JPH05192736A - Manufacture of hexagon socket head cap screw - Google Patents

Manufacture of hexagon socket head cap screw

Info

Publication number
JPH05192736A
JPH05192736A JP16477492A JP16477492A JPH05192736A JP H05192736 A JPH05192736 A JP H05192736A JP 16477492 A JP16477492 A JP 16477492A JP 16477492 A JP16477492 A JP 16477492A JP H05192736 A JPH05192736 A JP H05192736A
Authority
JP
Japan
Prior art keywords
molten steel
forging
content
bolt
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16477492A
Other languages
Japanese (ja)
Inventor
Masashi Ishii
正師 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16477492A priority Critical patent/JPH05192736A/en
Publication of JPH05192736A publication Critical patent/JPH05192736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To prevent the generation of a crack at the time of working a hexagon socket and to prolong the service life of a working tool. CONSTITUTION:At the time of continuously casting molten steel adjusted to a prescribed composition, in the vicinity of a crater end for which the molten steel in the inner part of a cast billet completes the solidification, preventing treatment for concentrating the components, in which the ratio C/C0 of C content (C) at a core part in the cast billet to the C content (C0) of the molten steel in a ladle becomes <=0.90, is applied. Successively, after the billet is formed to a wire rod or a bar steel by hot-rolling and cut to a prescribed length, the base stock is formed to a bolt shape by cold-forging and further, after executing a hexagon socket forming work to a bolt top part by the same cold forging, a screw is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、六角穴付きボルトの
有利な製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an advantageous method of manufacturing a hexagon socket head cap bolt.

【0002】[0002]

【従来の技術】六角穴付きボルトは、熱間圧延にて線材
又は棒鋼とされた素材を、所定の長さに切断後、冷間鍛
造によって外形をボルト形状に整えたのち、同じく冷間
鍛造によってボルト頭部に六角形の穴を開け、ついでボ
ルト軸部にねじ山を切ることによって製造される。とこ
ろで上記の冷間鍛造時、とくに六角形の穴開け鍛造時
に、六角形の各角にしばしばクラックが発生する。かか
る冷間鍛造割れは、連続鋳造中の凝固時に生成する鋳片
中心部における偏析に起因するものである。
2. Description of the Related Art Hexagon socket head cap bolts are produced by cutting a material made into wire rod or steel bar by hot rolling into a predetermined length, and then cold forging to adjust the outer shape to a bolt shape, and then cold forging as well. It is manufactured by drilling a hexagonal hole in the bolt head and then threading the bolt shank. By the way, during the cold forging described above, especially during the hexagonal hole forging, cracks often occur at each corner of the hexagon. Such cold forging cracks are due to segregation at the center of the slab that is generated during solidification during continuous casting.

【0003】このような中心偏析の防止策として、例え
ば2次冷却帯域における電磁攪拌などが試みられたが、
セミミクロ偏析までを軽減するには至ってなく、その効
果は十分とはいえなかった。
As a measure for preventing such center segregation, for example, electromagnetic stirring in the secondary cooling zone has been tried.
Even the semi-micro segregation has not been reduced, and the effect was not sufficient.

【0004】また、鋳片の凝固末期に一対のロールを用
いて大圧下を施すいわゆるインラインリダクション法
{鉄と鋼 第60年(1974) 第7号 875〜884 頁}の適用
も試みられたが、この方法では、未凝固層の大きい鋳片
領域における圧下が不十分な場合には凝固界面に割れが
発生するという問題があった。その他、特開昭49-12173
8 号公報には、鋳片の凝固先端部付近でロール対による
軽圧下を施して、該部分の凝固収縮量を圧下により補償
する方法が、また特開昭52-54623号公報には、鍛造金型
を用いて鋳片の凝固完了点近傍を大圧下する方法がそれ
ぞれ提案されている。
Also, the application of a so-called in-line reduction method {iron and steel 60th year (1974) No. 7 pp. 875-884} in which a large reduction is performed using a pair of rolls at the final stage of solidification of a cast piece has been attempted. However, this method has a problem that cracking occurs at the solidification interface when the reduction in the cast piece region having a large unsolidified layer is insufficient. In addition, JP-A-49-12173
No. 8 discloses a method in which light rolling is performed by a pair of rolls in the vicinity of the solidification tip of a slab to compensate for the amount of solidification shrinkage of the part by rolling, and Japanese Patent Laid-Open No. 52-54623 discloses forging. Methods have been proposed in which a die is used to largely reduce the vicinity of the solidification completion point of a slab.

