JPH0468069B2 - - Google Patents

Info

Publication number
JPH0468069B2
JPH0468069B2 JP17144084A JP17144084A JPH0468069B2 JP H0468069 B2 JPH0468069 B2 JP H0468069B2 JP 17144084 A JP17144084 A JP 17144084A JP 17144084 A JP17144084 A JP 17144084A JP H0468069 B2 JPH0468069 B2 JP H0468069B2
Authority
JP
Japan
Prior art keywords
slab
strain
processing
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17144084A
Other languages
Japanese (ja)
Other versions
JPS6149763A (en
Inventor
Yasuhiro Maehara
Kunio Yasumoto
Hiroshi Tomono
Tsutomu Sakashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17144084A priority Critical patent/JPS6149763A/en
Priority to US06/760,453 priority patent/US4709572A/en
Priority to EP85109574A priority patent/EP0170254B1/en
Priority to DE8585109574T priority patent/DE3581008D1/en
Publication of JPS6149763A publication Critical patent/JPS6149763A/en
Priority to US07/082,360 priority patent/US4802356A/en
Publication of JPH0468069B2 publication Critical patent/JPH0468069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、連続鋳造鋳片の製造方法およびその
熱間加工方法、特に連続鋳造鋳片の製造時におけ
る鋳片の熱間割れを防止する方法およびいわゆる
直送圧延プロセスあるいはホツトチヤージ圧延プ
ロセスにおける鋳片の熱間割れを防止する方法に
関する。 さらに詳述すれば、本発明はSi、Mnのうちい
ずれかもしくは両方を含有する中低炭素鋼あるい
はAl、Nb、Ti、Ta、V、B等の合金元素をそ
れぞれ1%以下含有する低合金鋼を連続鋳造する
方法、および連続鋳造の直後に再加熱することな
く直ちに圧延する直送圧延プロセス、もしくは室
温まで冷却することなく再加熱後熱間圧延するホ
ツトチヤージ圧延プロセスにおいて、連続鋳造鋳
片ならびに熱間圧延時の鋼片の割れを防止する方
法に関する。 (従来の技術) 上述のような中低炭素鋼や低合金鋼を、例えば
弯曲型連続鋳造機を用いた連続鋳造法によつて製
造する場合、連続鋳造鋳片には主として鋳片矯正
時に印加される曲げ応力や冷却によつて発生する
熱応力などによつて表面割れが発生することが多
く、特に含Nb鋼においてその傾向が著しい。こ
のような割れは、次工程に進む前の手入れ工程を
必要とするので、そのために一旦室温付近にまで
冷却する必要がある。冷鋳片による通常の圧延プ
ロセスの場合にあつても手入れ工程を必要とする
ことは操業を複雑にし、コスト上昇をもたらし、
一方、省エネルギーや省力化によるコスト低減を
狙つた直送圧延やホツトチヤージ圧延プロセスに
あつてはかかる割れの発生はそれらの実用化に対
し著しく障害となつている。 また鋳片に疵が生じなかつたとしても直送圧延
やホツトチヤージ圧延過程で割れを生ずることも
あり、このことが同様にそれらのプロセスの実用
化に対し著しく障害となつている。なお、そのよ
うな割れ発生は特に不純物としてのS含有量が高
い材料において著しい。 したがつて、直送圧延もしくはホツトチヤージ
圧延プロセスによつて安定して安価に製品を製造
するには、連続鋳造時の鋳片にみられる疵の発生
およびその後続工程である直送圧延もしくはホツ
トチヤージ圧延時の表面疵の発生をそれぞれ完全
に防止する方法の確立が望まれている。一方、連
続鋳造鋳片を一旦冷却して再加熱し熱間加工する
場合でも、得られる連続鋳造鋳片そのものに疵の
発生がなければ疵取りの工程が不要となりその実
益は極めて大きいため、かかる場合にあつても、
連続鋳造鋳片製造時の疵発生を完全に防止する方
法の確立が望まれている。 まず、このような連続鋳造鋳片に発生する表面
疵防止方法としては、特開昭58−128255号公報に
シヨツト玉の連続衝突方法が開示されている。し
かしながら、当該公報のp.290、3〜7行以下に
述べられているように、その方法はモールド直下
において割れ疵の圧着、噛み込み異物の除去およ
び鋳片表面酸化の防止を目的としたものであり、
しかも当該公報の第4図からも明らかなように、
モールド直下、ガイドロールに入る前の過程の処
理にすぎない。割れはその後にも発生するもので
あり、後述するように割れ疵発生の完全な防止策
にはなつていない。 また特開昭54−155123号公報には鋳片に塑性歪
を加える方法が開示されているが、その方法は表
層の塑性歪量、鋳片温度、オーステナイト粒径を
一定範囲に調整するというもので、本発明者らの
知見によればこれらの条件だけでは疵発生を完全
に防止することはできない。しかもその塑性歪を
与える手段として提案されているロール圧下、シ
ヨツトブラスト、レーザーパルスでは、いずれも
十分な効果が得られない。すなわち、未凝固部分
を含む鋳片を通常のロールで圧下したのでは凝固
殻の厚み全体が凹むだけであり、対象となる鋳片
表層部に歪を付与することはできない。またシヨ
ツトプラスでは歪を付与できる深さが浅くて効果
を発揮するに到らず、またシヨツトの回収方法に
問題が多く非現実的である。さらにレーザーパル
スによる方法は鋳片表面厚さ数十μmに熱を与え
て内部との温度差によつて歪を付与しようとする
ものであり、熱鋳片にこのような方法を適用する
のは温度差が小さいので原理的に不可能に近い。
さらに鋳片表面には冷却水があるのでその成果は
さらに薄くなり、実際の製造ラインへの適用は極
めて困難である。 また、連続鋳造に続く直送圧延やホツトチヤー
ジ圧延プロセスにおける熱間圧延時の疵発生を防
止する手段としては、特開昭58−52442号公報に
開示されているように、連続鋳造時の冷却速度を
制御するなどの対策が提案されているものの、か
かる方法は、冷却速度を遅くするように制御する
ため冷却完了までに極めて長時間を要するので、
理論的には可能であつても実操業への適用には多
くの問題点がある。 (発明が解決しようとする問題点) かくして、本発明の目的は、生産性を全く損な
うことなく、連続鋳造鋳片の製造の際ならびにそ
れらを直送圧延ないしはホツトチヤージ圧延する
際に発生する表面疵としての割れを完全に防止
し、かかるプロセスの安定操業を可能にして大幅
なコスト低減を図ることにある。 本発明者らは、これらの表面欠陥としての割れ
が連続鋳造鋳片においては冷却過程における低温
オーステナイト(γ)域において、場合によつて
はフエライト(α)との共存域において鋳片にか
かる熱応力やこのような温度域での鋳片矯正時に
鋳片に加えられる外部応力等の低歪速度変形によ
つて発生すること〔Mat.Sci.Eng.,62(1984)
p.109〜119、およびTrans.JIM,25(1984)
p.160〜167〕、また熱間圧延時においては比較的
低温のγ域における高歪速度変形によつて発生
し、いずれもγ粒界が破壊することによるもので
あることを知見し発表した。 本発明において鋳片表面に軽加工を加えた後に
矯正ロールを通過させるのは、上述のように、矯
正時の温度(低温γ域またはα+γ2相共存域)
における低歪速度変形によつて表面疵が多発する
からであり、その前に疵を発生させる析出物を粗
大化させて無害化し、割れの原因となる微細析出
物の生成を防止しようとするからに他ならない。 低歪速度変形時における材料の脆化は、AlN
やNbCあるいはTaC、TiC、VN等の炭窒化物が
変形中にγ粒界に連続的に析出し、かつ粒内にも
微細に析出したり、さらには粒界に相対的に軟い
フエライト(α)がフイルム状に析出して粒内が
相対的に強化され、歪がγ粒界に沿う無析出帯や
フイルム状αの軟い部分に集中して粒界析出物と
マトリツクスとの界面剥離を生じさせて起こるも
のである〔Mat.Sci.Eng.,62(1984)p.109〜
119、Trans.JIM,25(1984)p.160〜167)。 また、熱間圧延の際にみられる高歪速度変形時
の脆化は、やはり変形中のγ粒界への(Fe、
Mn)Sの連続析出と粒内への微細析出による粒
内強化によつて同様に生ずるものである。この場
合、この高歪速度変形前に炭窒化物のγ粒界連続
析出と粒内析出が起こつていれば、(Fe、Mn)
Sによる脆化は著しく助長されることになる。 したがつて、両工程におけるγ粒界割れによる
脆化を防止するにはγ粒を微細にして粒界脆化感
受性を下げるか、問題となる変形時(例えば鋳片
矯正と圧延時)までに析出物を粗大化して変形時
のγ粒界析出および粒内微細析出を防止すればよ
い。しかしながら現状においては設備上及び操業
上の制約その他によつて十分な対策がとられてな
いのが実情である。例えば、析出物の凝集粗大化
は冷却速度を小さくするか冷却中に恒温保持すれ
ば実現できる〔炭窒化物についてはMat.Sci.
Eng.,62(1984)p.109〜119、硫化物については
特開昭58−52442号を参照〕が、冷却に桁違いに
長い時間を要し、生産性を著しく損なうので現実
的ではない。またγ粒の再結晶を利用して細粒化
するという提案もあるが(特開昭54−155123号参
照)、もともとのγ粒が極めて粗大であるので、
再結晶核としての粒界の面積が小さいので大きな
歪を加える必要があり、かつ特開昭54−155123号
にいうように粒径0.1mm以下の如き微細結晶粒と
するには少なくとも40%以上の塑性歪を与える必
要があり、未凝固部分を含む鋳片にかかる大きな
歪を与えることは事実上不可能である。 また上述した脆化機構から考えて、鋼の化学成
分を調整して表面疵の発生を抑制することも考え
られるが、鋼の化学成分は鋼の材質、所要の特性
を与えるために添加せざるを得ないものもあるた
め制約が多く、抜本的対策とはなつていない。た
とえばAlNの析出防止にはAl、Nの低減もしく
はTiを添加してTiNとしてNをγ粒内に固定す
れば延性の向上が望めるが、それらの低減にはコ
スト上昇が伴いまたTi添加は溶接部の靭性を損
なうなど害も多い。またNb添加等は製品の品質
を確保する上で不可欠であり、それの変更によつ
て対策をとることは不可能である。Sの低減も有
効であるがコスト上昇が伴うためトータルコスト
の低減には必ずしもつながらない。 ここで、再度、特開昭58−52442号と本発明と
の相違を確認しておく。 特開昭58−52442号と本発明とは結果的にはい
ずれも、スラブ矯正時の割れをもたらすNbCや
AlN等の微細析出を防止しようとする点で類似
している。しかし、前者は超徐冷によりその目的
を果たそうとしているので極めて長時間を要し、
生産性を著しく損なうのに対して、本発明は冷却
中のスラブ表面への軽加工によつて析出の核を作
り、有害な析出物を早期に析出させ、さらにその
粗大化を図ることによつてその目的を果たそうと
するものである。従つて、前者とは技術的思想お
よび構成を異にしており、生産性を全く損なうこ
となく目的を達成できる点で、その効果にも著し
い相違を有する。 (問題点を解決するための手段) 本発明者らは、炭窒化物や硫化物の凝集粗大化
を上述の鋳片の超徐冷もしくは冷却中の恒温保持
などによらず実用的な短時間内に達成する方法に
ついて研究を重ね、鋳片の冷却中に鋳片表層部に
実用上適用可能な特定の条件で加工を加えられれ
ば目的が達せられることを見い出した。このよう
に本発明はこの発見によつて初めてなされたもの
であり、従来法とは冶金学的にも本質的に技術思
想及び効果の点で全く異なるものである。 ここに、本発明は、最も広義には、連続鋳造時
の鋳片の表層部深さ2mm以上に5%以上の加工歪
を、700〜1200℃の温度領域で与えた後に矯正ロ
ールを通過させることを特徴とする連続鋳造鋳片
の製造方法である。 本発明はその好適態様によれば、連続鋳造時の
鋳片の表層部深さ2mm以上に5%以上の加工歪
を、歪速度ε〓(s-1)が ε〓≧a・exp〔−b/T+273〕 (ただし、a=1.3614、b=7500、Tは鋳片表面
温度で700℃≦T≦1200℃)の条件下で与えた後
に矯正ロールを通過させることを特徴とする、連
続鋳造鋳片の製造方法である。このようにして得
られた連続鋳造鋳片は、再加熱することなく直接
熱間加工してもあるいは室温にまで冷却すること
なく再加熱してから熱間加工を加えてもよい。こ
こに熱間加工とは、通常の圧延の外、鍛造等熱間
で行う全ての加工を意味する。 このように、本発明によれば、鋳片表面温度と
加工歪速度との関係を示す第1図における斜線領
域内の条件下で表層部深さ2mm以上の領域に5%
以上の加工歪を与え、かくして連続鋳造時の鋳片
の熱間割れ、さらにはいわゆる直送圧延、ホツト
チヤージ圧延における鋼片の熱間割れが効果的に
防止される。 ここで本発明の原理について実験データにもと
ずいてさらに説明すると、次の通りである。 すなわち、第1表に示す組成の鋼を用意し、こ
れより引張試験を採取して次の実験を行つた。
(Industrial Application Field) The present invention relates to a method for producing continuously cast slabs and a method for hot working thereof, particularly a method for preventing hot cracking of slabs during the production of continuously cast slabs, and a so-called direct rolling process or The present invention relates to a method for preventing hot cracking of slabs in a hot charge rolling process. More specifically, the present invention is a medium-low carbon steel containing either or both of Si and Mn, or a low alloy steel containing 1% or less of each of alloying elements such as Al, Nb, Ti, Ta, V, and B. Continuous casting of steel, direct rolling process in which steel is rolled immediately without reheating immediately after continuous casting, or hot charge rolling process in which hot rolling is performed after reheating without cooling to room temperature. This invention relates to a method for preventing cracking of a steel billet during rolling. (Prior art) When producing medium-low carbon steel or low alloy steel as described above by a continuous casting method using, for example, a curved continuous casting machine, the continuously cast slab is mainly subjected to an electric current during slab straightening. Surface cracks often occur due to bending stress caused by bending and thermal stress caused by cooling, and this tendency is particularly noticeable in Nb-containing steel. Such cracks require a cleaning process before proceeding to the next process, so it is necessary to cool the product to around room temperature. Even in the case of the normal rolling process using cold slabs, the need for a care process complicates operations and increases costs.
On the other hand, in direct rolling and hot charge rolling processes that aim to reduce costs through energy and labor savings, the occurrence of such cracks is a significant obstacle to their practical application. Furthermore, even if the slab does not have any flaws, cracks may occur during direct rolling or hot charge rolling, which also poses a significant obstacle to the practical application of these processes. Incidentally, the occurrence of such cracking is particularly remarkable in materials containing a high content of S as an impurity. Therefore, in order to manufacture products stably and inexpensively by the direct rolling or hot charge rolling process, it is necessary to avoid the occurrence of defects in slabs during continuous casting and the subsequent process of direct rolling or hot charge rolling. It is desired to establish a method for completely preventing the occurrence of surface flaws. On the other hand, even when continuous casting slabs are once cooled, reheated, and hot-worked, if there are no defects in the continuous casting slabs themselves, the flaw removal process becomes unnecessary, and the practical benefit is extremely large. Even if there is a case,
It is desired to establish a method that completely prevents the occurrence of defects during the production of continuously cast slabs. First, as a method for preventing surface flaws occurring in such continuously cast slabs, Japanese Patent Application Laid-Open No. 128255/1983 discloses a method for continuous impact of shot balls. However, as stated in p. 290 of the publication, lines 3 to 7, this method is aimed at crimping cracks directly under the mold, removing trapped foreign matter, and preventing oxidation on the surface of the slab. and
Furthermore, as is clear from Figure 4 of the publication,
