JPS6149763A - Production of continuously cast ingot - Google Patents
Production of continuously cast ingotInfo
- Publication number
- JPS6149763A JPS6149763A JP17144084A JP17144084A JPS6149763A JP S6149763 A JPS6149763 A JP S6149763A JP 17144084 A JP17144084 A JP 17144084A JP 17144084 A JP17144084 A JP 17144084A JP S6149763 A JPS6149763 A JP S6149763A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- strain
- ingot
- steel
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分室)
本発明は、連続鋳造鋳片の製造方法およびその熱間加工
方法、特に連続鋳造鋳片の製造時における鋳片の熱間割
れを防止する方法およびいわゆる直送圧延プロセスある
いはホットチャージ圧延プロセスにおける鋼片の熱間割
れを防止する方法に関する。Detailed Description of the Invention (Industrial Application Branch) The present invention provides a method for producing continuously cast slabs and a method for hot working thereof, particularly for preventing hot cracking of slabs during the production of continuously cast slabs. The present invention relates to a method and a method for preventing hot cracking of a steel billet in a so-called direct rolling process or a hot charge rolling process.
さらに詳述すれば、本発明はSi、Mnのうちいずれか
もしくは両方を含有する中低炭HQあるいはA(!、
Nb、 Ti、 Ta5V、 B等の合金元素をそれぞ
れ1%以下含有する低合金鋼を連続鋳造する方法、およ
び連続鋳造の直後に再加熱することなく直ちに圧延する
直送圧延プロセス、もしくは室温まで冷却することなく
再加熱後熱間圧延するポットチャージ圧延プロセスにお
いて、連続鋳造鋳片ならびに熱間圧延時の鋼片の割れを
防止する方法に関する。More specifically, the present invention is directed to medium-low coal HQ or A(!,
A method of continuously casting low-alloy steel containing 1% or less of alloying elements such as Nb, Ti, Ta5V, B, etc., and a direct rolling process in which the steel is rolled immediately without reheating immediately after continuous casting, or it is cooled to room temperature. The present invention relates to a method for preventing cracking of continuously cast slabs and steel slabs during hot rolling in a pot charge rolling process in which hot rolling is performed after reheating without any damage.
(従来の技術)
上述のような中低炭素鋼や低合金鋼を、例えb−x弯曲
型連鏡鋳造機を用いた連続鋳造法によって製造する場合
、連続鋳造鋳片には主として鋳片矯正時に印加される曲
げ応力や冷却によって発生する熱応力などによって表面
割れが発生すること力(多く、特に含Nb鋼においてそ
の1頃向が著ししA、このような割れは、次工程に進む
前の手入れ工程を必要とするので、そのために一旦室温
付近にまで冷却する必要がある。冷鋳片による通常の圧
延プロセスの場合にあっても手入れ工程を必要とするこ
とは操業を複雑にし、コスト上昇をもたらし、一方、省
エネルギーや省力化によるコスト低減を狙った直送圧延
やホットチャージ圧延プロセスにあってはかかる割れの
発生はそれらの実用化に対し著しく障害となっている。(Prior art) When producing medium-low carbon steel or low alloy steel as described above by a continuous casting method using a b-x curved continuous mirror casting machine, the continuously cast slab is mainly subjected to slab straightening. Surface cracks may occur due to bending stress applied at times or thermal stress caused by cooling (often, especially in Nb-containing steel). Since a pretreatment process is required, it is necessary to cool the product to near room temperature.Even in the case of a normal rolling process using cold slabs, the necessity of a treatment process complicates the operation. On the other hand, the occurrence of such cracks is a significant impediment to the practical application of direct rolling and hot charge rolling processes that aim to reduce costs through energy and labor savings.
また鋳片に疵が生じなかったとしても直送圧延やホット
チャージ圧延過程で割れを生ずることもあり、このこと
が同様にそれらのプロセスの実用化に対し著しく障害と
なっている。なお、そのような割れ発生は特に不純物と
してのS含有量が高い材料において著しい。Moreover, even if no flaws occur in the slab, cracks may occur during the direct rolling or hot charge rolling process, which also poses a significant obstacle to the practical application of these processes. Incidentally, the occurrence of such cracking is particularly remarkable in materials containing a high content of S as an impurity.
したがって、直送圧延もしくはホントチャージ圧延プロ
セスによって安定して安価に製品を製造するには、連続
鋳造時の鋳片にみられる疵の発生およびその後続工程で
ある直送圧延もしくはボットチャージ圧延時の表面疵の
発生をそれぞれ完全に防止する方法の確立が望まれてい
る。一方、連続鋳造鋳片を一旦冷却して再加熱し熱間加
工する場合でも、得られる連続鋳造鋳片そのものに疵の
発生がなければ疵取りの工程が不要となりその実益は極
めて大きいため、かかる場合にあっても、連続鋳造鋳片
製造時の疵発生を完全に防止する方法の確立が望まれて
いる。Therefore, in order to manufacture products stably and inexpensively by the direct rolling or real charge rolling process, it is necessary to avoid the occurrence of defects in slabs during continuous casting and the surface defects during the subsequent process of direct rolling or bot charge rolling. It is desired to establish a method to completely prevent the occurrence of each of these. On the other hand, even when continuous casting slabs are once cooled, reheated, and hot-worked, if there are no defects in the continuous casting slabs themselves, the flaw removal process becomes unnecessary, and the practical benefit is extremely large. Even in such cases, it is desired to establish a method that completely prevents the occurrence of defects during the production of continuously cast slabs.
まず、このような連続鋳造鋳片に発生する表面疵防止方
法としては、特開昭58−128255号公報にシップ
ト玉の連続衝突方法が開示されている。しかしながら、
当該公報のp、290.3〜7行以下に述べられている
ように、その方法はモールド直下において割れ疵の圧着
、噛み込み異物の除去および鋳片表面酸化の防止を目的
としたものであり、しかも当該公報の第4図からも明ら
かなように、モールド直下、ガイドロールに入る前の過
程の処理にすぎない。割れはその後にも発生するもので
あり、後述するように割れ疵発生の完全な防止策にはな
っていない。First, as a method for preventing surface flaws occurring in such continuously cast slabs, Japanese Patent Application Laid-Open No. 128255/1983 discloses a method for continuous collision of shipped balls. however,
As stated on page 290.3 to 7 and below of the publication, this method is aimed at crimping cracks directly under the mold, removing trapped foreign matter, and preventing oxidation on the surface of the slab. Moreover, as is clear from FIG. 4 of the publication, this is just a process immediately below the mold and before entering the guide roll. Cracks will continue to occur after that, and as will be described later, this is not a complete preventive measure against the occurrence of cracks.
