JP2000129349A - Method for hot-forging steel for die or tool steel - Google Patents

Method for hot-forging steel for die or tool steel

Info

Publication number
JP2000129349A
JP2000129349A JP30733998A JP30733998A JP2000129349A JP 2000129349 A JP2000129349 A JP 2000129349A JP 30733998 A JP30733998 A JP 30733998A JP 30733998 A JP30733998 A JP 30733998A JP 2000129349 A JP2000129349 A JP 2000129349A
Authority
JP
Japan
Prior art keywords
working
steel
forging
time
standing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30733998A
Other languages
Japanese (ja)
Other versions
JP3881793B2 (en
Inventor
Katsuya Imai
克哉 今井
Junji Tsuru
淳史 鶴
Sonoko Kitagawa
園子 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koshuha Steel Co Ltd
Original Assignee
Nippon Koshuha Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koshuha Steel Co Ltd filed Critical Nippon Koshuha Steel Co Ltd
Priority to JP30733998A priority Critical patent/JP3881793B2/en
Publication of JP2000129349A publication Critical patent/JP2000129349A/en
Application granted granted Critical
Publication of JP3881793B2 publication Critical patent/JP3881793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel ingot which generates fine austenitic crystal grains in the steel ingot after forging and has excellent mechanical properties of tensile strength, impact value, etc. by stilly standing a worked portion for a specific time or longer after applying the working to a blank. SOLUTION: The time for stilly standing, is shown in the equation [wherein, (t) is the stilly standing time (s), ε is the working strain, T is the forging temp. (material temp.) (K)]. Desirably, after applying the working to the blank, the working is interrupted for the time or longer in the equation which uses the working strain ε and the forging temp. T to the worked portion as the factors, and after stilly standing, the working and the stilly standing having the time or longer in the equation are again applied to this portion. After working a portion in the blank, the portion is stilly stood until the austenitic crystal grains is recrystallized by interrupting the working. During this period, the other position is worked, and after recrystallizing the austenitic crystal grains at the portion interrupting the working, the working and the stilly standing to the portion are again applied and then, the structure which well regulates the grain diameter having no mixed grain structure, is obtd. to improve the forging efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鍛造後の鋼塊内に
おいて微細なオーステナイト結晶粒が得られる金型用鋼
もしくは工具鋼の熱間鍛造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hot forging die steel or tool steel capable of obtaining fine austenite crystal grains in a forged steel ingot.

【0002】[0002]

【従来の技術】鋼材に熱間で塑性加工を行うと、もとの
オーステナイト結晶粒は加工によるひずみを受け、その
後、粒内のひずみを打ち消すように回復や再結晶が起こ
る。オーステナイトは加工終了後冷却過程で種々の組織
に変態するが、その変態挙動は変態前のオーステナイト
の組織状態に強く依存する。
2. Description of the Related Art When a plastic material is subjected to hot plastic working, the original austenite crystal grains undergo strain due to the working, and thereafter, recovery and recrystallization occur so as to cancel the strain in the grains. Austenite transforms into various structures during the cooling process after processing, and the transformation behavior strongly depends on the structure state of austenite before transformation.

【0003】鋼材の熱間圧延分野においては、圧延後の
鋼材の高強度,高靱性化のため、低炭素鋼については制
御圧延を行って再結晶オーステナイト組織の微細化を図
り、さらには、オーステナイト未再結晶域での圧延を行
ってフェライト組織の微細化を図っている。一方、中炭
素鋼についても再結晶オーステナイト組織の微細化を主
体に制御圧延が行われている。
[0003] In the field of hot rolling of steel, in order to increase the strength and toughness of the rolled steel, controlled rolling of low carbon steel is performed to refine the recrystallized austenite structure. Rolling is performed in the non-recrystallized region to refine the ferrite structure. On the other hand, for medium carbon steels, controlled rolling is mainly performed to refine the recrystallized austenite structure.