This is just a processing step before entering the guide rolls directly below the mold. Cracks continue to occur even after this, and as will be described later, this method is not a complete preventive measure against the occurrence of cracks. Furthermore, JP-A-54-155123 discloses a method of applying plastic strain to a slab, which involves adjusting the amount of plastic strain in the surface layer, slab temperature, and austenite grain size within a certain range. According to the findings of the present inventors, these conditions alone cannot completely prevent the occurrence of defects. Furthermore, roll reduction, shot blasting, and laser pulses, which have been proposed as means for imparting plastic strain, do not provide sufficient effects. That is, if a slab including an unsolidified portion is rolled down with a normal roll, the entire thickness of the solidified shell will simply be depressed, and strain cannot be imparted to the surface layer of the slab. In addition, the depth at which strain can be imparted by Shot Plus is too shallow to be effective, and the shot recovery method is impractical due to many problems. Furthermore, the method using laser pulses applies heat to the surface of the slab several tens of micrometers thick, and attempts to impart strain due to the temperature difference between the slab and the inside. This is almost impossible in principle because the temperature difference is small.
Furthermore, since there is cooling water on the surface of the slab, the results are even weaker, making it extremely difficult to apply to actual production lines. In addition, as a means to prevent the occurrence of defects during hot rolling in direct rolling or hot charge rolling processes following continuous casting, as disclosed in Japanese Patent Application Laid-Open No. 58-52442, the cooling rate during continuous casting is Although measures have been proposed such as controlling
Although it is theoretically possible, there are many problems in applying it to actual operations. (Problems to be Solved by the Invention) Thus, an object of the present invention is to eliminate surface flaws that occur during the production of continuously cast slabs and when direct rolling or hot charge rolling them, without impairing productivity at all. The objective is to completely prevent cracking in the process, enable stable operation of the process, and significantly reduce costs. The present inventors discovered that these cracks as surface defects are caused by the heat applied to continuously cast slabs in the low-temperature austenite (γ) region during the cooling process, and in some cases in the coexistence region with ferrite (α). This occurs due to low strain rate deformation such as stress or external stress applied to the slab during straightening of the slab in this temperature range [Mat.Sci.Eng., 62 (1984)]
p.109-119, and Trans.JIM, 25 (1984)
p.160-167], and also discovered and announced that during hot rolling, this occurs due to high strain rate deformation in the relatively low-temperature γ region, and that both are caused by the destruction of γ grain boundaries. . In the present invention, the temperature at which the slab is passed through the straightening rolls after light processing is applied to the surface during straightening (low-temperature γ range or α + γ two-phase coexistence range)
This is because surface flaws occur frequently due to low strain rate deformation in the steel, and the precipitates that cause flaws are coarsened and rendered harmless in order to prevent the formation of fine precipitates that cause cracks. Nothing but. The embrittlement of the material during low strain rate deformation is
Carbonitrides such as NbC, TaC, TiC, and VN precipitate continuously at the γ grain boundaries during deformation, and also precipitate finely within the grains, and even relatively soft ferrite ( α) precipitates in a film shape, and the inside of the grain becomes relatively strengthened, and strain concentrates in the precipitate-free zone along the γ grain boundaries and the soft part of the film α, resulting in interfacial separation between the grain boundary precipitates and the matrix. [Mat.Sci.Eng., 62 (1984) p.109~
119, Trans.JIM, 25 (1984) p.160-167). In addition, embrittlement during high strain rate deformation seen during hot rolling is also caused by (Fe,
This is also caused by continuous precipitation of Mn)S and intragranular strengthening due to fine precipitation within the grains. In this case, if γ-grain boundary continuous precipitation and intragranular precipitation of carbonitrides occur before this high strain rate deformation, (Fe, Mn)
The embrittlement caused by S is significantly accelerated. Therefore, in order to prevent embrittlement due to γ grain boundary cracking in both processes, it is necessary to make the γ grains finer to reduce the susceptibility to grain boundary embrittlement, or to reduce the susceptibility to grain boundary embrittlement by making the γ grains finer, or by reducing the embrittlement by the time of problematic deformation (for example, during slab straightening and rolling). Precipitates may be coarsened to prevent γ grain boundary precipitation and intragranular fine precipitation during deformation. However, the current situation is that sufficient measures are not being taken due to equipment and operational constraints. For example, agglomeration and coarsening of precipitates can be achieved by reducing the cooling rate or maintaining constant temperature during cooling [For carbonitrides, see Mat.Sci.
Eng., 62 (1984) p.109-119; see Japanese Patent Application Laid-Open No. 58-52442 for information on sulfides], but it is not practical because it takes an order of magnitude longer time to cool down and significantly impairs productivity. . There is also a proposal to make grains finer by recrystallizing γ grains (see JP-A-54-155123), but since the original γ grains are extremely coarse,
Since the area of the grain boundaries as recrystallization nuclei is small, it is necessary to apply a large strain, and as stated in JP-A-54-155123, the strain must be at least 40% or more to obtain fine crystal grains with a grain size of 0.1 mm or less. It is virtually impossible to apply a large amount of plastic strain to the slab including the unsolidified portion. Also, considering the embrittlement mechanism mentioned above, it is possible to suppress the occurrence of surface flaws by adjusting the chemical composition of the steel, but the chemical composition of the steel must be added to give the material the desired characteristics. There are many restrictions as there are some things that cannot be obtained, so it is not a fundamental countermeasure. For example, to prevent the precipitation of AlN, it is possible to improve ductility by reducing Al and N, or by adding Ti to fix N in the γ grains as TiN, but these reductions involve increased costs, and Ti addition is There are many harmful effects such as impairing the toughness of the parts. Furthermore, addition of Nb, etc. is essential for ensuring product quality, and it is impossible to take measures by changing it. Reducing S is also effective, but it is accompanied by an increase in cost and does not necessarily lead to a reduction in total cost. Here, let us confirm once again the differences between JP-A-58-52442 and the present invention. JP-A No. 58-52442 and the present invention both result in the use of NbC and the like, which cause cracks during slab straightening.
It is similar in that it attempts to prevent fine precipitation of AlN, etc. However, the former uses ultra-slow cooling to achieve its purpose, which takes an extremely long time.
In contrast, the present invention creates precipitation nuclei through light processing of the slab surface during cooling, causes harmful precipitates to precipitate early, and further coarsens them. It is intended to achieve that purpose. Therefore, it differs from the former in its technical concept and structure, and its effectiveness is also significantly different in that it can achieve its purpose without compromising productivity at all. (Means for Solving the Problems) The present inventors have devised a method for solving the agglomeration and coarsening of carbonitrides and sulfides in a practical and short time without using the above-mentioned ultra-slow cooling of slabs or constant temperature maintenance during cooling. After repeated research into methods to achieve this goal, they discovered that the objective could be achieved if the surface layer of the slab could be processed under specific conditions that were practically applicable while the slab was cooling. As described above, the present invention was made for the first time based on this discovery, and is completely different from the conventional method both metallurgically and essentially in terms of technical concept and effect. Here, the present invention, in the broadest sense, applies a processing strain of 5% or more to a surface layer depth of 2 mm or more of a slab during continuous casting in a temperature range of 700 to 1200°C, and then passes it through straightening rolls. This is a method for producing continuously cast slabs, which is characterized by the following. According to a preferred embodiment of the present invention, a working strain of 5% or more is applied to the surface layer depth of 2 mm or more of a slab during continuous casting, and the strain rate ε〓(s -1 ) is set to ε〓≧a・exp[− b/T+273] (where a=1.3614, b=7500, T is the slab surface temperature of 700°C≦T≦1200°C), and then passing through a straightening roll. This is a method for manufacturing slabs. The continuously cast slab thus obtained may be directly hot worked without being reheated, or may be reheated without being cooled to room temperature and then hot worked. Here, hot working means all hot working such as forging in addition to normal rolling. As described above, according to the present invention, under the conditions within the shaded area in FIG. 1 showing the relationship between slab surface temperature and processing strain rate, 5%
By applying the above working strain, hot cracking of the slab during continuous casting, and furthermore, hot cracking of the steel slab during so-called direct rolling and hot charge rolling can be effectively prevented. Here, the principle of the present invention will be further explained based on experimental data as follows. That is, steel having the composition shown in Table 1 was prepared, and tensile test samples were taken from the steel to conduct the following experiment.

