JPS6149762A - Production of continuously cast ingot - Google Patents

Production of continuously cast ingot

Info

Publication number
JPS6149762A
JPS6149762A JP17143984A JP17143984A JPS6149762A JP S6149762 A JPS6149762 A JP S6149762A JP 17143984 A JP17143984 A JP 17143984A JP 17143984 A JP17143984 A JP 17143984A JP S6149762 A JPS6149762 A JP S6149762A
Authority
JP
Japan
Prior art keywords
slab
strain
ingot
temperature
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17143984A
Other languages
Japanese (ja)
Other versions
JPH0541348B2 (en
Inventor
Yasuhiro Maehara
泰裕 前原
Kunio Yasumoto
安元 邦夫
Hiroshi Tomono
友野 宏
Tsutomu Sakashita
坂下 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17143984A priority Critical patent/JPS6149762A/en
Priority to DE8585109574T priority patent/DE3581008D1/en
Priority to US06/760,453 priority patent/US4709572A/en
Priority to EP85109574A priority patent/EP0170254B1/en
Publication of JPS6149762A publication Critical patent/JPS6149762A/en
Priority to US07/082,360 priority patent/US4802356A/en
Publication of JPH0541348B2 publication Critical patent/JPH0541348B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ

Abstract

PURPOSE:To prevent the time-crack of a steel ingot and the time-crack in a direct rolling process, etc. by subjecting the surface layer part of the ingot apprehensive for forming a surface flaw in the low temp. region of a required temp. range where the ingot is under cooling to working. CONSTITUTION:Rolls formed by providing projections to the surface of, for example, guide rolls are used to apply >=5% working strain to the ingot in the stage of continuous casting at >=2mm. depth in the surface layer part at >=1X 10<-2>S<-1> straining speed when the surface temp. is 900-500 deg.C. The ingot is subjected to >=1 times of a temp. decrease to the Ar3 point or below and is then recuperated to the Ac3 point or above during or after the above-mentioned process. The recuperated ingot is then passed through drawing rolls. The steel ingot obtd. in the above-mentioned manner is free from cracks and flaws and can be therefore subjected to direct hot working without reheating prior to the succeeding hot working.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造鋳片の熱間割れ防止方法、ならびに
いわゆる直送圧延プロセスあるいはホットチャージ圧延
プロセスにおける熱間割れを防止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for preventing hot cracking in continuously cast slabs, and a method for preventing hot cracking in a so-called direct rolling process or hot charge rolling process.

さらに詳述すれば、本発明は、Si、 Mnのうちいず
れかもしくは両方を含有する中低炭素鋼あるいはAQ 
、Nb、TtsTa、 V + B等の合金元素をそれ
ぞれ1%以下含有する低合金鋼を連続鋳造する方法およ
び連続鋳造の直後に再加熱することなく直ちに圧延する
直送圧延プロセス、もしくは室温まで冷却することなく
再加熱後熱間圧延するホットチャージ圧延プロセスにお
いて、連続鋳造鋳片ならびに熱間圧延時の鋼片の割れを
防止する方法に関する。
More specifically, the present invention provides medium-low carbon steel or AQ steel containing either or both of Si and Mn.
, Nb, TtsTa, V + B, etc., containing 1% or less of each alloying element, and a direct rolling process in which the steel is rolled without reheating immediately after continuous casting, or it is cooled to room temperature. The present invention relates to a method for preventing cracking of continuously cast slabs and steel slabs during hot rolling in a hot charge rolling process in which hot rolling is performed after reheating without any damage.

(従来の技術) 上述のよう゛な中低炭素鋼や低合金鋼を、例えば弯曲型
連続鋳造機を用いた連続鋳造法によって製造する場合、
連続鋳造鋳片には主として鋳片矯正時に印加される曲げ
応力や冷却によって発生する熱応力などによって表面割
れが発生することが多く、特に含Nb鋼においてその傾
向が著しい。このような割れは、次工程に゛進む前の手
入れ工程を必要とするので、そのために一旦室温付近に
まで冷却する必要がある。冷鋳片による通常の圧延プロ
セスの場合にあっても手入れ工程を必要とすることは操
業を複雑にし、コスト上昇をもたらし、一方、省エネル
ギーや省力化によるコスト低減を狙った直送圧延やホン
トチャージ圧延に対してはかかる割れの発生は著しく障
害となっている。
(Prior Art) When producing medium-low carbon steel or low alloy steel as described above, for example, by a continuous casting method using a curved continuous casting machine,
Surface cracks often occur in continuously cast slabs mainly due to bending stress applied during slab straightening and thermal stress generated by cooling, and this tendency is particularly noticeable in Nb-containing steel. Such cracks require a cleaning step before proceeding to the next step, so it is necessary to cool the product to around room temperature. Even in the case of the normal rolling process using cold slabs, the need for a care process complicates operations and increases costs.On the other hand, direct rolling and real charge rolling aim to reduce costs through energy and labor savings. The occurrence of such cracks is a significant hindrance.

また鋳片に疵が生じなかったとしても直送圧延やホット
チャージ圧延過程において割れを生ずることもあり、こ
のことが同様にそれらのプロセスの実用化に対し著しく
障害となっている。なお、そのような割れ発生は特に不
純物としてのS含有量が高い材料において著しい。
Further, even if no flaws occur in the slab, cracks may occur during the direct rolling or hot charge rolling process, which also poses a significant obstacle to the practical application of these processes. Incidentally, the occurrence of such cracking is particularly remarkable in materials containing a high content of S as an impurity.