【0004】このように鋼材の熱間圧延の分野では、低
炭素鋼や中炭素鋼について再結晶オーステナイト組織の
微細化による高強度,高靱性化を図るため、加工中のオ
ーステナイト組織を予測制御する技術が種々開発されて
おり、熱間加工中のオーステナイト結晶粒は、加工温度
や加工ひずみ等の熱間加工条件を適切に選択することに
よって、再結晶完了時間や再結晶後の結晶粒径をコント
ロール出来ることが知られている。
As described above, in the field of hot rolling of steel materials, in order to increase the strength and toughness of a low-carbon steel and a medium-carbon steel by refining the recrystallized austenite structure, the austenite structure during working is predicted and controlled. Various technologies have been developed, and the austenite grains during hot working can reduce the recrystallization completion time and the crystal grain size after recrystallization by appropriately selecting hot working conditions such as working temperature and working strain. It is known that it can be controlled.

【0005】[0005]

【発明が解決しようとする課題】一方、金型用鋼や工具
鋼の鋼材は、一般的には溶解・鋳造後、熱間加工により
鍛練を行って内部の品質や機械的特性を向上させてい
る。また大型鋼材の熱間加工は主に鍛造により行われて
いるが、その主目的は鋼塊内の空隙欠陥の閉塞や炭化物
等の分散,微細化もしくは偏析帯の軽減等であり、結晶
粒径の積極的なコントロールはこれまで行われていなか
った。
On the other hand, steels for mold steel and tool steel are generally subjected to forging by hot working after melting and casting to improve internal quality and mechanical properties. I have. Hot working of large steel materials is mainly performed by forging, but the main purpose is to block void defects in the steel ingot, disperse carbides, etc., reduce the size, or reduce segregation zones. Has not been actively controlled.

【0006】そしてまた、金型用鋼もしくは工具鋼は、
上記低炭素鋼や中炭素鋼より含有する合金成分量が多い
ため、固溶元素や炭化物等がオーステナイト結晶粒の再
結晶挙動に与える影響が不明であり、低炭素鋼や中炭素
鋼の制御圧延におけるオーステナイト組織微細化技術を
そのまま適用するすることが出来ない。したがって、金
型用鋼もしくは工具鋼では、高強度,高靱性化を図るた
めの熱間加工時における確実な再結晶オーステナイト組
織を微細化する方法が無かった。
[0006] Further, mold steel or tool steel is
Since the amount of alloying components contained in the low-carbon steel and medium-carbon steel is larger than that in the low-carbon steel and medium-carbon steel, it is unknown how the solid solution elements and carbides affect the recrystallization behavior of austenite crystal grains. The austenitic structure refinement technology cannot be applied as it is. Therefore, there has been no method of reliably refining the recrystallized austenite structure at the time of hot working to achieve high strength and high toughness in mold steel or tool steel.

【0007】[0007]

【課題を解決するための手段】本発明は、上記のような
従来の問題点を解決するために成されたもので、金型用
鋼もしくは工具鋼鋼塊を熱間で鍛造するに際して、鍛造
後の鋼塊内において微細なオーステナイト結晶粒が得ら
れる鍛造方法を提供することを目的としたものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems, and is for hot forging a die steel or tool steel ingot. It is an object of the present invention to provide a forging method in which fine austenite crystal grains can be obtained in a later steel ingot.

【0008】そして、前記の目的を達成するため、本願
における第1の発明は、金型用鋼もしくは工具鋼を熱間
鍛造するに当たり、素材に加工を加えた後この加工部分
について、加工ひずみ(ε)および鍛造温度(T)を因
子とする、下記式(1)に従う時間t: t=1.84・10-20・ε-1.04・e×p(64700/T)・・(1) 〔ここで、t:静置時間(s)、ε:加工ひずみ、T:
鍛造温度(材料温度)(K)を示す〕 以上静置することを特徴とする金型用鋼もしくは工具鋼
の熱間鍛造方法である。
In order to achieve the above object, a first invention of the present application is to hot forging die steel or tool steel. ε) and forging temperature (T) as factors, time t according to the following equation (1): t = 1.84 · 10 −20 · ε −1.04 · e × p (64700 / T) ·· (1) [ Here, t: standing time (s), ε: working strain, T:
Shows forging temperature (material temperature) (K)] This is a hot forging method for die steel or tool steel, characterized by standing still.