【表】 第2図は、本実験で採用した各種の加工、熱処
理条件を示す説明図である。 まず、冷却過程で連続鋳造鋳片に加える加工を
シミユレートするために、1350℃で溶体化処理し
た材料を鋳片矯正時の歪速度(ε〓)と同じε〓〜
10-3s-1で850℃で引張変形したときの絞り値
(RA)と、この引張変形に先立つて徐冷に相当
する処理として1100℃で等温保持した時の保持時
間との影響を調べた(第2図ケース、、お
よび参照)。 Nbを含有するA鋼について、試験結果を第3
図にグラフにまとめて示す。従来法に相当するケ
ースの場合ではRAは極めて小さく、ケース
の場合において1100℃で長時間保持しない限り延
性は向上しない。ところがケースおよびのよ
うに1100℃保持前に10%の加工歪をε〓=10-1s-1
加えると短時間の1100℃保持で大きく延性は向上
する。鋳片表層部加工が低い温度で行われる場合
にはケースのようにその後に冷却をゆるめて復
熱させるのが好ましい。B鋼について得られた同
様のグラフを第4図に示す。ケースは10%の前
加工を施した場合を示す。 したがつて、このように鋳片表層部加工が割れ
防止に有効であることがわかる。 次に前記加工の歪量(ε)と歪速度ε〓の影響を
調べた。第2図のケースにおいてε〓〜10-1s-1
前加工し1100℃で10分間保持した場合のε(歪量)
がRA値に及ぼす影響を調べた結果を第5図にグ
ラフにまとめて示す。図示結果からも前加工歪は
5%もあれば絞り値50%以上が得られ、スラブの
割れは極めて発生しにくくなることが分かつた。
A鋼、B鋼にいずれにおいても同様な傾向がみら
れた。 またε〓(歪速度)の影響も大きく、例えばA鋼に
ついて第2図のケース、の1100℃で10分保持
する場合においてそれに先立つてそれぞれ1100℃
および900℃で10%前加工し、そのときの歪速度
とRA値との関係を第6図にグラフにまとめて示
すが、この第6図からもε〓が大きい程大きな効果
が得られ、前加工温度1100℃ではε〓≧10-1s-1
900Kgではε〓≧3×10-1s-1が必要なことがわかる。 次に鋳片矯正を経た後の直送圧延時の割れとの
関係について評価した。結果をRA値と等温保持
時間との関係として第7図にグラフで示す。従来
法であるケースの場合においては、A,B,C
鋼とも低いRA値を示し、一方、加工に先立つて
等温保持処理だけを行つたケースにおいても必
ずしも大きな改善効果が得られない。それに対し
てほぼ歪量10%の前加工を行つたケースの場合
では前加工後4分以内の等温保持でRA値50%以
上が得られ、いずれも大きな延性の向上が図れる
ことがわかつた。 次に本発明における加工条件の限定理由につい
て説明する。 加工歪を与える領域を鋳片の表層部2mm以上に
限定したのは、表面から2mm以内の領域に発生し
た疵が後工程で割れ疵やすじ疵として残るという
知見に基づく。 加工歪量を5%以上、歪速度を前述の式のよう
に限定したのは、それぞれ加工歪量の限定は5%
以上の加工量でなければ、また歪速度ε〓(s-1)はε