し゛たがって、直送圧延もしくはボットチャージ圧延プ
ロセスによって安定して安価に製品を製造するには、連
続鋳造時の鋳片にみられる疵発生防止およびその後続工
程である直送圧延もしくはホットチャージ圧延時の表面
疵の発生をそれぞれ完全に防止する方法の確立が望まれ
ている。一方、連続鋳造鋳片を一旦冷却して再加熱し熱
間加工する場合でも、得られる連続鋳造鋳片そのものに
疵発生がなければ疵取りの工程が不要となりその実益は
極めて大きいため、かかる場合にあっても、連続鋳造鋳
片製造時の疵発生を完全に防止する方法の確立が望まれ
ている。
Therefore, in order to stably and inexpensively manufacture products using the direct rolling or bot charge rolling process, it is necessary to prevent the occurrence of defects in slabs during continuous casting, and to prevent the occurrence of defects during the subsequent process of direct rolling or hot charge rolling. It is desired to establish a method for completely preventing the occurrence of surface flaws. On the other hand, even when continuously cast slabs are once cooled, reheated, and hot-worked, if there are no defects in the resulting continuous cast slabs, the flaw removal process becomes unnecessary and the practical benefits are extremely large. However, there is a desire to establish a method that completely prevents the occurrence of defects during the production of continuously cast slabs.

まず、このような連続鋳造鋳片に発生する表面疵防止方
法としては、特開昭58−1282s5号公報にショッ
ト玉の連続衝突方法が開示されている。しかしながら、
当該公報のp、290.3〜7行以下に述べられている
ように、その方法はモールド直下において割れ疵の圧管
、噛み込み異物の除去および鋳片表面酸化の防止を目的
としたものであり、しかも当該公報の第4図からも明ら
かなように、モールド直下、ガ・イドロールに入る前の
過程の処理にすぎない。割れはその後にも発生するもの
であり、後述するように割れ疵発生の完全な防止策には
なっていない。
First, as a method for preventing surface flaws occurring in such continuously cast slabs, Japanese Patent Laid-Open No. 58-1282S5 discloses a method of continuous impact of shot balls. however,
As stated on page 290.3 to 7 and below of the publication, the purpose of this method is to remove cracked pressure pipes and trapped foreign matter directly under the mold, and to prevent oxidation of the slab surface. Moreover, as is clear from FIG. 4 of the publication, this is just a process immediately below the mold and before entering the guide roll. Cracks will continue to occur after that, and as will be described later, this is not a complete preventive measure against the occurrence of cracks.

また特開昭54−155123号公報には鋳片に塑性歪
を加える方法が開示されているが、その方法は表層の塑
性歪量、鋳片温度、オーステナイト粒径を一定範囲に調
整するというもので、本発明者らの知見によればこれら
の条件だけでは疵発生を完全に防止することはできない
。しかもその塑性歪を与える手段として提案されている
ロール圧下、ショツトブラスト、レーザーパルスでは、
いずれも十分な効果が得られない。すなわち、未凝固部
分を含む鋳片を通常のロールで圧下したのでは凝固殻の
厚み全体が凹むだけであり、対象となる鋳片表層部に歪
を付与することはできない。またショツトブラストでは
歪を付与できる深さが浅(て効果を発撞するに到らず、
またショットの回収方法に問題が多く非現実的である。
Furthermore, JP-A-54-155123 discloses a method of applying plastic strain to a slab, which involves adjusting the amount of plastic strain in the surface layer, slab temperature, and austenite grain size within a certain range. According to the findings of the present inventors, these conditions alone cannot completely prevent the occurrence of defects. Moreover, roll reduction, shot blasting, and laser pulses, which have been proposed as means for imparting this plastic strain,
In either case, sufficient effects cannot be obtained. That is, if a slab including an unsolidified portion is rolled down with a normal roll, the entire thickness of the solidified shell will simply be depressed, and strain cannot be imparted to the surface layer of the slab. Also, with shot blasting, the depth at which distortion can be applied is shallow (and the effect cannot be achieved,
In addition, there are many problems with the shot recovery method, making it impractical.

さらにレーザーパルスによる方法は鋳片表面厚さ数+μ
mに熱を与えて内部との温度差によって歪を付与しよう
とするものであり、熱鋳片にこのような方法を適用する
のは温度差が小さいので原理的に不可能に近い。
Furthermore, the method using laser pulses is based on the slab surface thickness number + μ.
The purpose of this method is to apply heat to the molded slab to create strain due to the temperature difference between it and the inside, and it is almost impossible in principle to apply such a method to hot slabs because the temperature difference is small.

さらに鋳片表面には冷却水があるのでその効果はさらに
薄くなり、実際の製造ラインへの適用は極めて困難であ
る。
Furthermore, since there is cooling water on the surface of the slab, the effect is further weakened, making it extremely difficult to apply it to an actual production line.

また、連続鋳造に続く直送圧延やホントチャージ圧延プ
ロセスにおける熱間圧延時の疵発生を防止する手段とし
ては、特開昭58−52442号公報に開示されている
ように連bi鋳造時の冷却速度を制御するなどの対策が
提案されているものの、冷却速度を遅くするように制御
するため冷却完了までに極めて長時間を要するので、理
論的には可能であっても実操業への適用には多くの問題
点がある。
In addition, as a means to prevent the occurrence of defects during hot rolling in the direct rolling or real charge rolling process that follows continuous casting, the cooling rate during continuous bi casting is Countermeasures have been proposed, such as controlling the cooling rate, but it takes an extremely long time to complete cooling, so even though it is theoretically possible, it is difficult to apply it to actual operations. There are many problems.

(発明が解決しようとする問題点) かくして本発明の目的は、連続鋳造鋳片の製造の際なら
びにそれらを直送圧延ないしはホットチャージ圧延する
際に発生する表面疵としての割れを完全に防止し、かか
るプロセスの安定操業を可能にして大幅なコスト低減を
図ることにある。
(Problems to be Solved by the Invention) Thus, an object of the present invention is to completely prevent cracks as surface defects that occur during the production of continuously cast slabs and when they are subjected to direct rolling or hot charge rolling. The objective is to enable stable operation of such a process and to significantly reduce costs.

