板装着面の周囲に形成される外側
基板装着面15を有している。内側基板装着面14の裏
側には基板を加熱するための基板加熱ヒータ13aが設
けられており、外側基板装着面15の裏側にも、同様に
基板加熱ヒータ13bが設けられている。
FIG. 1 is a schematic sectional view showing one embodiment of the present invention. Referring to FIG. 1, the manipulator 11 has an inner board mounting surface 14 formed from a surface substantially perpendicular to a center line 11a, which is a rotation axis, and an outer board mounting surface 15 formed around the inner board mounting surface. are doing. A substrate heater 13a for heating the substrate is provided on the back side of the inner substrate mounting surface 14, and a substrate heater 13b is similarly provided on the back side of the outer substrate mounting surface 15.

分子線源12は、分子線源12の中心を通る分子線方向
の線12aが、内側基板装着面14の中心と端部との中
間点14aで、内側基板装着面14に対し角度αで交差
するように設けられている。
In the molecular beam source 12, a line 12a in the molecular beam direction passing through the center of the molecular beam source 12 intersects the inner substrate mounting surface 14 at an angle α at a midpoint 14a between the center and the end of the inner substrate mounting surface 14. It is set up to do so.

外側基板装着面15の傾斜角度は、分子線源12の分子
線方向の線12aに対しほぼ直角をなしている。したが
って、外側基板装着面15は、内側基板装着面に対しほ
ぼ90°−αの角度で傾斜している。
The angle of inclination of the outer substrate mounting surface 15 is approximately perpendicular to the line 12a of the molecular beam direction of the molecular beam source 12. Therefore, the outer board mounting surface 15 is inclined at an angle of approximately 90°-α with respect to the inner board mounting surface.

この実施例では、以上のような内側基板装着面14と外
側基板装着面15とを構成することにより、第2図に概
略断面図で示すように、外側基板装着面15が、分子線
の等強度線12bにほぼ沿うようになっている。
In this embodiment, by configuring the inner substrate mounting surface 14 and the outer substrate mounting surface 15 as described above, the outer substrate mounting surface 15 can be attached to the molecular beam, as shown in a schematic cross-sectional view in FIG. It almost follows the intensity line 12b.

この実施例は、−船釣な例を示したものであり、当然の
ことながら上記以外の条件で外側基板装着面を分子線源
からの分子線の等強度線にほぼ沿うようにでき得るもの
である。
This example shows a boat fishing example, and it is of course possible to make the outer substrate mounting surface almost follow the isointensity line of the molecular beam from the molecular beam source under conditions other than the above. It is.

第2図に示すように外側基板装着面15に対する分子線
の強度がほぼ均一になるように構成されているので、外
側基板装着面15に装着された基板に対しては、膜厚等
をほぼ均一にして結晶成長させることができる。また内
側基板装着面14に装着された基板に対しては、従来と
同様にマニピュレータが回転することによって分子線の
強度が均一化され、膜厚等を均一にして結晶成長を行な
うことができる。
As shown in FIG. 2, since the structure is such that the intensity of the molecular beam on the outer substrate mounting surface 15 is almost uniform, the film thickness etc. of the substrate mounted on the outer substrate mounting surface 15 is approximately the same. It is possible to grow crystals uniformly. Further, for the substrate mounted on the inner substrate mounting surface 14, the intensity of the molecular beam is made uniform by rotating the manipulator as in the conventional method, and crystal growth can be performed with uniform film thickness.

第1図に示すような装置を用いて基板上に結晶成長させ
た。分子線源としてはルツボ径22mmのものを用いた
。分子線方向の線12aと内側基板装着面14とが交わ
る角度θは、49°であった。内側基板装着面14との
交差点14aと分子線源12と間の距離は150mmで
あった。内側基板装着面14の直径は120mmの円板
形状のものであり、直径2インチの基板3枚を装着した
Crystals were grown on a substrate using an apparatus as shown in FIG. A molecular beam source with a crucible diameter of 22 mm was used. The angle θ at which the line 12a in the molecular beam direction intersects with the inner substrate mounting surface 14 was 49°. The distance between the intersection 14a with the inner substrate mounting surface 14 and the molecular beam source 12 was 150 mm. The inner substrate mounting surface 14 had a disk shape with a diameter of 120 mm, and three substrates each having a diameter of 2 inches were mounted thereon.