また特開昭54−155123号公報には鋳片に塑性歪
を加える方法が開示されているが、その方法は表層の塑
性歪量、鋳片温度、オーステナイト粒径を一定範囲に調
整するというもので、本発明者らの知見によればこれら
の条件だけでは疵発生を完全′に防止することはできな
い。しかもその塑性歪を与える手段として提案されてい
るロール圧下、ショツトブラスト、レーザーパルスでは
、いずれも十分な効果が得られない。すなわち、未凝固
部分を含む鋳片を通常のロールで圧下したのでは凝固殻
の厚み全体が凹むだけであり、対象となる鋳片表層部に
歪を付与することはできない。またショツトブラストで
は歪を付与できる深さが浅くて効果を発揮するに到らず
、またショットの回収方法に問題が多く非現実的である
」さらにレーザーパルスによる方法は鋳片表面厚さ数十
μmに熱を与えて内部との温度差によって歪を付与しよ
うとするものであり、熱鋳片にこのような方法を通用す
るのは温度差が小さいので原理的に不可能に近い。Furthermore, JP-A-54-155123 discloses a method of applying plastic strain to a slab, which involves adjusting the amount of plastic strain in the surface layer, slab temperature, and austenite grain size within a certain range. According to the findings of the present inventors, it is not possible to completely prevent the occurrence of defects with these conditions alone. Moreover, roll rolling, shot blasting, and laser pulses, which have been proposed as means for imparting such plastic strain, do not provide sufficient effects. That is, if a slab including an unsolidified portion is rolled down with a normal roll, the entire thickness of the solidified shell will simply be depressed, and strain cannot be imparted to the surface layer of the slab. In addition, the depth at which shot blasting can apply strain is too shallow to be effective, and the shot recovery method has many problems, making it unrealistic.''Furthermore, the method using laser pulses is The idea is to apply heat to micrometers and apply strain due to the temperature difference between the inside and the inside, and it is almost impossible in principle to apply this method to hot slabs because the temperature difference is small.
さらに鋳片表面には冷却水があるのでその成果はさらに
薄くなり、実際の製造ラインへの適用は極めて困難であ
る。Furthermore, since there is cooling water on the surface of the slab, the results are even weaker, making it extremely difficult to apply to actual production lines.
また、連続鋳造に続く直送圧延やホットチャージ圧延プ
ロセスにおける熱間圧延時の疵発生を防止する手段とし
ては、特開昭58−52442号公報に開示されている
ように、連続鋳造時の冷却速度を制御するなどの対策が
提案されているものの、かかる方法は、冷却速度を遅く
するように制御するため冷却完了までに極めて長時間を
要するので、理論的には可能であっても実操業への適用
には多くの問題点がある。In addition, as a means to prevent the occurrence of defects during hot rolling in direct rolling or hot charge rolling processes following continuous casting, cooling rate during continuous casting is Countermeasures have been proposed, such as controlling the cooling rate, but since such methods require an extremely long time to complete cooling as they control the cooling rate to be slow, even though it is theoretically possible, it is difficult to implement it in actual operation. There are many problems in its application.
(発明が解決しようとする問題点)
かくして、本発明の目的は、連続鋳造鋳片の製造の際な
らびにそれらを直送圧延ないしはボットチャージ圧延す
る際に発生する表面疵としての割れを完全に防止し、か
かるプロセスの安定操業を可能にして大幅なコスト低減
を図ることにある。(Problems to be Solved by the Invention) Thus, an object of the present invention is to completely prevent cracks as surface defects that occur during the production of continuously cast slabs and when they are subjected to direct rolling or bot charge rolling. The objective is to enable stable operation of such a process and to significantly reduce costs.
本発明者らは、これらの表面欠陥としての割れが連続鋳
造鋳片においては冷却過程における低温オーステナイト
(r)域において、場合によってはフェライト(α)と
の共存域において鋳片にかかる熱応力やこのような温度
域での鋳片矯正時に鋳片に加えられる外部応力等の低歪
速度変形によって発生すること(Mat、 Sci、
Eng、+ 62 (1984)p、109〜119
、およびTrans、 JIM、 25 (1984)
p−160〜167 ) 、また熱間圧延時において
は比較的低温のγ域における高歪速度変形によって発生
し、いずれもγ粒界が破壊することによるものであるこ
とを知見し発表した。The present inventors have discovered that cracks as surface defects are caused by thermal stress and stress applied to continuously cast slabs in the low-temperature austenite (r) region during the cooling process, and in some cases in the coexistence region with ferrite (α). This is caused by low strain rate deformation such as external stress applied to the slab during straightening of the slab in such a temperature range (Mat, Sci,
Eng, + 62 (1984) p, 109-119
, and Trans, JIM, 25 (1984)
p-160 to 167), and also discovered and announced that during hot rolling, this occurs due to high strain rate deformation in the relatively low-temperature γ region, and that both are caused by the destruction of γ grain boundaries.
低歪速度変形時における材料の脆化は、AQNやNbC
あるいはTaC5Tic % VN等の炭窒化物が変形
中にγ粒界に連続的に析出し、かつ粒内にも微細に析出
したり、さらには粒界に相対的に軟いフェライト(α)
がフィルム状に析出して粒内が相対的に強化され、歪が
γ粒界に沿う無析出帯やフィルム状αの軟い部分に集中
して粒界析出物とマトリ、クスとの界面剥離を生じさせ
て起こるものである(Mat、 Sci、 Eng、+
62 (1984) p、109〜119、Tra
ns、 JIM、 25 (1984) p、16.
0〜167 ) 。The embrittlement of the material during low strain rate deformation is caused by AQN and NbC.
Alternatively, carbonitrides such as TaC5Tic%VN may continuously precipitate at the γ grain boundaries during deformation, and may also precipitate finely within the grains, or even relatively soft ferrite (α) may be present at the grain boundaries.
precipitates in the form of a film, and the inside of the grain becomes relatively strengthened, and strain concentrates in the precipitate-free zone along the γ grain boundaries and the soft part of the film-like α, resulting in interfacial peeling between the grain boundary precipitates and the matrix and matrix. (Mat, Sci, Eng, +
62 (1984) p, 109-119, Tra
ns, JIM, 25 (1984) p, 16.
0-167).