≧a exp〔−b/T+273〕の条件を外れると場合 により析出物の核生成が困難であるという理由に
基づく。すなわち、このような高温で歪の蓄積を
図るには、導入した転位の回復が起こるまでに析
出核が生成しなければならず、高温になればなる
程ε〓を上げて、歪の蓄積を図らねばならず、その
ときの条件が ε〓≧a・exp〔−b/T+273〕である。 ここで、歪速度を与える条件式がこのような形
になる理由は以下のとおりである。 一般に、高温変形下における流動応力σは歪速
度ε〓に対して次のように表わされる。 σ=K・ε〓・exp〔−Q/k(T+273)〕 ここで、K:定数 Q:拡散の活性化エネルギー すなわち、ε〓が大きいほどσは大きくなり、温
度Tが高いほどσは低下する。 これは変形中の転位の蓄積、すなわち転位密度
の増加による加工硬化と、それを相殺する回復す
なわち原子の移動による転位密度の減少とのバラ
ンスによるものである。 いま、流動応力が一定という条件下において
は、ε〓とTの関係は前式を書き直して、 ε〓=a・exp〔−Q/k(T+273)〕 と表わされるので、 ε〓=a・exp〔−b/T+273〕 なる形に整理される。 上式において、第6図から得られた知見すなわ
ち、RA≧50%の得られるε〓は、1100℃において
はε〓≧5.62×10-3s-1、900℃においてはε〓≧2.276
×
103s-1であることを用いることにより、係数aお
よびbの値が求められ、a=1.3614、b=7500が
得られる。 またTの下限を700℃としたのはそれより低い
温度にすでに鋳片が冷却されていれば、その後の
復熱によつても析出物の粗大化を図るのが困難と
なるからであり、一方、鋳片温度が1200℃を超え
ると導入した転位の回復が著しく早く、目的とす
る析出物の生成が行えなくなるからである。本発
明において鋳片スラブ表層加工の条件は第1図に
おいて斜線領域として示す。 さらにε〓とTの最適条件について第8図を用い
て説明する。第8図は一連の加工条件の下で鋳片
矯正に先行して行う歪加工を引張変形によつてシ
ユミレートしそのとき鋳片にみられた脆化傾向を
グラフにまとめて示したものであり、斜線部は50
%以下のRAを示した領域である。なお、このと
きの供試鋼組成は次の通りであつた。
[Table] FIG. 2 is an explanatory diagram showing various processing and heat treatment conditions adopted in this experiment. First, in order to simulate the machining applied to continuously cast slabs during the cooling process, the material solution-treated at 1350°C was heated to
We investigated the influence of the aperture value (RA) when tensile deformation was performed at 850°C at 10 -3 s -1 and the holding time when the specimen was held isothermally at 1100°C as a treatment equivalent to slow cooling prior to this tensile deformation. (Figure 2 case, and reference). Regarding A steel containing Nb, the test results are shown in the third section.
The figures are summarized in a graph. In the case corresponding to the conventional method, RA is extremely small, and ductility does not improve unless the case is held at 1100°C for a long time. However, if a 10% working strain is applied at ε = 10 -1 s -1 before holding at 1100°C as in case and above, the ductility will be greatly improved by holding at 1100°C for a short time. When the surface layer of the slab is processed at a low temperature, it is preferable to slow down the cooling and reheat afterward, as in the case. A similar graph obtained for steel B is shown in FIG. The case shows the case with 10% pre-processing. Therefore, it can be seen that processing the surface layer of the slab is effective in preventing cracking. Next, the effects of the amount of strain (ε) and the strain rate ε〓 of the processing were investigated. In the case shown in Figure 2, ε (strain amount) when pre-processed at ε 〓 ~ 10 -1 s -1 and held at 1100℃ for 10 minutes
Figure 5 summarizes the results of investigating the influence of RA on RA values. From the results shown, it was found that if the pre-processing strain was as low as 5%, a reduction of area of 50% or more could be obtained, and cracks in the slab were extremely unlikely to occur.
A similar tendency was observed in both steel A and steel B. In addition, the influence of ε〓 (strain rate) is also large; for example, when steel A is held at 1100°C for 10 minutes in the case shown in Figure 2, the temperature at 1100°C is
Figure 6 shows the relationship between the strain rate and RA value after 10% pre-processing at 900°C. From Figure 6, it can be seen that the larger ε〓 is, the greater the effect is obtained. At the pre-processing temperature of 1100℃, ε〓≧10 -1 s -1 ,
It can be seen that ε〓≧3×10 -1 s -1 is required for 900Kg. Next, the relationship between cracking during direct rolling after slab straightening was evaluated. The results are shown graphically in FIG. 7 as a relationship between RA value and isothermal holding time. In the case of the conventional method, A, B, C
Both steels exhibit low RA values, and on the other hand, even in cases where only isothermal holding treatment is performed prior to processing, a large improvement effect is not necessarily obtained. On the other hand, in the case of pre-processing with approximately 10% strain, an RA value of 50% or more was obtained with isothermal holding within 4 minutes after pre-processing, indicating that ductility could be greatly improved in both cases. Next, the reason for limiting the processing conditions in the present invention will be explained. The reason why the area to which processing strain is applied is limited to 2 mm or more of the surface layer of the slab is based on the knowledge that flaws that occur within 2 mm from the surface remain as cracks or streaks in subsequent processes. The reason why the amount of machining strain is limited to 5% or more and the strain rate is limited as shown in the above formula is that the amount of machining strain is limited to 5%.
If the amount of machining is not greater than