【0009】また本願の第2の発明は、金型用鋼もしく
は工具鋼を熱間鍛造するに当たり、素材に加工を加えた
後この加工部分について、加工ひずみ(ε)および鍛造
温度(T)を因子とする、上記(1)式に従う時間以上
加工を中断していったん静置した後、この部分に再度加
工と前記式(1)の時間以上の静置を加えることを特徴
とする金型用鋼もしくは工具鋼の熱間鍛造方法である。
このような鍛造方法を採用することにより、オーステナ
イト結晶粒が加工前よりも微細で、且つ混粒組織を呈さ
ない粒径が整った鋼塊の内部組織を得ることができる。
According to a second aspect of the present invention, in hot forging die steel or tool steel, after working a raw material, a working strain (ε) and a forging temperature (T) are determined for the processed portion. The mold is characterized in that the machining is interrupted for at least the time according to the above formula (1), the machining is temporarily stopped, and then the machining and resting for the time of the formula (1) are applied to this portion again. This is a hot forging method for steel or tool steel.
By adopting such a forging method, it is possible to obtain an internal structure of a steel ingot in which the austenite crystal grains are finer than before the working and have a uniform grain size without exhibiting a mixed grain structure.

【0010】[0010]

【発明の実施の形態】以下、発明の構成について詳細に
述べると、前記従来技術で説明したように、金型用鋼や
工具鋼の鋼材は、一般的には溶解・鋳造後、熱間加工に
より鍛練を行って内部の品質や機械的特性を向上させ
る。大型鋼材の熱間加工は主に鍛造により行われている
が、その主目的は鋼塊内の空隙欠陥の閉塞や炭化物等の
分散,微細化もしくは偏析帯の軽減等で、結晶粒径の積
極的なコントロールはこれまで行われていなかった。
BEST MODE FOR CARRYING OUT THE INVENTION The constitution of the present invention will be described in detail below. As described in the above prior art, steel for mold steel and tool steel is generally hot worked after melting and casting. To improve internal quality and mechanical properties. Hot working of large steel materials is mainly carried out by forging, but the main purpose is to increase the crystal grain size by closing void defects in the steel ingot, dispersing carbides, etc., refining or reducing segregation zones. Control has not been done so far.

【0011】金型用鋼もしくは工具鋼は含有する合金成
分量が多く、固溶元素や炭化物等の影響でオーステナイ
ト結晶粒の再結晶挙動は低炭素鋼や中炭素鋼と異なった
ものとなることが考えられる。そのため、低炭素鋼や中
炭素鋼の制御圧延におけるオーステナイト組織微細化技
術をそのまま適用することが出来ず、金型用鋼もしくは
工具鋼では、高強度、高靱性化を図るための熱間加工時
における確実な再結晶オーステナイト組織の微細化方法
が無かった。
[0011] Mold steel or tool steel contains a large amount of alloying components, and the recrystallization behavior of austenite crystal grains differs from that of low-carbon steel and medium-carbon steel due to the effects of solid-solution elements and carbides. Can be considered. Therefore, the austenitic structure refinement technology in the controlled rolling of low-carbon steel and medium-carbon steel cannot be applied as it is, and in the case of mold steel or tool steel, hot working for high strength and high toughness is required. There was no reliable method for refining the recrystallized austenite structure in.

【0012】そこで、発明者等は鋭意実験を重ねた結
果、金型用鋼もしくは工具鋼を熱間で鍛造する場合で
も、素材に加工を加えた後この加工部分についてある必
要な時間加工を中断して一旦静置するか、もしくは素材
に加工を加えた後この加工部分についてある必要な時間
静置した後冷却することにより、オーステナイト結晶粒
が再結晶し加工前のオーステナイト結晶粒径よりも微細
になることを確認した。さらに、鍛造中では、この部分
に再度加工を加えた後必要な時間静置することによりオ
ーステナイト結晶粒が再度再結晶し、加工前のオーステ
ナイト結晶粒径よりもさらに微細になることを確認し
た。
Therefore, the inventors have conducted intensive experiments and have found that, even when hot forging die steel or tool steel, after processing the material, the required time for the processed portion is interrupted. After the material is processed, the material is processed, and then the processed part is allowed to stand for a certain required time and then cooled, so that the austenite crystal grains recrystallize and become finer than the austenite crystal grains before processing. I confirmed that. In addition, during forging, it was confirmed that the austenite crystal grains were recrystallized again by being left for a necessary period of time after reworking the portion, and the austenite crystal grain size was smaller than that before the forging.