また、熱間圧延の際にみられる高歪速度変形時の脆化は
、やはり変形中の1粒界への(Fe、 Mn)Sの連続
析出と粒内へのm綱析出による粒内強化によって同様に
生ずるものである。この場合、この高歪速度変形前に炭
窒化物のγ粒界連続析出と粒内析出が起こっていれば、
(Fe、 Mn) Sによる脆化は著しく助長されるこ
とになる。In addition, the embrittlement during high strain rate deformation observed during hot rolling is due to the continuous precipitation of (Fe, Mn)S at one grain boundary during deformation and the intragranular strengthening due to the precipitation of m-rings within the grain. This is also caused by In this case, if γ-grain boundary continuous precipitation and intragranular precipitation of carbonitrides occur before this high strain rate deformation,
(Fe, Mn) The embrittlement caused by S is significantly accelerated.
したがって、両工程におけるγ粒界割れによる脆化を防
止するにはγ粒を微細にして粒界脆化感受性を下げるか
、問題となる変形時(例えば鋳片矯正と圧延時)までに
析出物を粗大化して変形時のγ粒界析出および粒内微♀
■析出を防止すればよい。しかしながら現状においては
設備上及び操業上の制約その他によって十分な対策がと
られてないのが実情である。例えば、析出物の凝集粗大
化は冷却速度を小さくするか冷却中に恒温保持すれば実
現できる〔炭窒化物についてはMat、 Sci、 E
ngo、録(1984) p、109〜119、硫化
物については特開昭58−52442号を参照〕が、冷
却に桁違いに長い時間を要し、生産性を著しく損なうの
で現実的ではない。また1粒の再結晶を利用して細粒化
するという提案もあるが(特開昭54−155123号
参照)、も止もとのγ粒が極めて粗大であるので、再結
晶核としての粒界の面積が小さいので大きな歪を加える
必要があり、かつ特開昭54−155123号にいうよ
うに粒径0.1mm以下の如き微細結晶粒とするには少
なくとも40%以上の塑性歪を与える必要があり、未凝
固部分を含む鋳片にかかる大きな歪を与えることは事実
上不可能である。Therefore, in order to prevent embrittlement due to γ grain boundary cracking in both processes, the γ grains must be made finer to reduce the susceptibility to grain boundary embrittlement, or precipitates must be removed by the time of problematic deformation (for example, during slab straightening and rolling). γ grain boundary precipitation and intragrain fine ♀ during deformation by coarsening
■Precipitation can be prevented. However, the reality is that sufficient countermeasures are not currently being taken due to equipment and operational constraints. For example, agglomeration and coarsening of precipitates can be achieved by reducing the cooling rate or maintaining constant temperature during cooling [for carbonitrides, see Mat, Sci, E
NGO, Roku (1984) p. 109-119; for sulfides, see JP-A No. 58-52442], but this is not practical because it takes an order of magnitude longer time for cooling and significantly impairs productivity. There is also a proposal to refine grains by recrystallizing one grain (see JP-A-54-155123), but since the original γ grains are extremely coarse, they cannot be used as recrystallization nuclei. Since the area of the field is small, it is necessary to apply a large strain, and as stated in JP-A-54-155123, to obtain fine crystal grains with a grain size of 0.1 mm or less, a plastic strain of at least 40% or more is applied. This is necessary, and it is virtually impossible to apply large strains to the slab including the unsolidified portion.
また上述した脆化機構から考えて、鋼の化学成分を調整
して表面疵の発生を抑制することも考えられるが、鋼の
化学成分は鋼の材質、所要の特性を与えるために添加せ
ざるを得ないものもあるため制約が多く、抜本的対策と
はなっていない。たとえばA2Nの析出防止にはAQ、
Hの低減もしくはTiを添加してTiNとしてNを1粒
内に固定すれば−延性の向上が望めるが、それらの低減
にはコスト上昇が伴いまたTi添加は溶接部の靭性を損
なうなど害も多い。またNb添加等は製品の品質を確保
する上で不可欠であり、それの変更によって対策をとる
ことは不可能である。Sの低減も有効であるがコスト上
昇が伴うためトータルコストの低減には必ずしもつなが
らない。Also, considering the embrittlement mechanism mentioned above, it is possible to suppress the occurrence of surface defects by adjusting the chemical composition of the steel, but the chemical composition of the steel must be added to the material and to give the desired properties. There are many restrictions as there are some things that cannot be obtained, so it is not a fundamental countermeasure. For example, to prevent precipitation of A2N, AQ,
It is possible to improve ductility by reducing H or by adding Ti to fix N in one grain as TiN, but these reductions come with an increase in cost, and addition of Ti can be harmful, such as impairing the toughness of the weld. many. Further, addition of Nb, etc. is essential for ensuring product quality, and it is impossible to take countermeasures by changing it. Reducing S is also effective, but it is accompanied by an increase in cost and does not necessarily lead to a reduction in total cost.
(問題点を解決するための手段)
本発明者らは、炭窒化物や硫化物の凝集粗大化を上述の
鋳片の超徐冷もしくは冷却中の恒温保持などによらず実
用的な短時間内に達成する方法について研究を重ね、鋳
片の冷却中に鋳片表層部に実用上適用可能な特定の条件
で加工を加えられれば目的が達せられることを見い出し
た。このように本発明はこの発見によって初めてなされ
たものであり、従来法とは冶金学的にも本質的に技術思
想及び効果の点で全く異なるものである。(Means for Solving the Problems) The present inventors have devised a method for solving the agglomeration and coarsening of carbonitrides and sulfides in a practical and short time without using the above-mentioned ultra-slow cooling of slabs or constant temperature maintenance during cooling. After repeated research into methods to achieve this goal, they discovered that the objective could be achieved if the surface layer of the slab could be processed under specific conditions that were practically applicable while the slab was cooling. As described above, the present invention was made for the first time through this discovery, and is completely different from the conventional method both metallurgically and essentially in terms of technical concept and effect.
ここに、本発明の要旨とするところは、連続鋳造時の鋳
片の表層部深さ′2曹凋以上に5%以上の加工歪を歪速
度二 (S−1)がε≧a exp (bT) (た
だし、a−4X10−5、b =4.6 Xl0− ’
、Tは鋳片表面温度で700℃≦T≦1200℃)の
条件下で与えた後に引抜ロールを通過させることを特徴
とする、連続鋳造鋳片の製造方法である。このようにし
て得られた連続鋳造鋳片は、再加熱することなく直接熱
間加工してもあるいは室温にまで冷却することなく再加
熱してから熱間加工を加えてもよい。ここに熱間加工と
は、通常の圧延の外、鍛造等熱間で行う全ての加工を言
味する。Here, the gist of the present invention is to apply a processing strain of 5% or more to the surface depth of the slab during continuous casting when the strain rate 2 (S-1) is ε≧a exp ( bT) (However, a-4X10-5, b = 4.6 Xl0-'
, T is a method for producing a continuously cast slab, characterized in that the slab is subjected to a surface temperature of 700°C≦T≦1200°C) and then passed through a drawing roll. The continuously cast slab thus obtained may be directly hot worked without being reheated, or may be reheated without being cooled to room temperature and then hot worked. Here, hot working refers to all hot working such as forging in addition to normal rolling.