This is based on the reason that if the condition of ≧a exp [-b/T+273] is not met, nucleation of precipitates may be difficult in some cases. In other words, in order to accumulate strain at such high temperatures, precipitation nuclei must be generated before recovery of the introduced dislocations occurs, and the higher the temperature, the higher ε〓 increases to prevent the accumulation of strain. The condition at that time is ε〓≧a·exp[−b/T+273]. Here, the reason why the conditional expression giving the strain rate takes such a form is as follows. Generally, the flow stress σ under high temperature deformation is expressed with respect to the strain rate ε〓 as follows. σ=K・ε〓・exp [−Q/k(T+273)] Here, K: Constant Q: Activation energy of diffusion In other words, the larger ε〓, the larger σ becomes, and the higher the temperature T, the lower σ becomes. do. This is due to the balance between work hardening due to the accumulation of dislocations during deformation, ie, an increase in dislocation density, and recovery to offset this, ie, a decrease in dislocation density due to the movement of atoms. Now, under the condition that the flow stress is constant, the relationship between ε〓 and T can be rewritten as ε〓=a・exp[−Q/k(T+273)], so ε〓=a・It is organized into the form exp[-b/T+273]. In the above equation, the knowledge obtained from Figure 6, that is, the obtained ε〓 for RA≧50% is ε〓≧5.62×10 -3 s -1 at 1100℃, and ε〓≧2.276 at 900℃.
×
By using the fact that 10 3 s -1 , the values of coefficients a and b are determined, and a=1.3614 and b=7500 are obtained. In addition, the lower limit of T was set at 700°C because if the slab has already been cooled to a lower temperature, it will be difficult to coarsen the precipitates even with subsequent reheating. On the other hand, if the slab temperature exceeds 1200°C, the introduced dislocations will recover extremely quickly, making it impossible to generate the desired precipitates. In the present invention, the conditions for surface processing of a slab slab are shown as the shaded area in FIG. Furthermore, the optimal conditions for ε〓 and T will be explained using FIG. Figure 8 is a graph summarizing the embrittlement tendency observed in the slab when strain processing performed prior to slab straightening was simulated by tensile deformation under a series of processing conditions. , the shaded area is 50
% or less. The composition of the sample steel at this time was as follows.