【0005】しかしながらロールによる軽圧下の場合に
は、複数対のロールにより数mm/mの圧下を施したとして
も、ロールピッチ間に生じる凝固収縮やバルジングを十
分に防止することができず、また圧下位置が適切でなけ
ればかえって中心偏析が悪化する不利があった。他方、
鍛造金型を用いて鋳片の凝固完了点近傍を大圧下する方
法は、インラインリダクション法のようなロールによる
大圧下に比べて凝固界面が割れにくく、また負偏析も極
力回避することが可能で、セミマクロ偏析まで改善でき
ることが明らかになっているものの、依然として未凝固
層の大きい鋳片領域における圧下が不十分だと凝固界面
に割れが発生し、また未凝固層の小さい領域を圧下して
もその効果が得られないことから、最適な圧下条件を模
索しているのが現状である。従って鋳片に生成する中心
偏析を飛躍的に改善するまでには至ってなく、偏析部の
C,P及びS等の濃度を低下するために溶鋼のC濃度の
目標値を下げたり、PやSを極力低減したり、また鋼種
によっては鋳片段階において拡散焼鈍などを施して対処
しているのが実状であり、大幅なコストアップが免れ得
なかった。
However, in the case of light reduction by rolls, even if a plurality of pairs of rolls are applied to reduce the pressure by several mm / m, it is not possible to sufficiently prevent solidification shrinkage and bulging that occur between roll pitches. If the reduction position is not appropriate, there is a disadvantage that the center segregation deteriorates. On the other hand,
The method of greatly reducing the vicinity of the solidification completion point of the slab using a forging die is less likely to crack the solidification interface than large reduction by a roll like the in-line reduction method, and it is possible to avoid negative segregation as much as possible. Although it has been clarified that even semi-macro segregation can be improved, cracking occurs at the solidification interface if the reduction in the cast area of the large unsolidified layer is still insufficient, and even if the area of the small unsolidified layer is reduced. Since the effect cannot be obtained, it is the current situation to seek the optimum rolling reduction condition. Therefore, the center segregation generated in the slab has not been dramatically improved, and the target value of the C concentration of the molten steel is lowered to reduce the concentrations of C, P, S, etc. in the segregated portion, and P, S, etc. However, it is the actual situation that it is dealt with by reducing diffusion as much as possible, and depending on the type of steel, by performing diffusion annealing or the like at the stage of slab, a significant increase in cost cannot be avoided.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、連続鋳造法を利用する場合
であっても、中心偏析の生成を極力低減し、もって穴開
け加工時におけるクラックの発生を効果的に防止した六
角穴付きボルトの有利な製造方法を提案することを目的
とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems. Even when a continuous casting method is used, the formation of center segregation is reduced as much as possible, so that during drilling. It is an object of the present invention to propose an advantageous method for producing a hexagon socket head cap bolt that effectively prevents the occurrence of cracks in the bolt.

【0007】[0007]