【0013】しかし、加工後の静置時間は工業生産の面
から種々鍛造条件ごとに必要最小限でなければならない
が、金型用鋼もしくは工具鋼を熱間で鍛造する場合の静
置時間を決定する方法がこれまで無かった。
However, the standing time after processing must be the minimum necessary for various forging conditions from the viewpoint of industrial production, but the standing time when hot forging die steel or tool steel is required. There was no way to decide.

【0014】それは、先ず鋼種,圧下量,鍛造温度によ
って再結晶完了時間が異なり、かつ鍛造温度(材料温
度)は鍛造中逐次変化するため、加工後の静置時間を一
義的に決定することが出来なかったこと、さらに静置時
間が短すぎると再結晶が全く起こらないか不十分とな
り、素材内が混粒組織となって鍛造品の機械的性質が悪
化すること、一方静置時間が再結晶完了時間をはるかに
越えて長すぎると、鍛造時間を必要以上に増加させるば
かりでなく、材料温度の低下による変形抵抗の増大で鍛
造能率の悪化を招くことになるからである。
First, since the recrystallization completion time varies depending on the type of steel, the amount of reduction, and the forging temperature, and the forging temperature (material temperature) changes successively during forging, it is necessary to uniquely determine the standing time after processing. If the standing time was too short, recrystallization would not occur at all or would be insufficient, resulting in a mixed-grain structure in the material and deterioration of the mechanical properties of the forged product. If the crystallization completion time is much longer than the crystallization completion time, not only does the forging time unnecessarily increase, but also the forging efficiency is deteriorated due to an increase in deformation resistance due to a decrease in the material temperature.

【0015】発明者等は、金型用鋼もしくは工具鋼の熱
間鍛造時におけるオーステナイト結晶粒の再結晶に関し
て種々実験による検討を重ねた結果、オーステナイト再
結晶組織が混粒組織を呈さず、十分再結晶するに必要な
加工後の静置時間(t)は次式(1)により求められる
ことを見い出した。 t=1.84・10-20・ε-1.04・e×p(64700/T)・・(1) 〔t:静置時間(s)、ε:加工ひずみ、T:鍛造温度
(材料温度)(K)〕
As a result of various studies on the recrystallization of austenite crystal grains during hot forging of mold steel or tool steel, the inventors have found that the austenite recrystallized structure does not show a mixed grain structure. It has been found that the standing time (t) after processing required for recrystallization can be obtained by the following equation (1). t = 1.84 · 10 −20 · ε −1.04 · e × p (64700 / T) ·· (1) [t: standing time (s), ε: working strain, T: forging temperature (material temperature) (K)]

【0016】ここで、加工ひずみと鍛造温度は、加工後
の再結晶開始時間と完了時間に密接に関連する因子であ
り、加工ひずみが大きいほど、また鍛造温度が高いほど
再結晶完了時間は短くなる。
Here, the processing strain and the forging temperature are factors closely related to the recrystallization start time and the completion time after the processing. The larger the processing strain and the higher the forging temperature, the shorter the recrystallization completion time. Become.

【0017】なお、含有する合金成分が再結晶時間に及
ぼす影響としては、Cr,Mo,VはCと炭化物を生成
し、またそれ自身がマトリクスの鉄中に固溶して再結晶
を遅らせる作用があると考えられ、またCrはCと炭化
物を生成するがその大部分は巨大な共晶炭化物となり、
この巨大共晶炭化物は再結晶の遅延にそれほど作用しな
いことも考えられる。
The effect of the contained alloy components on the recrystallization time is as follows: Cr, Mo, and V form C and carbide, and themselves act as a solid solution in the iron of the matrix to delay recrystallization. It is thought that Cr forms carbides with C, but most of them become huge eutectic carbides,
It is conceivable that this giant eutectic carbide does not significantly affect the recrystallization delay.

【0018】そこで、加工後のオーステナイト結晶粒の
再結晶に及ぼす上記各合金成分の影響を種々調査した
が、C:0.15〜1.60%,Cr:1.00〜1
3.00%,Mo:0.18〜1.60%,V:0.0
8〜1.20%の範囲内では、加工後の静置時間(t)
は上記式(1)により表されることを確認した。
Thus, various effects of the above-mentioned alloy components on the recrystallization of austenite crystal grains after working were investigated. C: 0.15 to 1.60%, Cr: 1.00 to 1
3.00%, Mo: 0.18 to 1.60%, V: 0.0
In the range of 8 to 1.20%, the standing time after processing (t)
Was confirmed to be represented by the above formula (1).