このように、本発明によれば、鋳片表面温度と加工歪速
度との関係を示す第1図における斜線領域内の条件下で
表層部深さ2mm以上の領域に5%以上の加工歪を与え
、かくして連続鋳造時の鋳片の熱間割れ、さらにはいわ
ゆる直送圧延、ホノトチャージ圧延における鋼片の熱間
割れが効果的に防止される。As described above, according to the present invention, a working strain of 5% or more is applied to a surface layer depth of 2 mm or more under the conditions within the shaded area in FIG. Thus, hot cracking of the slab during continuous casting, and furthermore, hot cracking of the steel slab during so-called direct rolling and hot charge rolling can be effectively prevented.
ここで本発明の原理について実験データにもとすいてさ
らに説明すると、次の通りである。Here, the principle of the present invention will be further explained based on experimental data as follows.
すなわち、第1表に示す組成の鋼を用意し、これより引
張試験片を採取して次の実験を行った。That is, steel having the composition shown in Table 1 was prepared, and tensile test pieces were taken from it to conduct the following experiment.
第1表
第2図は、本実験で採用した各種の加工、熱処理条件を
示す説明図である。Table 1 and FIG. 2 are explanatory diagrams showing various processing and heat treatment conditions employed in this experiment.
まず、冷却過程で連続鋳造鋳片に加える加工をシミュレ
ートするために、1350℃で溶体化処理した材料を鋳
片矯正時の歪速度に)と同じ二〜1O−3s−で850
℃で引張変形したときの絞り値(RA)と、この引張変
形に先立って徐冷に相当する処理として1100℃で等
温保持した時の保持時間との影響を調べた(第2図ケー
ス■、■、■および■参照)。First, in order to simulate the machining applied to continuously cast slabs during the cooling process, the material solution-treated at 1350°C was heated to 850 °C at the same strain rate (2~1O-3s-) as during slab straightening.
We investigated the influence of the aperture value (RA) when tensile deformation is performed at ℃ and the holding time when isothermally held at 1100 ℃ as a treatment equivalent to slow cooling prior to this tensile deformation (Figure 2 Case ■, (see ■, ■, and ■).
Nbを含有するA鋼について、試験結果を第3図にグラ
フにまとめて示す。従来法に相当するケース■の場合で
はI?Aは極めて小さく、ケース■の場合において11
00℃で長時間保持しない限り延性は向上しない。とこ
ろがケース■および■のように1100℃保持前に10
%の加工歪を二=xo−IS−1で加えると短時間の1
100℃保持で大きく延性は向上する。鋳片表層部加工
が低い温度で行われる場合にはケース■のようにその後
に冷却をゆるめて復熱させるのが好ましい。B鋼につい
て得られた同様のグラフを第4図に示す、ケース■は1
0%の前加工を施した場合を示す。The test results for steel A containing Nb are summarized in a graph in FIG. In case ■ corresponding to the conventional method, I? A is extremely small, and in case ■, it is 11
Ductility does not improve unless the temperature is maintained at 00°C for a long time. However, as in cases ■ and ■, 10
% machining strain at 2=xo-IS-1, the short-time 1
Holding at 100°C greatly improves ductility. When the surface layer of the slab is processed at a low temperature, it is preferable to slow down the cooling and reheat afterward, as in case ①. A similar graph obtained for B steel is shown in Fig. 4. Case ■ is 1
The case with 0% pre-processing is shown.
したがって、このように鋳片表層部加工が割れ防止に育
効であることがわかる。Therefore, it can be seen that processing the surface layer of the slab is effective in preventing cracking.
次に前加工の歪N(ε)と歪速度(ε)の影響を關べた
。第2図のケース■において;〜10”s−1で前加工
し1100℃で10分間保持した場合のg (歪量)が
RA値に及ぼす影響を調べた結果を第5図にグラフにま
とめて示す、i示結果からも前加工歪は5%もあれば絞
り値50%以上が得られ、スラブの割れは極めて発生し
にくくなることが分かった。A鋼、B&r4にいずれに
おいても同様な傾向がみられた。Next, we investigated the effects of strain N (ε) and strain rate (ε) in pre-processing. In case ■ in Figure 2; Figure 5 summarizes the results of investigating the effect of g (strain amount) on the RA value when pre-processing at ~10''s-1 and holding at 1100℃ for 10 minutes. It was also found from the results shown in i that if the pre-processing strain was as low as 5%, a reduction of area of 50% or more could be obtained, and slab cracking was extremely unlikely to occur. A trend was observed.
またε (歪速度)の影響も大きく、例えばAtlにつ
いて第2図のケース■、■の1100℃で10分保持す
る場合においてそれに先立゛ってそれぞれ1100℃お
よび900℃で10%前加工し、そのときの歪速度とR
A値との関係を第6図にグラフにまとめて示すが、この
第6図からもεが大きい程大きな効果が得られ、前加工
温度1100℃ではε≧10−2s −’、900℃で
はε≧3X10−3s −、’が必要なことがわかる。In addition, the influence of ε (strain rate) is also large; for example, when Atl is held at 1100°C for 10 minutes in cases ① and ① in Figure 2, 10% pre-processing is performed at 1100°C and 900°C, respectively. , the strain rate and R at that time
The relationship with the A value is summarized in a graph in Figure 6. From Figure 6, the larger the ε, the greater the effect. At the pre-processing temperature of 1100℃, ε≧10-2s-', and at 900℃. It can be seen that ε≧3×10−3s −,′ is required.
次に鋳片矯正を経た後の直送圧延時の割れとの関係につ
いて評価した。結果をRA値と等温保持時間との関係と
して第7図にグラフで示す。従来法であるケース■の場
合においては、A、B、C鋼とも低いRA値を示し、一
方、加工に先立って等温保持処理だけを行ったケース■
においても必ずしも大きな改善効果が得られない。それ
に対してほぼ歪量10%の前加工を行ったケース■の場
合では前加工後4分以内の等温保持でRA値50%以上
が得られ、いずれも大きな延性の向上が図れることがわ
かった。Next, the relationship between cracking during direct rolling after slab straightening was evaluated. The results are shown graphically in FIG. 7 as a relationship between RA value and isothermal holding time. In case ■, which is the conventional method, steels A, B, and C all showed low RA values, while case ■, in which only isothermal holding treatment was performed prior to processing.