【表】 図中、領域Bにおいては炭窒化物のγ粒界およ
び粒内析出が起こり、鋳片表層部加工時にも場合
によつては割れを生ずる危険がある。領域Dにお
いては硫化物の析出に起因する割れを生ずる危険
があり、好ましくはさけた方がよい。領域A,
C,Eは安全であるが第1図で述べたように歪の
蓄積とのかねあいでこの場合領域Aは好ましくな
い。 第8図は前述のとおりNb含有鋼を用いて引張
変形を加えた場合の現象である。対象鋼種或いは
加工方法が異なれば領域Dがなくなることがあ
る。たとえば高Mnまたは低S鋼ではD領域は生
じにくくなり、また、応力が圧縮圧下となる場合
もD領域は消失する。 本発明において、上述の如き加工歪を付与する
加工方法としては、例えばガイドロール表面に突
起を付けたロールを使用したりエアーハンマーや
特殊な油圧プレスなどが考えられ、所要の加工
歪、歪速度を実現できる限りその他の方法も場合
によつては採用できる。 本発明の適用鋼種は特に限定されないが、連続
鋳造鋳片にAlN、NbC、TaC、TiC、BN、VN
などの析出が原因と見られる表面疵が発生しやす
い鋼種については特に有効である。一方、炭窒化
物が析出しにくい成分系においては、直送圧延や
ホツトチヤージ圧延時に主として硫化物の析出に
起因する表面疵防止に大きな効果が得られる。 なお、表層加工を終了した後鋳片内部からの復
熱を利用した析出物の粗大化をさらに助長するこ
とも考えられるが、このような方法ももちろん本
発明に含まれる。この方法は、内部割れその他と
の関連で鋳片を強冷せざるを得ない場合などにお
いて特に有効となる。 実施例 1 本例は予め加工歪を付与しておくことにより引
き続いて行う圧延加工に際しても鋳片の割れが発
生しないことをシユミレーシヨン法によつて示す
ためのものである。 第2表に示す組成をもつた厚さ40mm、幅220mm、
長さ600mmの鋳片を鋳造し、先端を平らにした小
型電動ハンマーによつて鋳片表面の半分に第3表
に示す条件で加工歪を与えた。この時の歪速度は
ほぼ50s-1であつた。加工歪量は表層部5mmの平
均で約20%であつた。次いで、かくして得られた
鋳片に油圧による曲げ加工を行い、表面割れの有
無を目視で観察した。電動ハンマーによる加工歪
を加えなかつた部分には、鋼種Iの場合長さ20〜
50mmの深い割れが、また鋼種の場合長さ5〜10
mmの横ヒビ割れが発生したが、加工歪を加えた部
分には全く表面割れが見られなかつた。
[Table] In the figure, in region B, precipitation of carbonitrides occurs at the γ-grain boundaries and within the grains, and there is a risk of cracking in some cases even during machining of the surface layer of the slab. In region D, there is a risk of cracking due to precipitation of sulfides, and it is preferably avoided. Area A,
Areas C and E are safe, but as described in FIG. 1, area A is not preferable in this case due to strain accumulation. Figure 8 shows the phenomenon when tensile deformation is applied to Nb-containing steel as described above. If the target steel type or processing method is different, region D may disappear. For example, in high Mn or low S steel, the D region is less likely to occur, and the D region also disappears when the stress is compressive reduction. In the present invention, as a processing method for imparting processing strain as described above, for example, the use of a roll with protrusions on the surface of a guide roll, an air hammer, a special hydraulic press, etc. can be considered, and the required processing strain and strain rate can be considered. Other methods may be adopted in some cases as long as they can be achieved. The applicable steel types of the present invention are not particularly limited, but continuous casting slabs include AlN, NbC, TaC, TiC, BN, and VN.
This method is particularly effective for steel types that are prone to surface flaws that appear to be caused by precipitation. On the other hand, in a component system in which carbonitrides are difficult to precipitate, a great effect can be obtained in preventing surface defects mainly caused by sulfide precipitation during direct rolling or hot charge rolling. It is also conceivable to further promote the coarsening of precipitates by utilizing recuperation from inside the slab after surface processing is completed, but such a method is of course included in the present invention. This method is particularly effective in cases where the slab must be strongly cooled due to internal cracks or other problems. Example 1 This example is intended to demonstrate, by a simulation method, that by applying processing strain in advance, cracks do not occur in the slab even during subsequent rolling processing. 40mm thick, 220mm wide, with the composition shown in Table 2.
A slab with a length of 600 mm was cast, and half of the slab surface was subjected to processing strain under the conditions shown in Table 3 using a small electric hammer with a flat tip. The strain rate at this time was approximately 50 s -1 . The amount of processing strain was approximately 20% on average over the 5 mm surface layer. Next, the thus obtained slab was subjected to hydraulic bending, and the presence or absence of surface cracks was visually observed. For steel type I, length 20~
A deep crack of 50 mm, or a length of 5 to 10 mm for steel types.
Although lateral cracks of mm in diameter occurred, no surface cracks were observed at all in the area where processing strain was applied.

【表】【table】

【表】【table】

【表】 実施例 2 製鋼工場の半径12.5mの弯曲型連続鋳造機を用
いて、断面が250mm×2100mmの鋳片を条件を変え
て鋳造し、矯正後の鋳片の表面疵の発生程度を目
視で評価した。第9図はこの時の鋳片表層部への
加工歪を付与するのに使用した鋳片上面側のロー
ル間で鋳片巾方向に移動する油圧シリンダーを動
力源とする鋳片打撃装置を鋳造ラインとともに示
す。図示例にあつては、一部未凝固の溶鋼がある
ような段階で鋳片1に対し、鋳片打撃装置2によ
つて加工歪を与えている。鋳片打撃装置は圧子3
とこれに接続された油圧シリンダー4から構成さ
れ、これらは油圧ユニツト5、油圧ポンプユニツ
ト6と経て制御器7でその打撃量等が制御されて
いる。 第10図は鋳片打撃装置の先端に取付けられた
圧子によつて加工歪を与えられた鋳片表層部の状
態を示す。圧子球面径15mm、圧下の深さは3mm、
圧下の打撃数180サイクル/分の打撃を与え、鋳
片表層部3mmの平均歪量は7%で歪速度は0.3s-1
であつた。第4表には本例で使用した鋼の成分組
成を、第5表に鋳造条件および結果を示す。 これらの結果からも分かるように、鋳片矯正に
先立つて加工歪を与えなかつた従来方式による鋳
片には多くのひび割れが発生したが、本発明によ
る表面加工を実施した鋳片表面には矯正後も全く
ひび割れが発生しなかつた。
[Table] Example 2 Using a curved continuous casting machine with a radius of 12.5 m at a steel factory, slabs with a cross section of 250 mm x 2100 mm were cast under different conditions, and the degree of surface flaws on the slabs after straightening was evaluated. Visual evaluation was performed. Figure 9 shows a casting slab striking device whose power source is a hydraulic cylinder that moves in the width direction of the slab between rolls on the upper surface of the slab, which was used to apply processing strain to the surface layer of the slab at this time. Shown with line. In the illustrated example, machining strain is applied to the slab 1 by the slab striking device 2 at a stage when there is a portion of unsolidified molten steel. The slab striking device is indenter 3
It is composed of a hydraulic cylinder 4 connected thereto, and the amount of impact etc. of these are controlled by a controller 7 via a hydraulic unit 5 and a hydraulic pump unit 6. FIG. 10 shows the condition of the surface layer of a slab subjected to processing strain by an indenter attached to the tip of a slab striking device. Indenter spherical diameter 15mm, depth of depression 3mm,
The number of rolling blows was 180 cycles/min, and the average strain in the 3 mm surface layer of the slab was 7% and the strain rate was 0.3 s -1
It was hot. Table 4 shows the composition of the steel used in this example, and Table 5 shows the casting conditions and results. As can be seen from these results, many cracks occurred in the slab produced by the conventional method in which no machining strain was applied prior to straightening the slab, but the surface of the slab treated by the present invention did not undergo straightening. There were no cracks at all after that.