【0019】上記の式(1)により、例えば0.35%
C,5.0%Cr,1.2%Mo,0.8%Vを含有す
る鋼を1150℃で、ひずみ0.55まで加工した時の
加工後の静置時間は2秒となり、この程度の時間加工を
一時中断静置しても、鍛造能率の悪化や材料温度の低下
による鍛造荷重の増大がほとんど起こらないことが判
る。
According to the above equation (1), for example, 0.35%
When a steel containing C, 5.0% Cr, 1.2% Mo and 0.8% V was processed at 1150 ° C. to a strain of 0.55, the standing time after the processing was 2 seconds, which was about this level. It can be seen that even if the processing for a period of time is temporarily suspended, the forging efficiency deteriorates and the forging load hardly increases due to a decrease in the material temperature.

【0020】上記式(1)より求められる時間は必要な
静置時間の下限であって、実生産上は上記式の時間に完
全に合わせることは困難で幾分長くなるが、金型用鋼も
しくは工具鋼を熱間で鍛造するに当たり、素材に加工を
加えた後、この加工部分について上記の式で求められる
時間以上でいったん静置し、オーステナイト結晶粒を完
全に再結晶させることによって、オーステナイト結晶粒
が加工前よりも微細で且つ混粒組織を呈さない粒径が整
った内部組織を得ることに成功し、本発明の完成を成し
遂げたものである。
The time obtained from the above formula (1) is the lower limit of the required standing time, and it is difficult to completely match the time of the above formula in actual production, but it is somewhat longer. Alternatively, in hot forging of tool steel, after processing the material, the processed part is allowed to stand for at least the time required by the above formula, and the austenite crystal grains are completely recrystallized to obtain austenite. The present invention succeeded in obtaining an internal structure in which the crystal grains were finer than before processing and did not exhibit a mixed grain structure and had a uniform particle size, and completed the present invention.

【0021】なお、再結晶完了後は、再結晶により微細
になったオーステナイト結晶粒は粒成長により次第に粗
大化していくので、静置時間は上記式(1)で得られる
時間(t)を大きく越えないことが望ましい。
After completion of the recrystallization, the austenite crystal grains which have become finer due to the recrystallization gradually become coarser due to grain growth, so that the standing time increases the time (t) obtained by the above equation (1). It is desirable not to exceed.

【0022】上述のように、素材に加工を加えた後、こ
の加工部分について、上記式(1)に従う時間以上加工
を中断していったん静置することにより、オーステナイ
ト結晶粒は加工前よりも微細になるが、更にこの部分に
ついて、再度加工と式(1)の時間(t)以上の静置を
行うと、オーステナイト結晶粒は一回目の加工後の組織
よりもさらに微細になる。このように、同一の場所につ
いて、加工と式(1)の時間以上の静置の組合せをくり
返しても、微細でかつ混粒組織を呈さない粒径が整った
内部組織を得ることが出来る。
As described above, after the material has been processed, the processed part is suspended for at least the time in accordance with the above formula (1) and once settled, so that the austenite crystal grains are finer than before the processing. However, when this part is further processed and allowed to stand still for the time (t) or more in the equation (1), the austenite crystal grains become finer than the structure after the first processing. As described above, even if the combination of the processing and the standing for more than the time of the formula (1) is repeated at the same place, it is possible to obtain an internal structure that is fine and has a uniform particle size that does not exhibit a mixed particle structure.

【0023】なお、素材のある個所を加工した後、その
部分は加工を中断してオーステナイト結晶粒が再結晶す
るまで静置する。そしてその間他の個所を加工してお
き、前記加工を中断していた箇所でオーステナイト結晶
粒が再結晶した後、この部分を再度加工と静置を行う
と、微細でかつ混粒組織を呈さない粒径が整った内部組
織を得ることが出来るのは同様であり、素材の2箇所以
上について、加工後の静置の間に他の部分を加工してお
き、更にその部分の静置の間に再度元の加工した部分を
加工することを交互に繰り返すことにより、効率的に加
工を行うことが出来る。
After processing a part of the material, the processing is interrupted and the part is allowed to stand until the austenite crystal grains are recrystallized. In the meantime, other parts are processed, and after the austenite crystal grains are recrystallized at the place where the processing is interrupted, if this part is processed and settled again, it does not exhibit a fine and mixed grain structure. It is the same that an internal structure with a uniform particle size can be obtained. For two or more parts of the material, other parts are processed during standing after processing, and The processing can be performed efficiently by alternately repeating the processing of the original processed portion again.