本発明者らは、これらの表面欠陥としての割れが連続鋳
造鋳片においては冷却過程における低温オーステナイト
(T)域において、場合によってはフェライト(α)と
の共存域において鋳片にかかる熱応力やこのような温度
域での鋳片矯正時に鋳片に加えられる外部応力等の低歪
速度変形によって発生ずること(Mat、Sci、En
H,、62(1984)p、109〜119 、および
Trans、 JIM、  2s  (1984)p、
160〜167 ) 、また熱間圧延時においては比較
的低温のγ域における高歪速度変形によって発生し、い
ずれもγ粒界が破壊することによるものであることを知
見し発表した。
The present inventors have discovered that cracks as surface defects are caused by thermal stress and stress applied to continuously cast slabs in the low-temperature austenite (T) region during the cooling process, and in some cases in the coexistence region with ferrite (α). This occurs due to low strain rate deformation such as external stress applied to the slab during straightening of the slab in such a temperature range (Mat, Sci, En
H,, 62 (1984) p, 109-119, and Trans, JIM, 2s (1984) p.
160-167), and also discovered and announced that during hot rolling, this occurs due to high strain rate deformation in the relatively low temperature γ region, and that both are due to the destruction of γ grain boundaries.

低歪速度変形時における材料の脆化は、A2NやNbC
あるいはTaC、Tic 、 VN等の炭窒化物が変形
中にγ粒界に連続的に析出し、かつ粒内にも微細に析出
したり、さらには粒界に相対的に軟いフェライト(α)
がフィルム状に析出して粒内が相対的に強化され、歪が
γ粒界に沿う無析出帯やフィルム状αの軟い部分に集中
して粒界析出物とマトリックスとの界面剥離を生しさせ
て起こるものである(Mat、  Sci、  Eng
、、 」L(1984)  p、109〜119 、T
rans、 JIM、  2s  (1984)  p
、160〜167 )。
The embrittlement of the material during low strain rate deformation is caused by A2N and NbC.
Alternatively, carbonitrides such as TaC, Tic, and VN may continuously precipitate at the γ grain boundaries during deformation, and may also precipitate finely within the grains, or even relatively soft ferrite (α) may be present at the grain boundaries.
precipitates in the form of a film, and the inside of the grain becomes relatively strengthened, and strain concentrates in the precipitate-free zone along the γ grain boundaries and the soft part of the α film, resulting in interfacial separation between the grain boundary precipitates and the matrix. (Mat, Sci, Eng
,,” L (1984) p. 109-119, T
Rans, JIM, 2s (1984) p.
, 160-167).

また、熱間圧延の際にみられる高歪速度変形時の脆化は
、やはり変形中の1粒界への(Fe、 Mn)Sの連続
析出と粒内への微細析出による粒内強化によって同様に
生ずるものである。この場合、この高歪速度変形前に炭
窒化物のγ粒界連続析出と粒内析出が起こっていれば、
(Fe= Mn) SによるIja化は著しく助長され
ることになる。
In addition, the embrittlement during high strain rate deformation observed during hot rolling is caused by continuous precipitation of (Fe, Mn)S at one grain boundary during deformation and intragranular strengthening due to fine precipitation within the grain. It occurs in the same way. In this case, if γ-grain boundary continuous precipitation and intragranular precipitation of carbonitrides occur before this high strain rate deformation,
(Fe=Mn) Ija formation by S is significantly promoted.

したがって、両工程におけるγ粒界割れによる脆化を防
止するにはγ粒を微細にして粒界脆化感受性を下げるか
、問題となる変形時(例えば鋳片矯正と圧延時)までに
析出物を粗大化して変形時のγ粒界析出および粒内微細
析出を防止すればよい。しかしながら現状においては設
備上および成業上の制約その他によって十分な対策がと
られてないのが実情である。例えば、凝固が進行中の析
出物の凝集粗大化は冷却速度を小さくするか冷却中に恒
温保持すれば実現できる〔炭窒化物についてはMat、
  Sci、  Eng、、  62  (1984)
  p、109〜L19、硫化物については特開昭58
−52442号を参照〕が、冷却に桁違いに長い時間を
要し、生産性を著しく損なうので現実的ではない。また
γ粒の再結晶を利用して細粒化する試みもなされている
が(特開昭54−155123号参照)、もともとのγ
粒が極めて粗大であるので再結晶核としての粒界の面積
が著しく小さく、細粒化を図るには大きな歪を加える必
要があり、かつ特開昭54−155123号にいうよう
に粒径0.1mm以下の如き微3、■結晶粒とするには
少なくとも40%以上の塑性歪を与える必要があり、未
凝固部分を含む鋳片にこれを行うのは極めて困難であり
、これまでのところ実用化されていない。一方、γ−α
変態を利用してγ粒の微細化を図る試みもなされている
が、変態中にT/α界面にNbCやVNなどの炭窒化物
が析出して変態を著しく抑制するので微細化はむしろ極
めて困難であり、これも十分な効果は得られていない。
Therefore, in order to prevent embrittlement due to γ grain boundary cracking in both processes, the γ grains must be made finer to reduce the susceptibility to grain boundary embrittlement, or precipitates must be removed by the time of problematic deformation (for example, during slab straightening and rolling). It is sufficient to coarsen the grains to prevent γ grain boundary precipitation and intragranular fine precipitation during deformation. However, the reality is that sufficient countermeasures are not currently being taken due to equipment and commercial constraints. For example, coagulation and coarsening of precipitates during solidification can be achieved by reducing the cooling rate or maintaining constant temperature during cooling [For carbonitrides, Mat,
Sci. Eng., 62 (1984)
p, 109-L19, JP-A-58 for sulfides.
52442] is not practical because it takes an order of magnitude longer time for cooling and significantly impairs productivity. There have also been attempts to refine the grains by recrystallizing the γ grains (see JP-A-54-155123), but
Since the grains are extremely coarse, the area of the grain boundaries as recrystallization nuclei is extremely small, and it is necessary to apply large strain to make the grains finer. In order to form fine crystal grains of .1 mm or less, it is necessary to apply plastic strain of at least 40%, and it is extremely difficult to apply this to slabs containing unsolidified parts, and so far Not put into practical use. On the other hand, γ−α
Attempts have been made to use transformation to refine the γ grains, but carbonitrides such as NbC and VN precipitate at the T/α interface during transformation and significantly suppress the transformation, making refinement extremely difficult. This is difficult and has not been sufficiently effective.