【表】【table】

【表】【table】

【表】【table】

【表】 次に同一連続鋳造機、同一打撃装置を用い鋳片
の表面温度パターンは強冷、復熱タイプを採用し
て試験を行つた。第6表に本例で使用した鋼の成
分組成を、第7表に鋳造条件および結果を、第1
1図にこのときの温度パターンを示す。矯正に先
立つて表面加工を行わなかつた従来方式による鋳
片には、ひび割れが発生したのに対して本発明法
による表面加工を実施した鋳片表面には全くひび
割れが発生しなかつた。 実施例 3 製鋼工場の半径12.5mの弯曲型連続鋳造機を用
いて断面が250mm×2100mmの第8表に示す化学成
分のスラブを第9表に示すように条件を代えて鋳
造し矯正後の鋳片の表面疵を目視で評価した。ま
た、この時の鋳片表層部への加工歪の付与法とし
ては第12図に示す如く湯面から9〜11mの間の
上面側ガイドロールを同じく同図に示す突起付き
ロールに代えて第13図に示す温度パターンで行
つた。このときの第12図の形状の突起は厚さ72
〜79mmの凝固殻表面に0.06〜0.07Kg/mm2なる静鉄
圧を反力としてくい込み、歪は第14図の如く拡
がり、次式で算出される式から、スラブ表層部5
mmの深さに少なくとも7%の歪を付与することが
できた。歪速度は2×10-1s-1と見積られた。 H=(Z+0.5)−1/√2×a S=(1.8〜2.2)×aであり、 最小5%の歪を与えるには、a=7mm、H=3
mmが必要であつた。 第9表に結果を併せて示すように、本発明によ
る突起付きロールを設置した連続鋳造機によれ
ば、スラブ表面に突起の圧痕が残存したが、ひび
割れ疵は全く発生しておらず、一方、突起付ロー
ルを使わない従来法ではひび割れ疵が多発してお
り、本発明による効果は明らかである。
[Table] Next, a test was conducted using the same continuous casting machine and the same striking device, and the surface temperature pattern of the slab was strong cooling and recuperation type. Table 6 shows the composition of the steel used in this example, Table 7 shows the casting conditions and results, and Table 1 shows the casting conditions and results.
Figure 1 shows the temperature pattern at this time. Cracks occurred in the slabs produced by the conventional method in which no surface treatment was performed prior to straightening, whereas no cracks occurred at all on the surface of the slabs subjected to surface treatment by the method of the present invention. Example 3 Using a curved continuous casting machine with a radius of 12.5 m at a steel factory, a slab with a cross section of 250 mm x 2100 mm and the chemical composition shown in Table 8 was cast under different conditions as shown in Table 9, and after straightening. Surface flaws on the slab were visually evaluated. In addition, as a method of imparting processing strain to the surface layer of the slab at this time, as shown in Figure 12, the upper guide roll between 9 and 11 m from the molten metal surface is replaced with a roll with protrusions as shown in the same figure. The temperature pattern shown in Figure 13 was used. At this time, the protrusion with the shape shown in Figure 12 has a thickness of 72 mm.
A static iron pressure of 0.06 to 0.07 Kg/ mm2 is applied to the solidified shell surface of ~79 mm as a reaction force, and the strain spreads as shown in Fig. 14. From the following formula, the slab surface layer 5
A strain of at least 7% could be applied to a depth of mm. The strain rate was estimated to be 2×10 −1 s −1 . H=(Z+0.5)-1/√2×a S=(1.8~2.2)×a, and to give a minimum strain of 5%, a=7mm, H=3
mm was necessary. As shown in Table 9, according to the continuous casting machine equipped with the roll with projections according to the present invention, impressions of projections remained on the slab surface, but no cracks or defects occurred at all. In the conventional method that does not use a roll with projections, cracks and defects occur frequently, so the effect of the present invention is clear.

【表】【table】

【表】 この方法で連続鋳造鋳片の表面疵の発生を防止
できることがわかつたので、さらに直送圧延時の
割れ防止の効果について試験した。第10表に示す
鋼イ、ロを溶解し、上述の方法において、鋳片の
上、下面の両方に突起付きロール4組が食い込む
ように配置し、第15図の温度パターンで鋳片を
鋳造後、切断し、直径1300mmの圧延ロールを用い
て厚さ150mmにまで5パスで圧延し、表面疵の発
生程度を目視で評価した。その結果を第11表にま
とめて示す。従来例は突起付ロールを使用しない
例である。 第11表に示す結果からも本発明によつて著しい
効果が得られることは明らかである。
[Table] Since it was found that this method could prevent the occurrence of surface flaws in continuously cast slabs, we further tested the effect of preventing cracks during direct rolling. Steel A and B shown in Table 10 are melted, and the slab is cast using the method described above, with four sets of protruding rolls biting into both the upper and lower surfaces of the slab, and according to the temperature pattern shown in Figure 15. Thereafter, it was cut and rolled in 5 passes to a thickness of 150 mm using a rolling roll with a diameter of 1300 mm, and the degree of occurrence of surface flaws was visually evaluated. The results are summarized in Table 11. The conventional example is an example in which a roll with protrusions is not used. It is clear from the results shown in Table 11 that significant effects can be obtained by the present invention.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明において規定する加工歪速度
の加工温度に対する領域を示すグラフ;第2図
は、各種加工熱処理パターンを示す模式図;第3
図ないし第7図は、前加工とそのときの歪速度が
延性に及ぼす影響を考察する予備試験の結果を示
すグラフ;第8図は、歪速度と変形温度とに対し
て脆化領域を示すグラフ;第9図および第10図
は、加工歪を付与する手段としての鋳片打撃装置
の概略説明図:第11図は、加工を行つた後に復
熱させたときの鋳片の温度パターンを示すグラ
フ;第12図は、加工歪付与を突起付ロールで行
う場合の概略説明図:第13図は、突起付ロール
で加工歪を与えたときの鋳片の温度パターンを示
すグラフ;第14図は、突起付ロールを使つたと
きの加工歪の伝搬の模式的説明図;および第15
図は、加工歪付与した後に鋳片を切断し、さらに
熱間加工(圧延)を行うときの鋳片表面温度パタ
ーンを示すグラフである。 1:鋳片、2:鋳片打撃装置、3:圧子、4:
油圧シリンダー、5:油圧ユニツト、6:油圧ポ
ンプユニツト、7:制御器。
FIG. 1 is a graph showing the range of processing strain rate defined in the present invention with respect to processing temperature; FIG. 2 is a schematic diagram showing various processing heat treatment patterns;
Figures 7 to 7 are graphs showing the results of preliminary tests to consider the influence of pre-processing and strain rate on ductility; Figure 8 shows the embrittlement region as a function of strain rate and deformation temperature. Graph; Figures 9 and 10 are schematic explanatory diagrams of a slab striking device as a means for applying processing strain; Figure 11 shows the temperature pattern of the slab when it is reheated after processing. Graphs shown; Figure 12 is a schematic explanatory diagram when processing strain is applied using a roll with protrusions; Figure 13 is a graph showing the temperature pattern of the slab when processing strain is applied using a roll with protrusions; The figure is a schematic explanatory diagram of the propagation of processing strain when using a roll with protrusions;
The figure is a graph showing a slab surface temperature pattern when the slab is cut after being subjected to processing strain and further hot worked (rolled). 1: Slab, 2: Slab striking device, 3: Indenter, 4:
Hydraulic cylinder, 5: Hydraulic unit, 6: Hydraulic pump unit, 7: Controller.