【0024】[0024]

【実施例】次に、本発明の1実施例を示すと、JIS鋼
種SKD61の直径8mm×高さ12mmの円柱状素材
を、1150℃で600秒加熱保持した後、高さ方向
(軸方向)にひずみ速度0.1s-1で素材中心部のひず
みが0.55になるまで圧縮加工を行い、その後所定時
間1150℃で等温保持した後、素材を水冷して高温時
の旧オーステナイト結晶粒界を凍結した。
Next, one embodiment of the present invention will be described. A columnar material of JIS steel type SKD61 having a diameter of 8 mm and a height of 12 mm is heated and held at 1150 ° C. for 600 seconds, and then in the height direction (axial direction). The material is subjected to compression processing at a strain rate of 0.1 s -1 until the strain at the center of the material becomes 0.55, and then kept at a constant temperature of 1150 ° C. for a predetermined time. Was frozen.

【0025】図1乃至図3に示す写真は、上記加工条件
によって高温時の旧オーステナイト結晶粒界を凍結した
素材の中心部の縦断面ミクロ組織を示したものである。
本実施例における熱間加工条件では、前述の式(1)よ
り、オーステナイト結晶粒が微細でかつ混粒組織を呈さ
ない粒径が整った素材の内部組織を得るために必要な加
工後の静置時間は2秒である。
The photographs shown in FIGS. 1 to 3 show the vertical cross-sectional microstructures of the central part of the raw material in which the former austenite crystal grain boundary was frozen at a high temperature under the above processing conditions.
According to the hot working conditions in the present embodiment, from the above-mentioned formula (1), the austenite crystal grains are fine and the static after working necessary to obtain the internal structure of a material having a uniform grain size that does not exhibit a mixed grain structure. The placement time is 2 seconds.

【0026】図1は1150℃で600秒加熱保持した
後水冷した素材の組織を示したもので、加工前のオース
テナイト結晶粒の状態を示している。このときの平均結
晶粒径は187μmである。図2は1150℃で600
秒加熱保持した後上記のように圧縮加工を行い、その後
1秒間等温保持した後水冷した素材の組織を示したもの
であるが、旧オーステナイト結晶粒は混粒組織となって
おり健全なミクロ組織が得られなかった。
FIG. 1 shows the structure of a material which was heated and held at 1150 ° C. for 600 seconds and then water-cooled, and shows the state of austenite crystal grains before processing. The average crystal grain size at this time is 187 μm. Figure 2 shows 600 at 1150 ° C.
This shows the structure of the material which was subjected to compression as described above after heating and holding for 2 seconds, then kept at a constant temperature for 1 second, and then water-cooled. The old austenite crystal grains have a mixed grain structure and a sound microstructure. Was not obtained.

【0027】上記と同様に、1150℃で600秒加熱
保持した後圧縮加工を行い、本発明の鍛造方法、すなわ
ち加工後に前述の式(1)に従う時間以上等温保持(静
置)した後、水冷した素材の組織を示したものが図3で
ある。ここでの等温保持(静置)時間は4秒とした。素
材内のオーステナイト結晶粒は混粒組織を呈しておら
ず、しかも平均結晶粒径は55μmであり、加工前のオ
ーステナイト結晶粒に対してはるかに微細なミクロ組織
が得られている。このように本発明によれば、熱間での
旧オーステナイト結晶粒が加工前よりも微細で、かつ混
粒組織を呈ない粒径が整った、素材の内部組織を得るこ
とが出来る。
Similarly to the above, compression processing is performed after heating and holding at 1150 ° C. for 600 seconds. FIG. 3 shows the structure of the obtained material. The isothermal holding (resting) time here was 4 seconds. The austenite crystal grains in the material do not have a mixed grain structure, and the average crystal grain size is 55 μm, and a much finer microstructure is obtained with respect to the austenite crystal grains before processing. As described above, according to the present invention, it is possible to obtain an internal structure of a raw material in which old austenite crystal grains during heating are finer than before processing and have a uniform particle size that does not exhibit a mixed grain structure.