【課題を解決するための手段】すなわちこの発明は、 C:0.10〜0.50wt%(以下単に%で示す)、 Si:0.01〜0.50%、 Mn:0.20〜2.00% を含み、かつ Cr:0.50〜2.00%、 Mo:0.05〜2.00% Al:0.002 〜0.100 %、 Ti:0.002 〜0.050 %、 Nb:0.005 〜0.050 %、 V:0.005 〜0.050 %及び B:0.0002〜0.0030% のうちから選んだ少なくとも一種を含有し、残部はFeお
よび不可避的不純物の組成になる溶鋼を連続鋳造し、そ
の際、鋳片内部溶鋼が凝固を完了するクレータエンド近
傍にて、取鍋中溶鋼のC含有量(C0)に対する鋳片軸心部
におけるC含有量(C)の比C/C0が0.90以下となる成
分濃化防止処理を施し、ついで熱間圧延にて線材又は棒
鋼としたのち、所定の長さに切断後、冷間鍛造によりボ
ルト形状に成形し、ついで同じく冷間鍛造によってボル
ト頭部に六角形の穴開け加工を施したのち、ねじ山を形
成することからなる六角穴付きボルトの製造方法(第1
発明)である。
That is, the present invention includes C: 0.10 to 0.50 wt% (hereinafter simply referred to as%), Si: 0.01 to 0.50%, Mn: 0.20 to 2.00%, and Cr: 0.50 to 2.00%, Mo: 0.05-2.00% Al: 0.002-0.100%, Ti: 0.002-0.050%, Nb: 0.005-0.050%, V: 0.005-0.050% and B: 0.0002-0.0030% At least one kind selected from Molten steel having the composition of Fe and unavoidable impurities in the balance is continuously cast, in which case the C content of the molten steel in the ladle (C 0 ) Of the C content (C) in the axial center of the cast slab to a component concentration preventing treatment such that the ratio C / C 0 is 0.90 or less, and then hot-rolled into a wire rod or steel bar, and then a predetermined length After cutting it into a bolt shape by cold forging, and then hexagonally drilling a hole in the bolt head by cold forging as well. After giving the process, the production method of the hexagon socket head bolt comprises forming a thread (first
Invention).

【0008】またこの発明は、上記した第1発明におい
て、素材成分としてさらに Sb:0.0005〜0.0500% を含有させた六角穴付きボルトの製造方法(第2発明)
である。
The present invention is also the method for producing a hexagon socket head cap bolt according to the above-mentioned first invention, further containing Sb: 0.0005 to 0.0500% as a material component (second invention).
Is.

【0009】[0009]

【作用】まず、この発明において溶鋼の成分組成を上記
の範囲に限定した理由について説明する。 C:0.10〜0.50% 鍛造後におけるボルトの強度を保証する観点からC量は
0.10%を下限とした。一方C量を高めるほど高強度を得
ることができるが、反面で高C化は材料を脆化させ鍛造
中における割れの発生頻度を高めるので、上限は0.50%
に定めた。
First, the reason why the composition of molten steel is limited to the above range in the present invention will be explained. C: 0.10 to 0.50% From the viewpoint of guaranteeing the strength of the bolt after forging, the amount of C is
The lower limit was 0.10%. On the other hand, the higher the amount of C, the higher the strength can be obtained, but on the other hand, higher C makes the material brittle and increases the frequency of cracking during forging, so the upper limit is 0.50%.
Stipulated in.

【0010】Si:0.01〜0.50% Siは、脱酸剤としてだけでなく、マトリックスの強化を
図る上で有用な元素であり、少なくとも0.01%を必要と
する。一方Siは、Cの活量を上げる作用があり、特に0.
50%を超えて含有すると脱炭層の生成が進行して表面硬
さが不十分になり、脱炭層を除去する工程が必要になる
上、歩留りの低下をも招く。かかる理由からSiの含有量
は0.01〜0.50%の範囲とした。
Si: 0.01 to 0.50% Si is an element useful not only as a deoxidizing agent but also for strengthening the matrix, and at least 0.01% is required. On the other hand, Si has the effect of increasing the activity of C, and especially
When the content exceeds 50%, the decarburized layer is generated, the surface hardness becomes insufficient, a step of removing the decarburized layer is required, and the yield is reduced. For this reason, the Si content is set to the range of 0.01 to 0.50%.

【0011】Mn:0.20〜2.00% Mnは、Siと同様、脱酸剤として作用するだけでなく、鋼
の脆化をもたらすSを固定し、またさらには焼入性を向
上させて強度及び延性を高める上でも有用な元素である
が、含有量が0.20%より少ないとその添加効果に乏し
く、一方2.00%を超えると高価となるばかりか熱間圧延
後の制御冷却あるいは加工途中の熱処理工程においてミ
クロマルテンサイト組織の生成を促し、冷間鍛造性を害
するので、0.20〜2.00%の範囲で添加するものとした。
Mn: 0.20-2.00% Mn, like Si, acts not only as a deoxidizing agent but also fixes S that causes embrittlement of steel, and further improves hardenability to improve strength and ductility. Although it is a useful element in increasing the content of steel, if its content is less than 0.20%, its addition effect is poor, while if it exceeds 2.00%, it not only becomes expensive but also in controlled cooling after hot rolling or in the heat treatment step during processing. Since it promotes the formation of a micro martensite structure and impairs the cold forgeability, it was added in the range of 0.20 to 2.00%.