また上述した脆化機構から考えて、鋼の化学成分を調整
して表面疵の発生を抑制することも考えられるが、鋼の
化学成分は鋼の材質、所要の特性を与えるために添加せ
ざるを得ないものもあるため制約が多く、抜本的対策と
はなっていない。たとえばA2Nの析出防止にはAQ、
Hの低減もしくはTiを添加してTiNとしてNをγ粒
内に固定すれば延性の向上が望めるが、それらの低減に
はコスト上昇が伴いまたTi添加は溶接部の靭性を損な
うなど害も多い。またNb添加等は製品の品質を確保す
る上で不可欠であり、それの変更によって対策をとるこ
とは不可能である。Sの低減も有効であるがコスト上昇
が伴うためトータルコストの低減には必ずしもつながら
ない。
Also, considering the embrittlement mechanism mentioned above, it is possible to suppress the occurrence of surface flaws by adjusting the chemical composition of the steel, but the chemical composition of the steel must be added to give the material the desired properties. There are many restrictions as there are some things that cannot be obtained, so it is not a fundamental countermeasure. For example, to prevent precipitation of A2N, AQ,
It is possible to improve ductility by reducing H or by adding Ti to fix N in the γ grains as TiN, but these reductions are accompanied by an increase in cost, and addition of Ti has many harmful effects such as impairing the toughness of the weld. . Further, addition of Nb, etc. is essential for ensuring product quality, and it is impossible to take countermeasures by changing it. Reducing S is also effective, but it is accompanied by an increase in cost and does not necessarily lead to a reduction in total cost.

(問題点を)W決するための手段) 本発明者らは、炭窒化物の粒内析出を図った後にγ−α
変態をさせて組織を微細にし、かつ硫化物の粗大化を実
用的な時間内に達成する方法について検討を重ね、鋳片
が冷却中である900〜500℃の低温域において表面
疵に結びつく鋳片表層部に加工を加えれば目的が達成さ
れることを見い出した。
(Means for resolving the problem) The present inventors discovered that after attempting intragranular precipitation of carbonitrides, γ-α
We have repeatedly investigated ways to achieve transformation, refine the structure, and coarsen sulfides within a practical time. It was discovered that the objective could be achieved by adding processing to one surface layer.

すなわち、第1表に示す組成の鋼を用怠し、こ杵より引
張試験片を採取して次の実験を行った。
That is, the steel having the composition shown in Table 1 was used, a tensile test piece was taken from the punch, and the following experiment was conducted.

第1表 第1図は、本実験で採用した各種の加工、熱処理条件を
示す説明図である。図中、ケース■、■および■のいず
れの場合にあっても800℃の最終変形時の歪速度はA
鋼についてはε=10″″3S−1、B512Iについ
てはε−IQXs−’とした。
Table 1 and FIG. 1 are explanatory diagrams showing various processing and heat treatment conditions employed in this experiment. In the figure, the strain rate at the final deformation at 800°C is A for all cases ■, ■, and ■.
For steel, ε=10″″3S-1, and for B512I, ε-IQXs-'.

すなわち、冷却過程で連続鋳造鋳片に加える加工をシミ
ュレートするために、1350℃で溶体化処理した材料
を、ケース■の場合には、まず800℃に降温してから
鋳片矯正時の割れが問題となるA鋼についてはa −1
0−’ s−’で、その後の直送圧延時の割れが問題と
なるB鋼については;−108−1で引張変形した。ケ
ース■の場合には、それらの最終変形に到るまでにγ−
α変憇を起こすべく、一旦600℃にまで冷却してから
再び800℃に一復熱させ、さらに600℃にまで冷却
、次いで800℃で最終変形を行った。
In other words, in order to simulate the processing applied to continuously cast slabs during the cooling process, in case ①, the material was solution-treated at 1350°C, and the temperature was first lowered to 800°C, and then cracks were removed during straightening of the slabs. For A steel, which is a problem, a −1
Steel B, which had a problem of cracking during subsequent direct rolling at 0-'s-', was tensile deformed at -108-1. In case ■, γ−
In order to cause α deformation, it was first cooled to 600°C, then reheated to 800°C, further cooled to 600°C, and then subjected to final deformation at 800°C.

ケース■の場合には、そのようなケース■の処理を行う
前に700℃で二、 =、IQ −I S−1で20%
までの引張歪を導入した。゛なお、ケース■および■の
場合における600℃および800℃での保持時間は3
分とした。
In case ■, 20% at 700 °C = 20% at IQ -I S-1 before carrying out the treatment in such case ■
A tensile strain of up to゛In addition, the holding time at 600℃ and 800℃ in cases ■ and ■ is 3
It was a minute.

これらの結果得られた予備変形歪量10%のときの最終
変形時の絞り値(IIA)を第2図にグラフで示す。こ
れよりケース■の場合の如く鋳片表層部に軽加工を与え
た後のT−α変態の促進効果により延性が著しく向上す
ることがわかる。なお、予備変形歪量を500〜900
℃の範囲で変化させたがそれによるRA値の変化はほと
んど認められなかった。同じく、第3図+a)にはケー
ス■の場合について700℃での予備変形歪量との関係
を示すが、約5%以上の加工を加えることによってその
後の変形時の著しい延性向上効果が得られたことがわか
る。また、第3図(blは、A鋼についてケース■と同
じ温度履歴で予備変形の歪速度を変えて10%の予備変
形を与えた場合の絞り値の変化を示すグラフであり、こ
れより絞り値50%以上をi昇るには予備歪速度はおよ
そ1 xto−2s−2s−1以上でなければならない
ことが理解できる。
The aperture value (IIA) at the time of final deformation when the amount of pre-deformation strain is 10% obtained from these results is shown in a graph in FIG. From this, it can be seen that the ductility is significantly improved due to the effect of promoting T-α transformation after the surface layer of the slab is subjected to light working as in case ①. In addition, the amount of preliminary deformation strain is 500 to 900.
Although the temperature was varied within a range of 0.degree. C., almost no change in the RA value was observed. Similarly, Fig. 3+a) shows the relationship between the amount of pre-deformation strain at 700°C for case ①, and it shows that adding processing of about 5% or more can significantly improve ductility during subsequent deformation. I can see that it was done. In addition, Fig. 3 (bl) is a graph showing the change in the aperture value when 10% predeformation is applied to steel A by changing the strain rate of predeformation with the same temperature history as in case ■. It can be seen that the prestrain rate must be approximately 1xto-2s-2s-1 or higher to increase i to a value of 50% or more.