外側基板装着面15はその幅が5Qmmであり、直径2
インチの基板5枚を装着した。
The outer board mounting surface 15 has a width of 5Qmm and a diameter of 2
Five inch boards were installed.

基板は、基板加熱ヒータ13aおよび13bで加熱し、
630℃の基板温度にした。マニピュレータ11は、中
心軸11aを中心にして8回転/分の回転速度で回転さ
せた。成長条件としては、1μm/hrの成長速度で、
5μmの厚みとなるようにGaAs結晶を成長させた。
The substrate is heated by substrate heaters 13a and 13b,
The substrate temperature was 630°C. The manipulator 11 was rotated at a rotational speed of 8 revolutions/minute around the central axis 11a. The growth conditions were a growth rate of 1 μm/hr,
A GaAs crystal was grown to a thickness of 5 μm.

得られた成長結晶について径方向の膜厚分布を測定した
ところ、均一性は±0.6%であり、内側基板装着面に
装着した基板と、外側基板装着面に装着した基板とでは
ほとんど差がなかった。
When we measured the radial thickness distribution of the grown crystals obtained, the uniformity was ±0.6%, and there was almost no difference between the substrate mounted on the inner substrate mounting surface and the substrate mounted on the outer substrate mounting surface. There was no.

上記の実施例と同様の装置を用いて、GaAs基板上に
、AlGaAs結晶を2μm結晶成長させた。得られた
成長結晶の径方向の膜厚分布を測定したところ、均一性
は±0.6%であった。
An AlGaAs crystal was grown to a thickness of 2 μm on a GaAs substrate using the same apparatus as in the above example. When the radial film thickness distribution of the obtained grown crystal was measured, the uniformity was ±0.6%.

また、フォトルミネセンス法(PL法)で、基板面内の
組成分布を調べたところ、±0.6%であった。またP
Lのスペクトルの半値幅の狭い強い発光が認められ、結
晶としても良好な結晶であることが確認された。
Further, when the composition distribution within the substrate plane was investigated by photoluminescence method (PL method), it was found to be ±0.6%. Also P
Strong light emission with a narrow half-value width of the spectrum of L was observed, and it was confirmed that the crystal was good as a crystal.

比較として、第3図に示すような従来の装置の基板装着
面を同一平面内に大型化した装置で、上記の実施例と同
様にしてGaAs基板上にGaAs結晶を成長させ、得
られた成長結晶の系方向の膜厚分布を測定したところ、
均一性は、±0.9%であった。このことからも、この
発明に従う分子線結晶成長装置によれば、より均一な膜
厚の結晶を成長させ得ることが明らかとなった。
For comparison, a GaAs crystal was grown on a GaAs substrate in the same manner as in the above example using a conventional device in which the substrate mounting surface was enlarged in the same plane as shown in FIG. When we measured the film thickness distribution in the system direction of the crystal, we found that
Uniformity was ±0.9%. From this, it has become clear that the molecular beam crystal growth apparatus according to the present invention can grow crystals with a more uniform thickness.

E発明の効果コ 以上説明したように、この発明の分子線結晶成長装置で
は、内側基板装着面と外側基板装着面が備えられており
、外側基板装着面が分子線源からの分子線の等強度線に
ほぼ沿うように傾斜しているため、外側基板装着面にお
ける分子線の強度をほぼ均一化することができる。この
ため、外側基板装着面においても、内側基板装着面と同
様に膜厚等の均一な結晶を多量に同時に成長させること
ができる。
E. Effects of the Invention As explained above, the molecular beam crystal growth apparatus of the present invention is provided with an inner substrate mounting surface and an outer substrate mounting surface, and the outer substrate mounting surface receives the molecular beam from the molecular beam source. Since it is inclined so as to substantially follow the intensity line, the intensity of the molecular beam on the outer substrate mounting surface can be made substantially uniform. Therefore, it is possible to simultaneously grow a large amount of crystals with uniform thickness on the outer substrate mounting surface as well as on the inner substrate mounting surface.