It is not always possible to obtain a large improvement effect. On the other hand, in case 2, in which pre-processing with approximately 10% strain was performed, an RA value of 50% or more was obtained with isothermal holding within 4 minutes after pre-processing, indicating that ductility could be greatly improved in both cases. .
次に本発明における加工条件の限定理由についてゴ12
明する。Next, regarding the reason for limiting the processing conditions in the present invention, go to 12.
I will clarify.
加工歪を与える領域を鋳片の表層部2mm以上に限定し
たのは、表面から2mm以内の領域に発生した疵が後工
程で割れ疵やすし疵として残るという知見に基づく。The reason why the area to which processing strain is applied is limited to 2 mm or more of the surface layer of the slab is based on the knowledge that flaws that occur within 2 mm from the surface remain as cracks or cracks in subsequent processes.
加工歪量を5%以上、歪速度を前述の式のように限定し
たのは、それぞれ加工歪量の限定は5%以上の加工量で
なければ、また歪速度s (5−”)は;≧a ex
p (bT)でなければ析出物の核生成が困難であると
いう理由に基づく。ずなわち、このような高温で歪の蓄
積を図るには、導入した転位の回復が起こるまでに析出
核が生成しなけらばならず、高温になればなる程εを上
げて、歪の蓄積を図らねばならず、そのときの条件力<
g≧aexp(bT)である。またTの下限を700°
Cとしたのはそれより低い温度にすでに鋳片が冷却され
ていれば、その後の復熱によっても析出物の粗大化を図
るのが困難となるからであり、一方、鋳片温度が120
0℃を超えると導入した転位の回復が著しく早く、目的
とする析出物の生成が行えなくなるからである。本発明
における鋳片スラブ表層加工の条件は第1図において斜
線領域として示す。The reason why the amount of machining strain is limited to 5% or more and the strain rate is limited as shown in the above equation is that the amount of machining strain is limited to 5% or more, and the strain rate s (5-'') is; ≧a ex
This is based on the reason that unless p (bT) is present, it is difficult to nucleate the precipitates. In other words, in order to accumulate strain at such high temperatures, precipitation nuclei must be generated before the introduced dislocations recover, and as the temperature increases, ε must be increased to increase the strain. We must aim to accumulate, and the conditional force at that time <
g≧aexp(bT). Also, the lower limit of T is 700°
The reason for choosing C is that if the slab has already been cooled to a lower temperature, it will be difficult to coarsen the precipitates even with subsequent reheating.On the other hand, if the slab temperature is 120
This is because if the temperature exceeds 0°C, the introduced dislocations will recover extremely quickly, making it impossible to form the desired precipitates. The conditions for surface processing of the cast slab in the present invention are shown as the shaded area in FIG.
さらにεとTの最適条件について第8図を用いて説明す
る。第8図は一連の加工条件の下で鋳片矯正に先行して
1行う歪加工を引張変形によってシミュレートしそのと
き鋳片にみられた脆化傾向をグラフにまとめて示したも
のであり、斜線部は50%以下のRAを示した領域であ
る。なお、このときの供試鋼組成は次の通りであった。Furthermore, the optimum conditions for ε and T will be explained using FIG. 8. Figure 8 is a graphical representation of the embrittlement tendency observed in the slab when strain processing performed prior to slab straightening was simulated by tensile deformation under a series of processing conditions. , the shaded area is the area showing RA of 50% or less. The composition of the sample steel at this time was as follows.
CSi M虹 −L 二 l−N NbO,
120,200,410,0100,0150,040
,00500,045図中、領域(B)においては炭窒
化物のγ粒界および粒内析出が起こり、鋳片表層部属工
時にも場合によっては割れを生ずる危険がある。領域(
D)においては硫化物の析出に起因する割れを生ずる危
険があり、好ましくはさけた方がよい。領域(A)、(
C)、(E)は安全であるが第1図で述べたように歪の
1ffffとのかねあいでこの場合領域(A)は好まし
くない。CSi M Rainbow -L 2 l-N NbO,
120,200,410,0100,0150,040
, 00500, 045, in region (B), precipitation of carbonitrides occurs at the γ grain boundaries and within the grains, and there is a risk of cracking in some cases during metal machining of the surface layer of the cast slab. region(
In D), there is a risk of cracking due to the precipitation of sulfides, so it is preferable to avoid it. Area (A), (
Regions C) and (E) are safe, but region (A) is not preferable in this case due to the distortion of 1ffff as described in FIG.
第8図は前述のとおりNb含有鋼を用いて引張変形を加
えた場合の現象である。対象鋼種或いは加工方法が異な
れば領域(D)がなくなることがある。たとえば高Mn
または低S鋼ではDgJ域は生しにくくなり、また、応
力が圧縮圧下となる場合もD領域は消失する。FIG. 8 shows the phenomenon when tensile deformation is applied to Nb-containing steel as described above. If the target steel type or processing method is different, the area (D) may disappear. For example, high Mn
Alternatively, in low S steel, the DgJ region is less likely to occur, and the D region also disappears when the stress is compressive reduction.
本発明において、上述の如き加工歪を付与する加工方法
としては、例えばガイドロール表面に突起を付けたロー
ルを使用したりエアーハンマーや特殊な油圧プレスなど
が考えられ、所要の加工歪、歪速度を実現できる限りそ
の他の方法も場合によっては採用できる。In the present invention, as a processing method for imparting processing strain as described above, for example, the use of a roll with protrusions on the surface of a guide roll, an air hammer, a special hydraulic press, etc. can be considered, and the required processing strain and strain rate can be considered. Other methods may be adopted in some cases as long as they can be achieved.
本発明の適用鋼種は特に限定されないが、連続鋳造鋳片
にAQN、 NbC、TaC、、TiC、[lN、 V
Nなどの析出が原因と見られる表面疵が発生しやすい鋼
種については特に有効である。一方、炭窒化物が析出し
にくい成分系においては、直送圧延やホットチャージ圧
延時に主として硫化物の析出に起因する表面疵防止に大
きな効果が得られる。The steel types to which the present invention is applied are not particularly limited, but continuous casting slabs include AQN, NbC, TaC, TiC, [IN, V
This is particularly effective for steel types that are prone to surface flaws that are likely to be caused by precipitation of N or the like. On the other hand, in a component system in which carbonitrides are difficult to precipitate, a great effect can be obtained in preventing surface defects mainly caused by sulfide precipitation during direct rolling or hot charge rolling.