ここに、本発明の要旨とするところは、連続鋳造時の鋳
片の表層部深さ2額以上に5%以上の加工歪をその表面
温度が900〜500℃のときに1×10−2s−2s
−1以上の歪速度で与え、その過程もしくはその後に少
なくとも1回以上Ar3点以下に降温させてからAc3
点以上に復熱させる処理を行った後に引抜ロールを通過
させることを特徴とする、連続鋳造鋳片の製造方法であ
る。このようにして得られた連続鋳造鋳片には割れ疵が
発生しないので後続する熱間加工に先立って、再加熱す
ることなく直接熱間加工してもあるいは室温にまで冷却
することな(再加熱してから熱間加工を加えてもよい。
Here, the gist of the present invention is to apply a processing strain of 5% or more to a depth of 2 or more in the surface layer of a slab during continuous casting for 1 x 10-2 s when the surface temperature is 900 to 500°C. -2s
Ac3
This is a method for manufacturing a continuously cast slab, which is characterized in that the continuous cast slab is passed through a drawing roll after being subjected to a treatment for reheating the slab to a temperature above a point. Since the continuously cast slab obtained in this way does not develop cracks, it can be directly hot worked without reheating or cooled to room temperature (without reheating) prior to subsequent hot working. Hot processing may be added after heating.

なお、熱間加工は通常の熱間圧延の外、鍛造等熱間で行
う全ての加工法を意味する。
Note that hot working means all hot working methods such as forging in addition to normal hot rolling.

(作用) 次に本発明における加工条件の限定理由について説明す
る。
(Function) Next, the reason for limiting the processing conditions in the present invention will be explained.

加工歪を与える領域を鋳片の表層部2mm以上に限定し
たのは、表面から2III1以内の領域に発生した疵が
後工程で割れ疵やすし疵として残るという知見に基づく
、これは表面から少なくとも2mmまでの深さの領域に
は所定の加工を加える趣旨である。
The reason why we limited the area where processing strain is applied to 2mm or more of the surface layer of the slab is based on the knowledge that flaws that occur in the area within 2III1 from the surface will remain as cracks or cracks in the subsequent process. The purpose is to add a predetermined processing to the area with a depth of up to.

加工歪量を5%以上に限定したのは、5%以上の加工量
でなければ、析出物の核生成が困難であるという理由に
基づく。また歪速度の限定理由は、低歪速度変形の場合
、塑性変形がγ粒界近傍に集中し、炭窒化物のγ粒界析
出が促進されるので割れ疵を助長することがあり、その
限界がlXl0−J−,1であることによる。また、こ
のような高温で歪の蓄積を図るには、導入した転位の回
復が起こるまでに析出核が生成しなければならないが、
ε≧to−2s−’であれば十分である。
The reason why the amount of processing strain is limited to 5% or more is based on the reason that unless the amount of processing is 5% or more, nucleation of precipitates is difficult. In addition, the reason for limiting the strain rate is that in the case of low strain rate deformation, plastic deformation concentrates near the γ grain boundaries, promoting the precipitation of carbonitrides at the γ grain boundaries, which may promote cracking. This is because is lXl0-J-,1. In addition, in order to accumulate strain at such high temperatures, precipitation nuclei must be generated before the introduced dislocations can recover.
It is sufficient if ε≧to-2s-'.

次に、本発明において上述のような加工時に鋳片表面温
度を900〜500℃とし、その後あるいはその途中で
少なくとも1回以上Ar3点以下とするのは、900 
’Cを越えた温度であればその後の冷却過程において析
出物の粗大化が起こり変態を利用したγの細粒化は必要
でなくなり、一方500℃未満での力J工は現実的では
ないためである。
Next, in the present invention, the surface temperature of the slab is set to 900 to 500°C during processing as described above, and the Ar temperature is set to 3 or less at least once after or during the process.
If the temperature exceeds 'C, the precipitates will become coarser in the subsequent cooling process, making it unnecessary to use transformation to refine the grains of γ. On the other hand, force J processing at temperatures below 500°C is not practical. It is.

本発明において、上述の如き加工歪を付与する加工方法
としては、例えばガイドロール表面に突起を付けたロー
ルを使用したりエアーハンマーや特殊なプレスなどが考
えられ、所要の加工歪、歪速度を実現できる限りその他
の方法も場合によっては採用できる。またその加工時点
は、矯正に先立つ位置で加工を加え所定の変態を起こさ
せるものであれば、特に限定されない。
In the present invention, as a processing method for imparting processing strain as described above, for example, the use of a roll with protrusions on the surface of a guide roll, an air hammer, a special press, etc. can be considered, and the required processing strain and strain rate can be applied. Other methods may also be adopted depending on the situation, as long as they are practicable. Further, the processing point is not particularly limited as long as the processing is performed at a position prior to straightening to cause a predetermined transformation.