【0012】Cr:0.50〜2.00%、Mo:0.05〜2.00% Cr及びMoはそれぞれ、焼入れ性を高め、強度を向上させ
る成分として均等である。しかしながらいずれも含有量
があまりに少ないとその添加効果がなく、一方多すぎる
と高価となりコストアップを伴うので、それぞれ上記の
範囲で含有させるものとした。
Cr: 0.50 to 2.00%, Mo: 0.05 to 2.00% Cr and Mo are equal as components for enhancing hardenability and strength. However, in either case, if the content is too small, there is no effect of the addition, while if it is too large, the cost is increased and the cost is increased.

【0013】Al:0.002 〜0.100 % Alは、強脱酸剤であると同時に、結晶粒径を細かくし、
焼入性を制御する作用をもつ。しかしながら含有量が
0.002%に満たないとその添加効果に乏しく、一方 0.10
0%を超えるとその効果は飽和に達するだけでなく、ア
ルミナ系の非金属酸化物の増加を招くので、 0.002〜0.
100 %の範囲で含有させるものとした。
Al: 0.002 to 0.100% Al is a strong deoxidizing agent and at the same time makes the crystal grain size fine,
It has the function of controlling hardenability. However, if the content is
If less than 0.002%, the effect of addition is poor, while 0.10%
If it exceeds 0%, not only the effect reaches saturation, but it also leads to an increase in alumina-based nonmetal oxides, so 0.002 to 0.
The content was set to be 100%.

【0014】Ti:0.002 〜0.050 % Tiは、Alと同様、強脱酸剤であると同時に、結晶粒径を
細かくし、焼入性を制御する作用をもつ。しかしながら
含有量が 0.002%に満たないとその添加効果に乏しく、
一方 0.050%を超えるとその効果は飽和に達するので、
0.002〜0.050%の範囲で含有させるものとした。
Ti: 0.002 to 0.050% Ti, like Al, is a strong deoxidizing agent and, at the same time, has the function of making the crystal grain size fine and controlling the hardenability. However, if the content is less than 0.002%, the addition effect is poor,
On the other hand, if it exceeds 0.050%, the effect reaches saturation, so
It was made to contain in 0.002 to 0.050% of range.

【0015】Nb:0.005 〜0.050 %、V:0.005 〜0.05
0 % Nb及びVはそれぞれ、強度の向上に有効に寄与すると共
に、結晶粒径を細かくする作用をもつ。しかしながら含
有量が 0.005%に満たないとその添加効果に乏しく、一
方 0.050%を超えるとその効果は飽和に達するので、そ
れぞれ 0.005〜0.050 %の範囲で含有させるものとし
た。
Nb: 0.005 to 0.050%, V: 0.005 to 0.05
Each of 0% Nb and V effectively contributes to the improvement of strength and has the effect of making the crystal grain size fine. However, if the content is less than 0.005%, the effect of addition is poor, while if it exceeds 0.050%, the effect reaches saturation, so the content was made 0.005 to 0.050% respectively.

【0016】B:0.0002〜0.0030% Bは、焼入性の向上に有用な元素であるが、含有量が0.
0002%に満たないとその添加効果に乏しく、一方0.0030
%を超えてもその効果は飽和し、それ以上の効果は望め
ないので、0.0002〜0.0030%の範囲で含有させるものと
した。
B: 0.0002 to 0.0030% B is an element useful for improving the hardenability, but its content is 0.
If it is less than 0002%, its effect is poor, while 0.0030
Even if it exceeds%, the effect is saturated, and no further effect can be expected, so the content was made 0.0002 to 0.0030%.