なお、表層加工を終了した後鋳片内部からの復熱を利用
した析出物の粗大化をさらに助長することも考えられる
が、このような方法ももちろん本発明に含まれる。この
方法は、内部割れその他との関連で鋳片を強冷せざるを
得ない場合などにおいて特に有効となる。It is also conceivable to further promote the coarsening of precipitates by utilizing recuperation from inside the slab after surface processing is completed, but such a method is of course included in the present invention. This method is particularly effective in cases where the slab must be strongly cooled due to internal cracks or other problems.
ス崖±1
本例は予め加工歪を付与しておくことにより引き続いて
行う圧延加工に際しても鋳片の割れが発生しないことを
シミュレーション法によって示すためのものである。Scrap ±1 This example is intended to demonstrate by a simulation method that by applying processing strain in advance, cracks will not occur in the slab even during subsequent rolling processing.
第2表に示す組成をもった厚さ40mm、 Ifii2
20+nn+、長さ600m−の鋳片を鋳造し、先端を
平らにした小型電動ハンマーによって鋳片表面の半分に
第3表に示す条件で加工歪を与えた。この時の歪速度は
ほぼ50s−’であった。加工歪量は表層部5龍の平均
で約20%であった。次いで、かくしてIMられた鋳片
に油圧による曲げ加工を行い、表面割れの有無を目視で
H察した。電動ハンマーによる加工歪を加えなかった部
分には、鋼種■の場合長さ20〜50朋の深い割れが、
また鋼種■の場合長さ5〜1゜龍の横ヒビ割れが発生し
たが、加工歪を加えた部分には全く表面割れが見られな
がった。Ifii2 with a thickness of 40 mm and a composition shown in Table 2
A slab having a length of 20+nn+ and a length of 600 m- was cast, and half of the slab surface was subjected to processing strain under the conditions shown in Table 3 using a small electric hammer with a flat tip. The strain rate at this time was approximately 50 s-'. The amount of processing strain was approximately 20% on average for the five surface layers. Next, the thus IMed slab was subjected to hydraulic bending, and the presence or absence of surface cracks was visually inspected. In the case of steel type ■, deep cracks with a length of 20 to 50 mm were found in the parts that were not subjected to processing distortion using an electric hammer.
Further, in the case of steel type (III), horizontal cracks with a length of 5 to 1 degrees occurred, but no surface cracks were observed at all in the areas where processing strain was applied.
第16図は、鋼種l (試験阻1)の曲げ加工後の割れ
発生状況を示す写真である。左半分が曲げ加工に先立っ
てハンマーによる前加工をうけた部分、右半分が事前に
加工をうけていなかった部分である。右半分に大きな割
れ疵がみられるが、左半分には何ら表面割れ疵は見られ
ない。FIG. 16 is a photograph showing the occurrence of cracks after bending of steel type 1 (test 1). The left half is the part that was pre-processed with a hammer prior to bending, and the right half is the part that was not pre-processed. A large crack is seen on the right half, but no surface cracks are seen on the left half.
第2表
第3表
ユM糺1
N鋼工場の半径12.5mの弯曲型連続鋳造機を用いて
、断面が250龍X 2100順の鋳片を条件を変えて
鋳造し、矯正後の鋳片の表面疵の発生程度を目視で評価
した。第9図はこの時の鋳片表層部への加工歪を付与す
るのに5使用した鋳片上面側のロール間で鋳片巾方向に
移動する油圧シリンダーを動力源とする鋳片打撃装置を
鋳造ラインとともに示す0図示例にあっては、一部未凝
固の溶鋼があるような段階で鋳片1に対し、鋳片打撃装
置2によって加工歪を与えている。鋳片打撃装置は圧子
3とこれに接続された油圧シリンダー4から構成され、
これらは油圧ユニット5、油圧ポンプユニット6と経て
制御器7でその打撃量等が制御されている。Table 2 Table 3 Yu M Adhesive Using a curved continuous casting machine with a radius of 12.5 m at the N steel factory, slabs with a cross section of 250 mm x 2100 mm were cast under different conditions, and the cast pieces after straightening were cast. The degree of occurrence of surface flaws on the pieces was visually evaluated. Figure 9 shows a slab striking device whose power source is a hydraulic cylinder that moves in the width direction of the slab between rolls on the upper surface of the slab, which was used to apply processing strain to the surface layer of the slab at this time. In the illustrated example shown together with a casting line, machining strain is applied to the slab 1 by the slab striking device 2 at a stage where there is a portion of unsolidified molten steel. The slab striking device consists of an indenter 3 and a hydraulic cylinder 4 connected to it.
These are passed through a hydraulic unit 5 and a hydraulic pump unit 6, and a controller 7 controls the amount of impact and the like.
第10図は鋳片打撃装置の先端に取付けられた圧子によ
って加工歪を与えられた鋳片表層部の状態を示す。圧子
球面i115 am、圧下の深さは3龍、圧下の打撃数
180サイクル/分の打撃を与え、鋳片表層部3mmの
平均歪量は7%で歪速度は0.3s−’であった。第4
表には本例で使用した鋼の成分組成を、第5表に鋳造条
件および結果を示す。FIG. 10 shows the state of the surface layer of a slab subjected to processing strain by an indenter attached to the tip of a slab striking device. The indenter spherical surface was 115 am, the depth of reduction was 3 dragons, the number of blows was 180 cycles/min, and the average strain in the 3 mm surface layer of the slab was 7% and the strain rate was 0.3 s-'. . Fourth
The table shows the composition of the steel used in this example, and Table 5 shows the casting conditions and results.
れが発生しなかった。This did not occur.
尖立皿主
製鋼工場の半径12.5 mの弯曲型連続鋳造機を用い
て断面が250mmX2100mmの第8表に示す化学
成分のスラブを第9表に示すように条件を代えて鋳造し
矯正後の鋳片の表面疵を目視で評価した。また、この時
の鋳片表層部への加工歪の付与、法としては第12図に
示す如く場面から9〜l1mの間の上面側ガイドロール
を同じく同図に示す突起付きロールに代えて第13図に
示す温度パターンで行った。このときの第12図の形状
の突起は厚さ72〜79mmの凝固殻表面に0.06〜
0.07kg/mm2なる静鉄圧を反力としてくい込み
、歪は第14図の如く拡がり、次式で算出される式から
、スラブ表層部5mmの深さに少なくとも7%の歪を付
与することができた。Using a curved continuous casting machine with a radius of 12.5 m at the Sharp Plate Main Steel Factory, a slab with a cross section of 250 mm x 2100 mm and the chemical composition shown in Table 8 was cast under different conditions as shown in Table 9, and after straightening. The surface defects of the cast slabs were visually evaluated. In addition, at this time, as shown in Fig. 12, the method for applying processing strain to the surface layer of the slab is to replace the upper guide roll between 9 and 11 m from the scene with a roll with protrusions shown in the same figure. The temperature pattern shown in Figure 13 was used. At this time, the protrusion having the shape shown in Fig. 12 is formed on the surface of the solidified shell with a thickness of 0.06 to 79 mm.