また外側基板装着面は、内側基板装着面に対し傾斜して
形成されているため、従来の装置よりも小型化すること
ができる。
Furthermore, since the outer substrate mounting surface is formed at an angle with respect to the inner substrate mounting surface, the device can be made smaller than conventional devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す概略断面図である
。 第2図は、第1図の実施例における分子線の等強度線を
示す概略断面図である。 第3図は、従来の装置を示す概略断面図である。 第4図は、第3図に示す従来の装置の分子線の等強度線
を示す概略断面図である。 図において、11はマニピュレータ、11aは中心線、
12は分子線源、12aは分子線源の中心を通る分子線
方向の線、12bは分子線の等強度線、13a、13b
は基板加熱ヒータ、14は内側基板装着面、15は外側
基板装着面を示す。 (ばか2る) 第2図 市−1/久
FIG. 1 is a schematic sectional view showing one embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing the isointensity lines of molecular beams in the embodiment of FIG. 1. FIG. 3 is a schematic sectional view showing a conventional device. FIG. 4 is a schematic cross-sectional view showing isointensity lines of molecular beams of the conventional apparatus shown in FIG. In the figure, 11 is a manipulator, 11a is a center line,
12 is a molecular beam source, 12a is a line in the direction of the molecular beam passing through the center of the molecular beam source, 12b is an isointensity line of the molecular beam, 13a, 13b
1 is a substrate heater, 14 is an inner substrate mounting surface, and 15 is an outer substrate mounting surface. (Idiot 2ru) Figure 2 City-1/Ku

Claims (2)

【特許請求の範囲】[Claims] (1)複数の基板をマニピュレータの基板装着面に装着
し、マニピュレータを回転させることによって基板の相
対的な位置を回転移動させながら分子線源からの分子線
を基板に照射し、基板上に結晶を成長させる分子線結晶
成長装置であって、前記マニピュレータの基板装着面は
、前記マニピュレータの回転軸を中心とし、かつ該回転
軸にほぼ垂直な面から形成される内側基板装着面と、前
記内側基板装着面の周囲に形成され、かつ前記分子線源
に向いて傾斜した外側基板装着面とを備え、 前記外側基板装着面が前記分子線源からの分子線の等強
度線にほぼ沿うように傾斜している分子線結晶成長装置
(1) Mount multiple substrates on the substrate mounting surface of the manipulator, rotate the manipulator to rotate the relative positions of the substrates, and irradiate the substrates with molecular beams from a molecular beam source to form crystals on the substrates. A molecular beam crystal growth apparatus for growing crystals, wherein the substrate mounting surface of the manipulator includes an inner substrate mounting surface formed from a plane centered on the rotation axis of the manipulator and substantially perpendicular to the rotation axis; an outer substrate mounting surface formed around the substrate mounting surface and inclined toward the molecular beam source, such that the outer substrate mounting surface substantially follows the isointensity line of the molecular beam from the molecular beam source. A tilted molecular beam crystal growth device.
(2)複数の基板をマニピュレータの基板装着面に装着
し、マニピュレータを回転させることによって基板の相
対的な位置を回転移動させながら分子線源からの分子線
を基板に照射し、基板上に結晶を成長させる分子線結晶
成長装置であって、前記マニピュレータの基板装着面は
、前記マニピュレータの回転軸を中心とし、かつ該回転
軸にほぼ垂直な面から形成される内側基板装着面と、前
記内側基板装着面の周囲に形成され、かつ前記分子線源
に向いて傾斜した外側基板装着面とを備え、 前記分子線源の中心を通る分子線方向の線が、前記内側
基板装着面の中心と前記分子線源の設けられている側と
反対側の内側基板装着面の端部との間のほぼ中間点で前
記内側基板装着面に対し角度αで交差し、前記外側基板
装着面は内側基板装着面に対しほぼ90°−αの角度で
傾斜している、分子線結晶成長装置。
(2) Mount multiple substrates on the substrate mounting surface of the manipulator, rotate the manipulator to rotate the relative positions of the substrates, and irradiate the substrates with molecular beams from a molecular beam source to form crystals on the substrates. A molecular beam crystal growth apparatus for growing crystals, wherein the substrate mounting surface of the manipulator includes an inner substrate mounting surface formed from a plane centered on the rotation axis of the manipulator and substantially perpendicular to the rotation axis; an outer substrate mounting surface formed around the substrate mounting surface and inclined toward the molecular beam source, such that a line in the molecular beam direction passing through the center of the molecular beam source is aligned with the center of the inner substrate mounting surface. The outer substrate mounting surface intersects with the inner substrate mounting surface at an angle α at approximately the midpoint between the end of the inner substrate mounting surface on the opposite side and the side where the molecular beam source is provided, and the outer substrate mounting surface intersects with the inner substrate mounting surface at an angle α. A molecular beam crystal growth apparatus that is inclined at an angle of approximately 90°-α to the mounting surface.
JP13344990A 1990-05-23 1990-05-23 Device for growing molecular beam crystal Pending JPH0431392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13344990A JPH0431392A (en) 1990-05-23 1990-05-23 Device for growing molecular beam crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13344990A JPH0431392A (en) 1990-05-23 1990-05-23 Device for growing molecular beam crystal