【0028】[0028]

【発明の効果】本発明は、上記のような構成であるか
ら、熱間でのオーステナイト結晶粒が微細でかつ混粒組
織を呈さない粒径が整った鋼塊の内部組織を得ることが
出来、引張強さや衝撃値などの機械的性質に優れた鋼塊
を製造することが出来る。また、本発明によれば、オー
ステナイト結晶粒の再結晶完了に必要な静置時間が得ら
れるので、上記の鋼塊の内部組織を得る際に、鍛造,静
置時間の最適化が図れ、鍛造能率の悪化を格段に低下す
ることが可能となる、といった諸効果がある。
According to the present invention having the above-described structure, it is possible to obtain an internal structure of a steel ingot having a fine grain size in which hot austenite crystal grains are fine and do not exhibit a mixed grain structure. In addition, a steel ingot excellent in mechanical properties such as tensile strength and impact value can be manufactured. Further, according to the present invention, since the standing time required for completing the recrystallization of the austenite crystal grains is obtained, when obtaining the internal structure of the steel ingot, the forging and the standing time can be optimized, and the forging can be performed. There are various effects such that deterioration of efficiency can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】1150℃で600秒加熱保持した後水冷した
加工前の素材の組織を示す顕微鏡写真である。
FIG. 1 is a photomicrograph showing the structure of a raw material that has been heated and held at 1150 ° C. for 600 seconds and then water-cooled before processing.

【図2】1150℃で600秒加熱保持した後、高さ方
向(軸方向)にひずみ速度0.1s-1で素材中心部のひ
ずみが0.55になるまで圧縮加工を行い、その後1秒
間等温保持した後水冷した素材の組織を示す顕微鏡写真
である。
FIG. 2 After heating and holding at 1150 ° C. for 600 seconds, compression processing is performed in the height direction (axial direction) at a strain rate of 0.1 s −1 until the strain at the center of the material becomes 0.55, and then for 1 second It is a microscope picture which shows the structure of the material which carried out water cooling after isothermal holding.

【図3】1150℃で600秒加熱保持した後、高さ方
向(軸方向)にひずみ速度0.1s-1で素材中心部のひ
ずみが0.55になるまで圧縮加工を行い、本発明の前
述の式(1)に従う時間以上等温保持(静置)した後水
冷した素材の組織を示す顕微鏡写真である。
FIG. 3 After heating and holding at 1150 ° C. for 600 seconds, compression processing is performed in the height direction (axial direction) at a strain rate of 0.1 s −1 until the strain at the center of the material becomes 0.55. It is a microscope picture which shows the structure of the material which carried out isothermal holding | maintenance (standing still) for more than time according to the said Formula (1), and water-cooled.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 園子 富山県新湊市八幡町3丁目10番15号 日本 高周波鋼業株式会社富山製造所内 Fターム(参考) 4E087 CB01 ED01 GA01 GA09 4K032 AA05 AA06 AA07 AA12 AA13 AA19 AA20 AA36 BA02 CA02 CD06  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Sonoko Kitagawa 3-10-15, Yawata-cho, Shinminato-shi, Toyama Japan High-frequency Steel Industry Co., Ltd. Toyama Works F-term (reference) 4E087 CB01 ED01 GA01 GA09 4K032 AA05 AA06 AA07 AA12 AA13 AA19 AA20 AA36 BA02 CA02 CD06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金型用鋼もしくは工具鋼を熱間鍛造する
に当たり、素材に加工を加えた後この加工部分につい
て、加工ひずみ(ε)および鍛造温度(T)を因子とす
る、下記式(1) t=1.84・10-20・ε-1.04・e×p(64700/T)・・(1) ここで、t:静置時間(s)、 ε:加工ひずみ T:鍛造温度(材料温度)(K) に従う時間以上静置することを特徴とする金型用鋼もし
くは工具鋼の熱間鍛造方法。
In the hot forging of mold steel or tool steel, a material is worked, and then, for the worked portion, a working strain (ε) and a forging temperature (T) are used as factors. 1) t = 1.84 · 10 −20 · ε −1.04 · e × p (64700 / T) (1) where t: standing time (s), ε: working strain T: forging temperature ( A hot forging method for die steel or tool steel, wherein the steel is left standing for a time corresponding to (material temperature) (K).
【請求項2】 金型用鋼もしくは工具鋼を熱間鍛造する
に当たり、素材に加工を加えた後この加工部分につい
て、加工ひずみ(ε)および鍛造温度(T)を因子とす
る、請求項1記載の式(1)に従う時間以上加工を中断
していったん静置した後、この部分に再度加工と前記式
(1)の時間以上の静置を加えることを特徴とする金型
用鋼もしくは工具鋼の熱間鍛造方法。
2. The hot forging of mold steel or tool steel, wherein after working a raw material, the processed portion is made to have a working strain (ε) and a forging temperature (T) as factors. A steel or tool for a mold, characterized in that machining is interrupted for a period of time according to the formula (1) described above, and the workpiece is once settled and then subjected to machining and resting for a time equal to or longer than the formula (1). Hot forging method for steel.
JP30733998A 1998-10-28 1998-10-28 Hot forging method for mold steel or tool steel Expired - Lifetime JP3881793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30733998A JP3881793B2 (en) 1998-10-28 1998-10-28 Hot forging method for mold steel or tool steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30733998A JP3881793B2 (en) 1998-10-28 1998-10-28 Hot forging method for mold steel or tool steel