【0017】Sb:0.0005〜0.0500% この発明で対象とするボルトは、球状化等の焼鈍処理に
よって表層部の脱炭が進行するが、Sbはかかる脱炭の抑
制に有効に寄与する。しかしながら0.0005%に満たない
とその効果に乏しく、一方0.0500%を超えてもその効果
は飽和に達するので、Sbは0.0005〜0.0500%の範囲で含
有させるものとした。なおSbは、表層部における結晶粒
の粗大化を防止する上でも有効である。
Sb: 0.0005 to 0.0500% In the bolt targeted by the present invention, decarburization of the surface layer progresses by annealing treatment such as spheroidization, but Sb effectively contributes to the suppression of such decarburization. However, if it is less than 0.0005%, the effect is poor, while if it exceeds 0.0500%, the effect reaches saturation, so Sb was made to be contained in the range of 0.0005 to 0.0500%. Sb is also effective in preventing the coarsening of crystal grains in the surface layer.

【0018】さてこの発明では、上述したような好適成
分組成になる溶鋼の連続鋳造に際し、鋳片の内部溶鋼が
凝固を完了するクレータエンド近傍にて成分濃化防止処
理を施すことによって、取鍋中溶鋼のC含有量(C0)に対
する鋳片軸心部におけるC含有量(C)の比C/C0を0.
90以下(好ましくは0.50以上)に制御する。ここに成分
濃化防止処理としては、鍛圧加工がとりわけ有利に適合
するけれども、この発明は、これだけに限るものではな
く、C/C0比を0.90以下に制御することができるなら
ば、他の手段であっても良い。
According to the present invention, in the continuous casting of molten steel having the above-described preferable component composition, the ladle is subjected to the component concentration preventing treatment near the crater end where the molten steel inside the slab completes the solidification. The ratio C / C 0 of the C content (C) in the slab axial center to the C content (C 0 ) of the medium molten steel is 0.
Control to 90 or less (preferably 0.50 or more). Forging treatment is particularly advantageously applied here as the component concentration preventing treatment, but the present invention is not limited to this, and if the C / C 0 ratio can be controlled to 0.90 or less, other It may be a means.

【0019】以下、上記した鍛圧加工によってC/C0
の制御が可能な理由について説明する。すなわち内部溶
鋼の凝固末期には、Cの濃化が進んだ溶鋼がクレータエ
ンド近傍に存在するため、そのまま凝固すれば中心偏析
となるわけであるが、凝固前に鍛圧加工を施すと、かよ
うなC濃化溶鋼は上方に押し出される結果、中心部にお
けるC濃度はさほど上昇することはない。従って鍛圧加
工の実施時期をCの濃化程度に応じて調節すれば、鋳片
軸心部におけるC含有量を調整できるわけである。
The reason why the C / C 0 ratio can be controlled by the above forging process will be described below. That is, at the final stage of solidification of the internal molten steel, molten steel with a high concentration of C exists near the crater end, so if it solidifies as it is, central segregation will occur, but if forging processing is performed before solidification, As a result of the C-rich molten steel being extruded upward, the C concentration in the central portion does not rise so much. Therefore, by adjusting the timing of forging according to the degree of enrichment of C, the C content in the slab axial center can be adjusted.

【0020】図1に、C/C0比が種々の値になるような
鍛圧加工を施して得た線材又は棒鋼を、ボルト形状に成
形後、穴開け鍛造を施したときの、C/C0比とクラック
発生率との関係について調べた結果を示す。同図より明
らかなように、C/C0比が0.90以下にすることによって
クラックの発生が急激に減少している。なお穴開け鍛造
性は、C/C0比が小さくなる程良好となるが、あまりに
負偏析度を高めると六角穴の角がへたるようになるの
で、C/C0比は0.50以上とすることが好ましい。
In FIG. 1, the wire rod or steel bar obtained by subjecting to a forging process so that the C / C 0 ratio becomes various values is formed into a bolt shape and then C / C is obtained when the hole is forged. The results obtained by examining the relationship between the 0 ratio and the crack occurrence rate are shown. As is clear from the figure, when the C / C 0 ratio is 0.90 or less, the occurrence of cracks is sharply reduced. The hole forgeability becomes better as the C / C 0 ratio becomes smaller, but if the negative segregation degree is increased too much, the corners of the hexagonal hole will become bent, so the C / C 0 ratio should be 0.50 or more. Preferably.