本発明の適用鋼種は特に限定されないが、連続鋳造鋳片
にAC!N、、、NbC、TaC、TiC、BN、VN
などの析出が原因と見られる表面疵が発生しゃすい鋼種
、1fllえばSi、 Mnのうちいずれかもしくは両
方を含有する中低炭素鋼あるいは涌、Nb、 Ti、 
Ta、 V。
The applicable steel type of the present invention is not particularly limited, but AC! N, , NbC, TaC, TiC, BN, VN
Steel types that are susceptible to surface flaws that are thought to be caused by the precipitation of such materials as medium-low carbon steel containing either or both of Si, Mn, Nb, Ti,
Ta, V.

B等の合金元素をそれぞれ1%以下含有する低合金鋼に
ついては特に有効である。一方、炭窒化物が析出しにく
い成分系においては、直送圧延やポットチャージ圧延時
に主として硫化物の析出に起因する表面疵防止に大きな
効果が得られる。
This is particularly effective for low alloy steels containing 1% or less of each alloying element such as B. On the other hand, in a component system in which carbonitrides are difficult to precipitate, a great effect can be obtained in preventing surface defects mainly caused by sulfide precipitation during direct rolling or pot charge rolling.

ス盃直引り 製造工場の半(条12.5mの弯曲型連続鋳造機を用い
て、断面が2s0 龍X2100龍の鋳片を条件を変え
て鋳造し、矯正後の鋳片の表面疵の発生程度を目視で評
価した。第4図はこの時の鋳片表層部への加工歪を付与
するのに使用した鋳片上面側のロール間で鋳片巾方向に
移動する油圧シリンダーをωJ力源とする鋳片打撃装置
を鋳造ラインとともに示す。図示例にあっては、一部未
凝固のR&Hがあるような段階で鋳片1に対し、鋳片打
撃装置2によって加工歪を与えている。鋳片打撃装置は
圧子3とこれに接続された油圧シリンダー4から構成さ
れ、これらは油圧ユニット5、油圧ポンプユニット6を
経て制御器7でその打撃量等が制御されている。
Using a curved continuous casting machine with a length of 12.5 m at a direct-drawing manufacturing factory, slabs with a cross section of 2s0 Dragon The degree of occurrence was visually evaluated. Figure 4 shows the ωJ force applied to the hydraulic cylinder that moves in the width direction of the slab between the rolls on the upper surface of the slab, which was used to apply processing strain to the surface layer of the slab. The slab striking device used as the source is shown together with the casting line.In the illustrated example, processing strain is applied to the slab 1 by the slab striking device 2 at a stage where there is some unsolidified R&H. The slab striking device is composed of an indenter 3 and a hydraulic cylinder 4 connected to the indenter 3, whose striking amount and the like are controlled by a controller 7 via a hydraulic unit 5 and a hydraulic pump unit 6.

第5図は鋳片打撃装置の先端に取付けられた圧子によっ
て加工歪を与えられた鋳片表層部の状態を示す。圧子球
面径511m、圧下の深さは3龍、圧下の打撃数180
サイクル/分の打撃を与え、鋳片表層部3朋の平均歪量
は7%で歪速度は0.3s−’であった。g32表には
本例で使用した鋼の成分組成を、第3表に鋳造条件およ
び結果を示す。
FIG. 5 shows the condition of the surface layer of a slab which has been subjected to processing strain by an indenter attached to the tip of the slab striking device. Indenter spherical diameter 511m, depth of compression 3 dragons, number of strokes 180
A blow was applied at a cycle/minute, and the average strain amount of the three surface layer parts of the slab was 7% and the strain rate was 0.3 s-'. Table g32 shows the composition of the steel used in this example, and Table 3 shows the casting conditions and results.

これらの結果がらも分がるように、従来方式で鋳造した
鋳片には多くのひび割れが発生したが、本発明による表
面加工を実施した鋳片表面には全くひび割れが発生しな
かった。
As can be seen from these results, many cracks occurred in the slab cast by the conventional method, but no cracks occurred at all on the surface of the slab subjected to the surface treatment according to the present invention.

第6図はこのときの温度パターンを示す。FIG. 6 shows the temperature pattern at this time.

第2表 第3表 凛J1肌l 製造工場の半径12.5 mの弯曲型連続鋳造機を用い
て断面が2s0ma X 2100mmの築4表に示す
化学成分の鋳片を第5表に示すように条件を代えて鋳造
し矯正後の鋳片の表面疵を目視で評価した。また、この
時の鋳片表層部への加工歪の付与法としては第7図に示
す如く講面から9〜l1mの間の上面側ガイドロールを
同じく同図に示す突起付きロールに代えて第8図に示す
温度パターンで行った。このときの第7図の形状の突起
は厚さ72〜79mmの凝固殻表面に0.06〜0.0
7kg/mm2なる静鉄圧を反力としてくい込み、歪は
第9図の如く拡がり、次式で算出される式から、スラブ
表暦部5mmの深さに少なくとも7%の歪を付与するこ
とができた。歪速度は2X10− ’ s −’と見積
られた。
Table 2 Table 3 Rin J1 Hada L A cast slab with a cross section of 2s0ma x 2100mm was constructed using a curved continuous casting machine with a radius of 12.5m at a manufacturing plant, and the chemical composition shown in Table 4 was as shown in Table 5. After casting under different conditions, the surface defects of the slabs after straightening were visually evaluated. In addition, as a method of applying processing strain to the surface layer of the slab at this time, as shown in Figure 7, the upper guide roll between 9 and 11 m from the course surface is replaced with a roll with protrusions shown in the same figure. The temperature pattern shown in Figure 8 was used. At this time, the protrusion having the shape shown in Fig. 7 is 0.06 to 0.0 mm on the surface of the solidified shell with a thickness of 72 to 79 mm.
It sinks in with a static iron pressure of 7 kg/mm2 as a reaction force, and the strain spreads as shown in Figure 9. From the following formula, it is possible to apply at least 7% strain to the depth of 5 mm in the slab surface area. did it. The strain rate was estimated to be 2×10−′ s−′.