Claims (1)

【特許請求の範囲】 1 連続鋳造時の鋳片の表層部深さ2mm以上に5
%以上の加工歪を、歪速度ε〓(s-1)が ε〓≧a exp〔−b/T+273〕(ただし、a= 1.3614、b=7500、Tは鋳片表面温度で700℃≦
T≦1200℃)の条件下で与えた後に矯正ロールを
通過させることを特徴とする、連続鋳造鋳片の製
造方法。 2 連続鋳造時の鋳片の表層部深さ2mm以上に5
%以上の加工歪を、歪速度ε〓(s-1)が ε〓≧a exp〔−b/T+273〕(ただし、a= 1.3614、b=7500、Tは鋳片表面温度で700℃≦
T≦1200℃)の条件下で与えた後に矯正ロールを
通過させ、得られた連続鋳造鋳片を再加熱するこ
となく直接熱間加工することを特徴とする連続鋳
造鋳片の熱間加工方法。 3 連続鋳造時の鋳片の表層部深さ2mm以上に5
%以上の加工歪を、歪速度ε〓(s-1)が ε〓≧a exp〔−b/T+273〕(ただし、a= 1.3614、b=7500、Tは鋳片表面温度で700℃≦
T≦1200℃)の条件下で与えた後に矯正ロールを
通過させ、得られた連続鋳造鋳片を室温まで冷却
することなく再加熱し、次いで熱間加工すること
を特徴とする連続鋳造鋳片の熱間加工方法。
[Claims] 1.5 in the surface layer depth of 2 mm or more of the slab during continuous casting.
% or more, the strain rate ε〓(s -1 ) is ε〓≧aexp[-b/T+273] (where a=1.3614, b=7500, T is the slab surface temperature 700℃≦
A method for producing a continuously cast slab, characterized by passing the cast slab through straightening rolls after applying it under conditions (T≦1200°C). 2 5 on the surface layer depth of 2 mm or more during continuous casting
% or more, the strain rate ε〓(s -1 ) is ε〓≧aexp[-b/T+273] (where a=1.3614, b=7500, T is the slab surface temperature 700℃≦
A method for hot working continuous cast slabs, characterized by directly hot working the continuous cast slabs without reheating the obtained continuous cast slabs by passing them through straightening rolls after applying the conditions (T≦1200°C) . 3. 5 at a depth of 2 mm or more in the surface layer of the slab during continuous casting.
% or more, the strain rate ε〓(s -1 ) is ε〓≧aexp[-b/T+273] (where a=1.3614, b=7500, T is the slab surface temperature 700℃≦
A continuously cast slab characterized by being passed through straightening rolls after being applied under conditions of T≦1200°C), reheating the obtained continuous casting slab without cooling to room temperature, and then hot working. hot working method.
JP17144084A 1984-07-31 1984-08-20 Production of continuously cast ingot Granted JPS6149763A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17144084A JPS6149763A (en) 1984-08-20 1984-08-20 Production of continuously cast ingot
US06/760,453 US4709572A (en) 1984-07-31 1985-07-30 Method of processing continuously cast slabs
EP85109574A EP0170254B1 (en) 1984-07-31 1985-07-30 Method and apparatus of processing continuously cast slabs
DE8585109574T DE3581008D1 (en) 1984-07-31 1985-07-30 METHOD AND DEVICE FOR PRODUCING CONTINUOUS CASTING SLABS.
US07/082,360 US4802356A (en) 1984-07-31 1987-08-06 Apparatus of processing continuously cast slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17144084A JPS6149763A (en) 1984-08-20 1984-08-20 Production of continuously cast ingot

Publications (2)

Publication Number Publication Date
JPS6149763A JPS6149763A (en) 1986-03-11
JPH0468069B2 true JPH0468069B2 (en) 1992-10-30

Family

ID=15923158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17144084A Granted JPS6149763A (en) 1984-07-31 1984-08-20 Production of continuously cast ingot

Country Status (1)

Country Link
JP (1) JPS6149763A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234511B2 (en) * 2008-12-11 2013-07-10 Jfeスチール株式会社 Continuous casting method and continuous casting machine

Also Published As

Publication number Publication date
JPS6149763A (en) 1986-03-11

Similar Documents

Publication Publication Date Title
US6610154B2 (en) Surface treatment of austenitic Ni-Fe-Cr based alloys for improved resistance to intergranular corrosion and intergranular cracking
EP2982777B1 (en) Titanium slab for hot rolling and method for manufacturing same
JP4514137B2 (en) Method for preventing rolling surface flaw of Ni-containing steel
JPH0541348B2 (en)
EP0170254B1 (en) Method and apparatus of processing continuously cast slabs
EP1083242B1 (en) Method of manufacturing of high strength rolled H-shapes
JPH0468069B2 (en)
JP3357264B2 (en) Manufacturing method of non-tempered steel bar for high toughness hot forging
JP3434080B2 (en) Wire for descaling
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JPH07251265A (en) Method for scarfing cast steel slab
JP5093463B2 (en) Continuous casting method and continuous casting machine
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
RU2765972C1 (en) Method for the production of thick sheets from low-alloy mild steels on a reversing mill
JP2756533B2 (en) Manufacturing method of high strength, high toughness steel bars
JPH07290101A (en) Method for preventing surface crack at time of hot edging/rolling continuously cast slab
KR20040060985A (en) Surface treatment of austenitic Ni-Fe-Cr based alloys
JPH0229725B2 (en) KOJINSEINETSUKANTANZOYOHICHOSHITSUBOKONOSEIZOHOHO
JPS6056457A (en) Continuous casting method
JPH03111515A (en) Rolling method of alloy tool steel
JP2862607B2 (en) Manufacturing method of steel with excellent drilling workability
JP2000129349A (en) Method for hot-forging steel for die or tool steel
JPH05192736A (en) Manufacture of hexagon socket head cap screw
JP3434081B2 (en) Wire for descaling
JPS6056451A (en) Continuous casting method