Publications (2)

Publication Number Publication Date
JP2000129349A true JP2000129349A (en) 2000-05-09
JP3881793B2 JP3881793B2 (en) 2007-02-14

Family

ID=17967942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30733998A Expired - Lifetime JP3881793B2 (en) 1998-10-28 1998-10-28 Hot forging method for mold steel or tool steel

Country Status (1)

Country Link
JP (1) JP3881793B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113161A (en) * 2003-10-02 2005-04-28 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2008223122A (en) * 2007-03-15 2008-09-25 Fuji Wpc:Kk Method for strengthening alloy steel for hot-working die, and alloy steel of hot-working die for restraining generation of heat-fatigue crack with this method
CN104399854A (en) * 2014-11-04 2015-03-11 西宁特殊钢股份有限公司 Forging method for improving lateral impact performance of steel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113161A (en) * 2003-10-02 2005-04-28 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2008223122A (en) * 2007-03-15 2008-09-25 Fuji Wpc:Kk Method for strengthening alloy steel for hot-working die, and alloy steel of hot-working die for restraining generation of heat-fatigue crack with this method
CN104399854A (en) * 2014-11-04 2015-03-11 西宁特殊钢股份有限公司 Forging method for improving lateral impact performance of steel material

Also Published As

Publication number Publication date
JP3881793B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JPH06322482A (en) High toughness high-speed steel member and its production
JPH10273756A (en) Cold tool made of casting, and its production
CN112981261B (en) Non-quenched and tempered steel and application, product and manufacturing method thereof
JP4340754B2 (en) Steel having high strength and excellent cold forgeability, and excellent molded parts such as screws and bolts or shafts having excellent strength, and methods for producing the same.
JP3113137B2 (en) Manufacturing method of high toughness rail with pearlite metal structure
JP2000129349A (en) Method for hot-forging steel for die or tool steel
JPH10306315A (en) Production of non-heat treated high tensile-strength steel excellent in low temperature toughness
JP2000119806A (en) Steel wire rod excellent in cold workability, and its manufacture
JP2001049344A (en) Production of combined roll for cold-rolling and roll
JPH04172113A (en) Caliber roll for cold tube rolling mill and its manufacture
JP2781296B2 (en) Manufacturing method of forged steel roll for cold rolling
JP3754563B2 (en) Hot forging method for mold steel or tool steel
RU2009215C1 (en) Method for production of shells operating under internal pressure
JP3625224B2 (en) Manufacturing method of high depth and high hardness rail
JPS59136422A (en) Preparation of rod steel and wire material having spheroidal structure
SU1740450A1 (en) Process for making products from high-chromium iron
JP2001131631A (en) Method of spheroidizing-annealing steel material in short time and steel material using this method
JP2002143909A (en) Roll made of high speed tool steel having high spalling resistance and its production method
JPH11181549A (en) Cold tool made of casting excellent in weldability and its production
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts
RU2194081C2 (en) Method for producing rolls from die steel
JPS6314816A (en) Production of work roll for cold rolling mill
RU2159291C1 (en) Method of heat treatment of castings from low ductility steels
JPH0849016A (en) Production of high carbon steel with fine pearlitic structure
JP2648709B2 (en) Method for producing high carbon content martensitic stainless steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term