H=  CZ  +0.5 )  −17(2X  a
S = (1,8〜2.2 ) x a  T:アリ、
最小5%の歪を与えるには、a =7mm、 H=3 
nunが必要であった。
H= CZ +0.5 ) -17(2X a
S = (1,8~2.2) x a T: Ali,
To give a minimum strain of 5%, a = 7mm, H = 3
nun was needed.

第5表に結果を併せて示すように、本発明による突起付
きロールを設置した連続鋳造機によれば、スラブ表面に
突起の圧痕が残存したが、ひび割れ疵は全く発生してお
らず、一方、従来法ではひび割れ疵が多発しており、本
発明による効果は明らかである。
As shown in Table 5, according to the continuous casting machine equipped with the roll with protrusions according to the present invention, although impressions of the protrusions remained on the slab surface, no cracks or defects occurred at all. In the conventional method, many cracks and defects occur, and the effect of the present invention is clear.

第4表 第5表 この方法で連続鋳造鋳片の表面疵の発生を防止できるこ
とがわかったので、さらに直送圧延時の割れ防止の効果
について試験した。第6表に示す鋼イ、口を溶解し、上
述の方法において、スラブの上、下面の両方に突起付き
ロール4組が食い込むように配置し、第10図の温度パ
ターンで鋳片を鋳造後、切断し、直径1300mmの圧
延ロールを用いて厚さ150mmにまで5パスで圧延し
、表面疵の発生程度を目視で評価した。その結果を第7
表にまとめて示す。
Table 4 Table 5 Since it was found that this method could prevent the occurrence of surface flaws in continuously cast slabs, the effect of preventing cracks during direct rolling was further tested. After melting the steel shown in Table 6 and using the method described above, four sets of rolls with protrusions were placed so as to bite into both the upper and lower surfaces of the slab, and the slab was cast using the temperature pattern shown in Figure 10. The sample was cut and rolled in 5 passes to a thickness of 150 mm using a rolling roll with a diameter of 1300 mm, and the degree of occurrence of surface flaws was visually evaluated. The results are shown in the 7th section.
They are summarized in the table.

第7表に示す結果からも本発明によって著しい効果が得
られることは明らかである。
It is clear from the results shown in Table 7 that significant effects can be obtained by the present invention.

第6表 第7表Table 6 Table 7

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各種加工熱処理パターンを示す模式第2図、
第3図+a+および第3図(blは、それぞれ前加工熱
処理の態様とそのときの歪量さらには歪速度が延性に及
ぼす2響を考察する予備試験の結果を示すグラフ; 第4図および第5図は、加工歪を付与する手段としての
鋳片打撃装置の概略説明図: 第6図は、加工を行った後にAr3点以上に復熱させた
ときの鋳片の温度パターンを示すグラフ;第7図は、加
工歪付与を突起付ロールで行う場合の概略説明図: 第8図は、突起付ロールで加工歪を与えたときの鋳片の
温度パターンを示すグラフ; 第9図は、突起付ロールを使ったときの加工歪の伝搬の
模式的説明図;および 第10図は、加工歪を付与した後に鋳片を切断し、さら
に熱間加工(圧延)を行うときの鋳片表面温度パターン
を示すグラフである。 1:鋳片     2:鋳片打撃装置 3:圧子     4:油圧シリンダー5:油圧ユニッ
ト 6:油圧ポンプ 7:制御器 出願人  住友金屈工業株式会社 代理人  弁理士 広 瀬 章 − 算ア1UjJ ケース■ ケース O 巷2 図 幕3図(a) 予備Iは% (7I) 第3図(b) 幕4図 孔5図 幕7図 第6図 第8図 メニ入力入かうのL鶏1(m) 第9 図 第10図
Figure 1 is a schematic diagram 2 showing various processing and heat treatment patterns;
Figure 3+a+ and Figure 3 (bl are graphs showing the results of a preliminary test considering the effects of pre-processing heat treatment, amount of strain at that time, and strain rate on ductility, respectively; Figures 4 and 3) Fig. 5 is a schematic explanatory diagram of a slab striking device as a means for applying processing strain; Fig. 6 is a graph showing the temperature pattern of the slab when it is reheated to Ar3 point or higher after processing; Fig. 7 is a schematic explanatory diagram when processing strain is applied using a roll with protrusions; Fig. 8 is a graph showing the temperature pattern of the slab when processing strain is applied using a roll with protrusions; A schematic explanatory diagram of the propagation of processing strain when using a roll with protrusions; and Fig. 10 shows the surface of the slab when the slab is cut after applying processing strain and further hot worked (rolled). It is a graph showing the temperature pattern. 1: Slab 2: Slab striking device 3: Indenter 4: Hydraulic cylinder 5: Hydraulic unit 6: Hydraulic pump 7: Controller Applicant Sumitomo Kinku Kogyo Co., Ltd. Agent Patent attorney Hiroshi Se Akira - Calculation A1UjJ Case ■ Case O Wide 2 Figure 3 Figure (a) Preliminary I is % (7I) Figure 3 (b) Figure 4 Hole 5 Figure 7 Figure 6 Figure 8 Menu input input Kauno L chicken 1 (m) Figure 9 Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)連続鋳造時の鋳片の表層部深さ2mm以上に5%
以上の加工歪をその表面温度が900〜500℃のとき
に1×10^−^2s^−^1以上の歪速度で与え、そ
の過程もしくはその後に少なくとも1回以上Ar_3点
以下に降温させてからAc_3点以上に復熱させる処理
を行った後に引抜ロールを通過させることを特徴とする
、連続鋳造鋳片の製造方法。
(1) 5% on the surface layer depth of 2mm or more of slab during continuous casting
The above processing strain is applied at a strain rate of 1 x 10^-^2s^-^1 or more when the surface temperature is 900 to 500°C, and the temperature is lowered to below the Ar_3 point at least once during or after that process. A method for manufacturing a continuously cast slab, characterized by passing the cast slab through a drawing roll after performing a treatment for reheating it from A to Ac_3 points or higher.
(2)連続鋳造時の鋳片の表層部深さ2mm以上に5%
以上の加工歪をその表面温度が900〜500℃のとき
に1×10^−^2s^−^1以上の歪速度で与え、そ
の過程もしくはその後に少なくとも1回以上Ar_3点
以下に降温させてからAc_3点以上に復熱させる処理
を行った後に引抜ロールを通過させ、得られた連続鋳造
鋳片を、再加熱することなく直接熱間加工することを特
徴とする、連続鋳造鋳片の熱間加工法。
(2) 5% on the surface layer depth of 2 mm or more during continuous casting
The above processing strain is applied at a strain rate of 1 x 10^-^2s^-^1 or more when the surface temperature is 900 to 500°C, and the temperature is lowered to below the Ar_3 point at least once during or after that process. The continuous casting slab is heat worked by directly hot working the obtained continuous casting slab by passing it through a drawing roll after being reheated from to Ac_3 point or higher without reheating. Intermediate processing method.
(3)連続鋳造時の鋳片の表層部深さ2mm以上に5%
以上の加工歪をその表面温度が900〜500℃のとき
に1×10^−^2s^−^1以上の歪速度で与え、そ
の過程もしくはその後に少なくとも1回以上Ar_3点
以下に降温させてからAc_3点以上に復熱させる処理
を行った後に引抜ロールを通過させ、得られた連続鋳造
鋳片を、室温まで冷却することなく再加熱し、次いで熱
間加工することを特徴とする、連続鋳造鋳片の熱間加工
法。
(3) 5% on the surface layer depth of 2 mm or more during continuous casting
The above processing strain is applied at a strain rate of 1 x 10^-^2s^-^1 or more when the surface temperature is 900 to 500°C, and the temperature is lowered to below the Ar_3 point at least once during or after that process. Continuous casting is characterized in that the continuous cast slab is passed through a drawing roll after being reheated from the temperature to Ac_3 points or higher, and the obtained continuous cast slab is reheated without cooling to room temperature, and then hot worked. Hot working method for cast slabs.
JP17143984A 1984-07-31 1984-08-20 Production of continuously cast ingot Granted JPS6149762A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17143984A JPS6149762A (en) 1984-08-20 1984-08-20 Production of continuously cast ingot
DE8585109574T DE3581008D1 (en) 1984-07-31 1985-07-30 METHOD AND DEVICE FOR PRODUCING CONTINUOUS CASTING SLABS.
US06/760,453 US4709572A (en) 1984-07-31 1985-07-30 Method of processing continuously cast slabs
EP85109574A EP0170254B1 (en) 1984-07-31 1985-07-30 Method and apparatus of processing continuously cast slabs
US07/082,360 US4802356A (en) 1984-07-31 1987-08-06 Apparatus of processing continuously cast slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17143984A JPS6149762A (en) 1984-08-20 1984-08-20 Production of continuously cast ingot