【0021】従ってこの発明では、鍛圧加工の如き成分
濃化防止処理によって制御すべき鋳片軸心部におけるC
/C0比を0.90以下(好ましくは0.50以上)の範囲に限定
したのである。なお、好ましい鍛圧加工法としては、発
明者らが先に特開昭60-82257号公報において開示した連
続鍛圧法が有利に適合する。
Therefore, according to the present invention, C in the axial center of the slab to be controlled by the component concentration preventing treatment such as forging.
The / C 0 ratio is limited to the range of 0.90 or less (preferably 0.50 or more). As a preferable forging method, the continuous forging method previously disclosed by the inventors in JP-A-60-82257 is advantageously suitable.

【0022】[0022]

【実施例】表1に示す化学組成になる溶鋼(鋼種A〜
F)を 400×560mm のモールドで連続鋳造し、引き抜き
中の鋳片に対し、鋳片内部の溶鋼が凝固を完了するクレ
ータエンド近傍にて、鋳片軸心部のC/C0比:0.70を目
標として連続的に鍛圧加工を施し、C/C0比を0.50〜0.
90の範囲に制御してブルームを製造した。その後、分塊
及び鋼片ミルによって 150×150 mmのビレットとした
後、棒鋼ミルにて7mmφの線材に熱間圧延した。ついで
下記に示す工程に従い、ボルト形状に成形鍛造したの
ち、同じく冷間鍛造によって直径:5mm, 深さ:3mmの
六角穴を開け、その後ねじ切り転造を行って製品とし
た。アズロール線材→酸洗・水洗→球状化焼鈍→表面処
理→伸線→成形鍛造→穴開け鍛造→先取り→転造→球状
化焼鈍。なお図2に、上記の成形鍛造−穴開け鍛造−先
取り−転造工程におけるボルト形状の推移を、また図3
には、穴開け鍛造要領について図解する。
EXAMPLES Molten steel having the chemical composition shown in Table 1 (steel types A to
F) is continuously cast with a 400 × 560 mm mold, and the C / C 0 ratio of the slab axial center is 0.70 with respect to the slab being drawn, near the crater end where the molten steel inside the slab completes solidification. Forging is continuously performed with the goal of, and the C / C 0 ratio is 0.50 to 0 .
Bloom was produced by controlling the range of 90. After that, a billet having a size of 150 × 150 mm was formed by a slab and a billet mill, and then hot rolled into a wire rod having a diameter of 7 mm by a bar mill. Then, following the steps described below, after forming and forging into a bolt shape, a hexagonal hole having a diameter of 5 mm and a depth of 3 mm was also formed by cold forging, and then thread cutting was performed to obtain a product. Azroll wire → pickling / water washing → spheroidizing annealing → surface treatment → wire drawing → forming forging → punching forging → pre-drawing → rolling → spheroidizing annealing. In addition, FIG. 2 shows the transition of the bolt shape in the above-mentioned forming forging-forging-forging-preliminary-rolling process, and FIG.
Illustrates the hole forging procedure.

【0023】一方比較材は、従来工程どおり、連続鋳造
後、鍛圧加工を行わずに棒鋼とし、以下同様にして六角
穴付きボルトとした。なお出鋼時の溶鋼加熱度は、すべ
て25〜30℃の範囲で鋳込んだ。また分塊圧延から棒鋼圧
延までの熱間圧延温度は、この発明に従って得られた鋼
材及び比較材共に同一温度履歴となるよう配慮した。
On the other hand, as a comparative material, as in the conventional process, after continuous casting, forging was not carried out to form a steel bar, and thereafter a hexagon socket head cap bolt was similarly prepared. The molten steel heating degree at the time of tapping was cast in the range of 25 to 30 ° C. Further, the hot rolling temperatures from the slab rolling to the steel bar rolling were considered to have the same temperature history for both the steel material obtained according to the present invention and the comparative material.