It sinks in with the static iron pressure of 0.07 kg/mm2 as a reaction force, and the strain spreads as shown in Figure 14. From the formula calculated by the following formula, at least 7% strain is applied to the depth of 5 mm in the slab surface layer. was completed.
歪速度は2xlO−’ s−’と見積られた。The strain rate was estimated to be 2xlO-'s-'.
!+ = (Z +0.5 )−1/JΣ×aS =
(1,8〜2.2 ) x aであり、最小5%の歪を
与えるには、a =7mm+ 1(=3 mmが必要で
あった。! + = (Z +0.5)-1/JΣ×aS =
(1,8-2.2) x a, and in order to give a minimum strain of 5%, a = 7 mm + 1 (= 3 mm) was required.
第9表に結果を併せて示すように、本発明による突起付
きロールを設置した連続鋳造機によれば、スラブ表面に
突起の圧痕が残存したが、ひび割れ疵は全く発生してお
らず、一方、突起付ロールを使わない従来法ではひび割
れ疵が多発しており、本発明による効果は明らかである
。As shown in Table 9, according to the continuous casting machine equipped with the roll with projections according to the present invention, impressions of projections remained on the slab surface, but no cracks or defects occurred at all. In the conventional method that does not use a roll with projections, cracks and defects occur frequently, so the effect of the present invention is clear.
第8表
第9表
この方法で連続鋳造鋳片の表面疵の発生を防止できるこ
とがわかったので、さらに直送圧延時の割れ防止の効果
について試験した。第10表に示す鋼イ、口を溶解し、
上述の方法において、鋳片の第9図および第10図は、
加工歪を付与する手段としての鋳片打撃装置の概略説明
図:
第11図は、加工を行った後に復熱させたときの鋳片の
温度パターンを示すグラフ;
第12図は、加工歪付与を突起付ロールで行う場合の概
略説明図;
第13図は、突起付ロールで加工歪を与えたときの鋳片
の温度パターンを示すグラフ;
第14図は、突起付ロールを使ったときの加工歪の伝搬
の模式的説明図;
第15図は、加工歪付与した後に鋳片を切断し、さらに
熱間加工(圧延)を行うときの鋳片表面温度パターンを
示すグラフ;および
第16図は、本発明例および従来例における曲げ加工後
の表面割れ発生状況を示す写二である。Table 8 Table 9 Since it was found that this method could prevent the occurrence of surface flaws in continuously cast slabs, the effect of preventing cracks during direct rolling was further tested. Steel A shown in Table 10, melt the mouth,
In the above method, FIGS. 9 and 10 of the slab are as follows:
A schematic explanatory diagram of a slab striking device as a means for imparting working strain: Figure 11 is a graph showing the temperature pattern of the slab when it is reheated after being worked; Figure 12 is a graph showing the temperature pattern of the slab when it is reheated after being worked; A schematic explanatory diagram when using a roll with protrusions; Figure 13 is a graph showing the temperature pattern of the slab when processing strain is applied with a roll with protrusions; Figure 14 is a graph showing the temperature pattern when using a roll with protrusions. A schematic explanatory diagram of the propagation of processing strain; Fig. 15 is a graph showing the slab surface temperature pattern when the slab is cut after applying processing strain and further hot worked (rolled); and Fig. 16 Figure 2 is Photo 2 showing the occurrence of surface cracks after bending in the inventive example and the conventional example.
1:鋳片 2:鋳片打撃装置
3:圧子 4:油圧シリンダー5二油圧ユニツ
ト 6:油圧ポンプユニット7:制御器
出願人 住友金属工業株式会社
代理人 弁理士 広 瀬 章 −
秦/ 図
〃ロエ歪 U、 と (S−リ
1r1φ
凧3閏
第Δ 図
第5図
5、−1I”/、)
集6 閏
と(s−リ
も7 凹
t(min)
本8 凹
王 道、シ1駐 (5−lン
#q 図
#IO図
尾12 図
孔11!
メニスfI入Q゛ら1)alil!(m)親13図
父ニスかスttらの距亀(m)
為14 ロ
罪、15 凹
一1五聞躯〃うO絃壜暗闇 (会)
手続補正吉動式)
昭和60年 3月18日
特許庁長官 志 賀 学 殿
2、発明の名称
連続鋳造鋳片の製造方法
3、補正をする者
事件との関係 特許出願人
住所 大阪市東区北浜5丁目15番地
名称 (211)住友金属工業株式会社4、代理人
^旦し、將オロク了)+$l’!’7 日4−7Jft
よハケJに2市°I(吃へンのAJt、lマ〃ト・1行
目の記載を削除する。1: Slab 2: Slab striking device 3: Indenter 4: Hydraulic cylinder 5 Two hydraulic units 6: Hydraulic pump unit 7: Controller Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Akira Hirose − Hata / Figure Roe Distortion U, and (S-ri 1r1φ Kite 3 leap Δ Figure 5 Figure 5, -1I''/,) Collection 6 Leap and (s-Ri also 7 concave t (min) Book 8 Concave king road, Shi 1 parking (5-ln#q Figure #IO figure tail 12 Figure hole 11! Menis fI entry Q゛ et al. 1) alil! (m) Parent 13 figure father Nis or stt et al.'s distance turtle (m) for 14 ro sin, 15 Kouichi 1 Gomon-kei O-Stripe Darkness (Association) Procedural Amendment Kido Shiki) March 18, 1985 Manabu Shiga, Commissioner of the Patent Office 2, Name of Invention Method for Manufacturing Continuously Cast Slabs 3, Relationship with the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (211) Sumitomo Metal Industries Co., Ltd. 4, Agent ^danshi, Masaori Orokuryo) + $l'!'7 Day 4 -7Jft
Yohake J to 2 city°I (stuttering AJt, l mato・Delete the first line.
(2)同書第27頁10行目、「・・・説明図;」とあ
るのをr・・・説明図;および1と訂正する。(2) On page 27, line 10 of the same book, the words "... explanatory drawing;" are corrected to r... explanatory drawing; and 1.
(3)同書第27頁13〜15行目、
「・・・・・;および
第16図は・・・・・である、」とあるのをr・・・・
・である、jと訂正する。(3) In the same book, page 27, lines 13-15, the phrase "...; and Figure 16 is..." is replaced by r...
・Correct it as j.
(4)添付図面の第16図を削除する。(4) Figure 16 of the attached drawings will be deleted.