Publications (2)

Publication Number Publication Date
JPS6149762A true JPS6149762A (en) 1986-03-11
JPH0541348B2 JPH0541348B2 (en) 1993-06-23

Family

ID=15923138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17143984A Granted JPS6149762A (en) 1984-07-31 1984-08-20 Production of continuously cast ingot

Country Status (1)

Country Link
JP (1) JPS6149762A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253501A (en) * 1991-01-31 1992-09-09 Nkk Corp Direct rolling method for continuous cast slab
JPH04121715U (en) * 1991-04-18 1992-10-30 多摩川精機株式会社 Wire-wound rotation detector
JPH04134813U (en) * 1991-06-07 1992-12-15 多摩川精機株式会社 Resolver
JPH04137020U (en) * 1991-06-07 1992-12-21 多摩川精機株式会社 Resolver
JPH0541114U (en) * 1991-06-14 1993-06-01 多摩川精機株式会社 Resolver
JP2010137256A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Continuous casting method and machine therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04253501A (en) * 1991-01-31 1992-09-09 Nkk Corp Direct rolling method for continuous cast slab
JPH04121715U (en) * 1991-04-18 1992-10-30 多摩川精機株式会社 Wire-wound rotation detector
JPH04134813U (en) * 1991-06-07 1992-12-15 多摩川精機株式会社 Resolver
JPH04137020U (en) * 1991-06-07 1992-12-21 多摩川精機株式会社 Resolver
JPH0541114U (en) * 1991-06-14 1993-06-01 多摩川精機株式会社 Resolver
JP2010137256A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Continuous casting method and machine therefor

Also Published As

Publication number Publication date
JPH0541348B2 (en) 1993-06-23

Similar Documents

Publication Publication Date Title
JPS6149762A (en) Production of continuously cast ingot
JPS60245722A (en) Manufacture of high tensile wire rod
EP0170254B1 (en) Method and apparatus of processing continuously cast slabs
EP1083242B1 (en) Method of manufacturing of high strength rolled H-shapes
JP2607796B2 (en) Method for producing low alloy rolled section steel with excellent toughness
JPH0468069B2 (en)
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPH0583605B2 (en)
JP2756533B2 (en) Manufacturing method of high strength, high toughness steel bars
JPH0328351A (en) High ductility pc steel stock and its production
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JPH07290101A (en) Method for preventing surface crack at time of hot edging/rolling continuously cast slab
JPS6056457A (en) Continuous casting method
JP2008307600A (en) Continuous casting method and continuous casting machine
JPH04289122A (en) Production of as-rolled type ultrahigh tensile strength resistance welded tube for vehicle door impact bar
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
KR100331233B1 (en) Manufacturing method of high carbon steel wire rod having good mechanical descaling capacity
JPH06246414A (en) Continuous casting of high carbon steel
Yue Thermomechanical processing of ferrous alloys
JP2005298963A (en) Method for manufacturing high-tensile steel sheet superior in workability
JP3091792B2 (en) Method of manufacturing a stepped shaft
JPS6056453A (en) Continuous casting method
JPH03111515A (en) Rolling method of alloy tool steel
JPH0849016A (en) Production of high carbon steel with fine pearlitic structure