【0024】上記の六角穴開け時におけるクラックの発
生率、工具寿命及び球状化焼鈍時の脱炭量について調べ
た結果を表2に示す。
Table 2 shows the results of investigations on the crack occurrence rate during the hexagonal hole drilling, tool life, and decarburization amount during spheroidizing annealing.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】同表より明らかなように、この発明に従い
鍛圧加工を施したものは、六角頭の鍛造加工時における
割れ発生が極めて少なく、また工具寿命も長い。これに
対し比較材はいずれも、六角頭の鍛造加工時における割
れ発生が多く、また工具寿命が短い。なお第2発明に従
う供試鋼では、球状化焼鈍後における脱炭量が極めて少
なかった。
As can be seen from the table, the one subjected to the forging process according to the present invention has extremely few cracks during the forging process of the hexagonal head and has a long tool life. On the other hand, in all of the comparative materials, many cracks occur during the forging process of the hexagonal head, and the tool life is short. In the test steel according to the second invention, the decarburization amount after the spheroidizing annealing was extremely small.

【0028】[0028]

【発明の効果】かくしてこの発明に従い、連続鋳造時に
鍛圧加工の如き成分濃化防止処理を連続的に付与し鋳片
軸心部のC/C0を制御することによって、六角穴開け時
におけるクラックの発生を効果的に防止することがで
き、また工具寿命の延長を図り得る。
As described above, according to the present invention, cracking during hexagonal hole drilling can be achieved by continuously imparting a component concentration preventing treatment such as forging during continuous casting to control C / C 0 of the slab core. Can be effectively prevented, and the tool life can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】C/C0 比とクラック発生率との関係を示した
グラフである。
FIG. 1 is a graph showing a relationship between a C / C 0 ratio and a crack occurrence rate.

【図2】成形鍛造−穴開け鍛造−先取り−転造工程にお
けるボルト形状の推移を示した図である。
FIG. 2 is a diagram showing a transition of a bolt shape in a forming forging-forging-forging-preliminary-rolling process.