以上that's all
Claims (3)
以上の加工歪を、歪速度■(s^−^1)が■≧aex
p(bT)(ただし、a=4×10^−^5、b=4.
6×10^−3、Tは鋳片表面温度で700℃≦T≦1
200℃)の条件下で与えた後に引抜ロールを通過させ
ることを特徴とする、連続鋳造鋳片の製造方法。(1) 5% on the surface layer depth of 2mm or more of slab during continuous casting
For the above processing strain, the strain rate ■(s^-^1) is ■≧aex
p(bT) (where a=4×10^-^5, b=4.
6×10^-3, T is the slab surface temperature, 700℃≦T≦1
200° C.) and then passing it through a drawing roll.
以上の加工歪を、歪速度■(s^−^1)が■≧aex
p(bT)(ただし、a=4×10^−^5、b=4.
6×10^−^3、Tは鋳片表面温度で700℃≦T≦
1200℃)の条件下で与えた後に引抜ロールを通過さ
せ、得られた連続鋳造鋳片を再加熱することなく直接熱
間加工することを特徴とする、連続鋳造鋳片の熱間加工
方法。(2) 5% on the surface layer depth of 2 mm or more during continuous casting
For the above processing strain, the strain rate ■(s^-^1) is ■≧aex
p(bT) (where a=4×10^-^5, b=4.
6×10^-^3, T is the slab surface temperature, 700℃≦T≦
1. A method for hot working continuous cast slabs, which comprises applying the continuous casting slabs under conditions (1200°C) and then passing them through a drawing roll, and directly hot working the obtained continuous cast slabs without reheating them.
以上の加工歪を、歪速度■(s^−^1)が■≧aex
p(bT)(ただし、a=4×10^−^5、b=4.
6×10^−3、Tは鋳片表面温度で700℃≦T≦1
200℃)の条件下で与えた後に引抜ロールを通過させ
、得られた連続鋳造鋳片を室温まで冷却することなく再
加熱し、次いで熱間加工することを特徴とする、連続鋳
造鋳片の熱間加工方法。(3) 5% on the surface layer depth of 2 mm or more during continuous casting
For the above processing strain, the strain rate ■(s^-^1) is ■≧aex
p(bT) (where a=4×10^-^5, b=4.
6×10^-3, T is the slab surface temperature, 700℃≦T≦1
200°C) and then passed through a drawing roll, the obtained continuous cast slab is reheated without cooling to room temperature, and then hot worked. Hot processing method.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17144084A JPS6149763A (en) | 1984-08-20 | 1984-08-20 | Production of continuously cast ingot |
EP85109574A EP0170254B1 (en) | 1984-07-31 | 1985-07-30 | Method and apparatus of processing continuously cast slabs |
DE8585109574T DE3581008D1 (en) | 1984-07-31 | 1985-07-30 | METHOD AND DEVICE FOR PRODUCING CONTINUOUS CASTING SLABS. |
US06/760,453 US4709572A (en) | 1984-07-31 | 1985-07-30 | Method of processing continuously cast slabs |
US07/082,360 US4802356A (en) | 1984-07-31 | 1987-08-06 | Apparatus of processing continuously cast slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17144084A JPS6149763A (en) | 1984-08-20 | 1984-08-20 | Production of continuously cast ingot |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6149763A true JPS6149763A (en) | 1986-03-11 |
JPH0468069B2 JPH0468069B2 (en) | 1992-10-30 |
Family
ID=15923158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17144084A Granted JPS6149763A (en) | 1984-07-31 | 1984-08-20 | Production of continuously cast ingot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6149763A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010137256A (en) * | 2008-12-11 | 2010-06-24 | Jfe Steel Corp | Continuous casting method and machine therefor |
-
1984
- 1984-08-20 JP JP17144084A patent/JPS6149763A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010137256A (en) * | 2008-12-11 | 2010-06-24 | Jfe Steel Corp | Continuous casting method and machine therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH0468069B2 (en) | 1992-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2982777B1 (en) | Titanium slab for hot rolling and method for manufacturing same | |
US6610154B2 (en) | Surface treatment of austenitic Ni-Fe-Cr based alloys for improved resistance to intergranular corrosion and intergranular cracking | |
US5904062A (en) | Equal channel angular extrusion of difficult-to-work alloys | |
CN110205461B (en) | Manufacturing method of high-carbon high-manganese wear-resistant steel plate | |
JP2006274388A (en) | HIGH TENSILE STRENGTH STEEL SHEET SATISFYING YIELD STRENGTH OF >=650 MPa AND HAVING LOW ACOUSTIC ANISOTROPY, AND METHOD FOR PRODUCING THE SAME | |
US20180237878A1 (en) | Systems, methods and devices for hot forming of steel alloy parts | |
KR20230020447A (en) | Method and equipment for cooling in a reversible hot rolling mill | |
EP0170254B1 (en) | Method and apparatus of processing continuously cast slabs | |
JPS6149762A (en) | Production of continuously cast ingot | |
JPS6149763A (en) | Production of continuously cast ingot | |
JP2008231464A (en) | Heat-treatment method for duplex stainless steel piece | |
Prudnikov et al. | Influence of Thermal Cyclic Deformation and Hardening Heat Treatment on the Structure and Properties of Steel 10 | |
US20050000609A1 (en) | Crash resistant aluminum alloy sheet products and method of making same | |
JP3357264B2 (en) | Manufacturing method of non-tempered steel bar for high toughness hot forging | |
Popova et al. | Hardening low carbon steel 10 by using of thermal-cyclic deformation and subsequent heat treatment | |
Zarandi et al. | Improvement of hot ductility in the Nb-microalloyed steel by high temperature deformation | |
JPH07251265A (en) | Method for scarfing cast steel slab | |
JP5093463B2 (en) | Continuous casting method and continuous casting machine | |
KR20040060985A (en) | Surface treatment of austenitic Ni-Fe-Cr based alloys | |
Haiko et al. | Effect of Rapid Induction Tempering on the Mechanical Properties and Microstructure of Ultra-High Strength Steel | |
Wagstaff et al. | Reliably Making Monolithic Ingots of Difficult to Cast Aluminum Alloys Using Direct Chill Casting | |
Spena et al. | Laser welding between TWIP steels and automotive high-strength steels | |
JPH0229725B2 (en) | KOJINSEINETSUKANTANZOYOHICHOSHITSUBOKONOSEIZOHOHO | |
Qaban | The effect of alloying composition and cooling rate on the hot ductility of TWIP steel and mechanical properties of hot rolled HSLA steel | |
JPH07290101A (en) | Method for preventing surface crack at time of hot edging/rolling continuously cast slab |