Publications (1)

Publication Number Publication Date
JPH0431392A true JPH0431392A (en) 1992-02-03

Family

ID=15105037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13344990A Pending JPH0431392A (en) 1990-05-23 1990-05-23 Device for growing molecular beam crystal

Country Status (1)

Country Link
JP (1) JPH0431392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170527A (en) * 2005-12-21 2007-07-05 Cosmo Koki Co Ltd Method of mounting/demounting pipe connection member
JP2007170528A (en) * 2005-12-21 2007-07-05 Cosmo Koki Co Ltd Branch pipe repairing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170527A (en) * 2005-12-21 2007-07-05 Cosmo Koki Co Ltd Method of mounting/demounting pipe connection member
JP2007170528A (en) * 2005-12-21 2007-07-05 Cosmo Koki Co Ltd Branch pipe repairing method

Similar Documents

Publication Publication Date Title
DE3852642T2 (en) HEATING SYSTEM FOR REACTION CHAMBER OF A CHEMICAL VAPOR DEPOSIT DEVICE.
US7772527B2 (en) Heat reflector and substrate processing apparatus comprising the same
JPS62116764A (en) Method and apparatus for precipitation of film on surface ofworks
JPS6038813A (en) Susceptor assembly
JPH0845863A (en) Single wafer semiconductor substrate heat treatment device
JPH0431392A (en) Device for growing molecular beam crystal
JP2002050583A (en) Substrate-heating method and substrate-heating device
JPH03130359A (en) Device for covering a flat surface with a uniformly thick layer
JP3412849B2 (en) Thin film deposition equipment
JPS6150326A (en) Semiconductor crystal growing device
JP3130607B2 (en) Processing equipment
JPH0693426A (en) Thin film forming device
JPH06349748A (en) Vapor growth device for semiconductor
JPS61181121A (en) Manufacture of semiconductor thin film
JPH0151814B2 (en)
JPH0297670A (en) Thin film manufacturing equipment
JPS60218469A (en) Vacuum deposition method
JPH0360913B2 (en)
JP2765880B2 (en) MBE equipment
JPH0421591A (en) Molecular beam crystal growth device
EP0205963A1 (en) Method and apparatus for molecular beam epitaxial growth
JPS6142120A (en) Laser light irradiation apparatus
JPS63307192A (en) Production of compound crystal and apparatus therefor
JPS6358925A (en) Vapor phase surface-treating reactor
JPH03259421A (en) Sputter device