【図3】六角頭部の穴開け鍛造要領を示した図である。FIG. 3 is a view showing a procedure for forging a hexagonal head.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C22C 38/04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.10〜0.50wt%、 Si:0.01〜0.50wt%、 Mn:0.20〜2.00wt% を含み、かつ Cr:0.50〜2.00wt%、 Mo:0.05〜2.00wt% Al:0.002 〜0.100 wt%、 Ti:0.002 〜0.050 wt%、 Nb:0.005 〜0.050 wt%、 V:0.005 〜0.050 wt%及び B:0.0002〜0.0030wt% のうちから選んだ少なくとも一種を含有し、残部はFeお
よび不可避的不純物の組成になる溶鋼を連続鋳造し、そ
の際、鋳片内部溶鋼が凝固を完了するクレータエンド近
傍にて、取鍋中溶鋼のC含有量(C0)に対する鋳片軸心部
におけるC含有量(C)の比C/C0が0.90以下となる成
分濃化防止処理を施し、ついで熱間圧延にて線材又は棒
鋼としたのち、所定の長さに切断後、冷間鍛造によりボ
ルト形状に成形し、ついで同じく冷間鍛造によってボル
ト頭部に六角形の穴開け加工を施したのち、ねじ山を形
成することを特徴とする六角穴付きボルトの製造方法。
1. C: 0.10 to 0.50 wt%, Si: 0.01 to 0.50 wt%, Mn: 0.20 to 2.00 wt%, Cr: 0.50 to 2.00 wt%, Mo: 0.05 to 2.00 wt% Al: 0.002 ~ 0.100 wt%, Ti: 0.002-0.050 wt%, Nb: 0.005-0.050 wt%, V: 0.005-0.050 wt% and B: 0.0002-0.0030 wt%, and the balance Fe. And molten steel having the composition of unavoidable impurities are continuously casted, and at that time, near the crater end where the molten steel inside the slab completes solidification, the slab axial center portion relative to the C content (C 0 ) of the molten steel in the ladle After the component concentration prevention treatment that makes the ratio C / C 0 of C content (C) in 0.90 to 0.90 or less, and then hot-rolling it into a wire rod or bar steel, it is cut into a predetermined length and then cold forged. It is characterized in that it is formed into a bolt shape by, and then a hexagonal hole is drilled in the bolt head by cold forging, and then a thread is formed. Hexagon socket head cap bolt manufacturing method.
【請求項2】C:0.10〜0.50wt%、 Si:0.01〜0.50wt%、 Mn:0.20〜2.00wt% を含み、かつ Cr:0.50〜2.00wt%、 Mo:0.05〜2.00wt% Al:0.002 〜0.100 wt%、 Ti:0.002 〜0.050 wt%、 Nb:0.005 〜0.050 wt%、 V:0.005 〜0.050 wt%及び B:0.0002〜0.0030wt% のうちから選んだ少なくとも一種を含有し、さらに Sb:0.0005〜0.0500wt% を含有し、残部はFeおよび不可避的不純物の組成になる
溶鋼を連続鋳造し、その際、鋳片内部溶鋼が凝固を完了
するクレータエンド近傍にて、取鍋中溶鋼のC含有量(C
0)に対する鋳片軸心部におけるC含有量(C)の比C/
C0が0.90以下となる成分濃化防止処理を施し、ついで熱
間圧延にて線材又は棒鋼としたのち、所定の長さに切断
後、冷間鍛造によりボルト形状に成形し、ついで同じく
冷間鍛造によってボルト頭部に六角形の穴開け加工を施
したのち、ねじ山を形成することを特徴とする六角穴付
きボルトの製造方法。
2. C: 0.10 to 0.50 wt%, Si: 0.01 to 0.50 wt%, Mn: 0.20 to 2.00 wt%, Cr: 0.50 to 2.00 wt%, Mo: 0.05 to 2.00 wt% Al: 0.002 -0.100 wt%, Ti: 0.002-0.050 wt%, Nb: 0.005-0.050 wt%, V: 0.005-0.050 wt% and B: 0.0002-0.0030 wt%, and at least one selected from Sb: Molten steel containing 0.0005 to 0.0500 wt% and the balance of Fe and unavoidable impurities is continuously cast. At that time, C of molten steel in the ladle near the crater end where the molten steel inside the slab completes solidification Content (C
The ratio of C content in the slab axis portion with respect to 0) (C) C /
After subjecting to component thickening prevention treatment to make C 0 0.90 or less, and then hot-rolling it into a wire rod or steel bar, after cutting it to a prescribed length, it is formed into a bolt shape by cold forging, and then cold-rolled as well. A method for manufacturing a hexagon socket head cap screw, which comprises forming a screw thread after performing hexagonal hole drilling on the bolt head by forging.
JP16477492A 1991-06-28 1992-06-23 Manufacture of hexagon socket head cap screw Pending JPH05192736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16477492A JPH05192736A (en) 1991-06-28 1992-06-23 Manufacture of hexagon socket head cap screw

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-184114 1991-06-28
JP18411491 1991-06-28
JP16477492A JPH05192736A (en) 1991-06-28 1992-06-23 Manufacture of hexagon socket head cap screw

Publications (1)

Publication Number Publication Date
JPH05192736A true JPH05192736A (en) 1993-08-03

Family

ID=26489757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16477492A Pending JPH05192736A (en) 1991-06-28 1992-06-23 Manufacture of hexagon socket head cap screw

Country Status (1)

Country Link
JP (1) JPH05192736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059768A1 (en) * 2005-11-24 2007-05-31 Vestas Wind Systems A/S A wind turbine tower, connection means for assembling a wind turbine tower and methods hereof
WO2010021443A1 (en) * 2008-08-22 2010-02-25 새한전자 Method for manufacturing a self-drilling screw
CN102189141A (en) * 2011-03-02 2011-09-21 北京北方车辆集团有限公司 Method for performing extrusion molding on internal hexagon bolt of alloy steel track end coupling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007059768A1 (en) * 2005-11-24 2007-05-31 Vestas Wind Systems A/S A wind turbine tower, connection means for assembling a wind turbine tower and methods hereof
US8225576B2 (en) 2005-11-24 2012-07-24 Vestas Wind Systems A/S Wind turbine tower, connection means for assembling a wind turbine tower and methods thereof
WO2010021443A1 (en) * 2008-08-22 2010-02-25 새한전자 Method for manufacturing a self-drilling screw
CN102189141A (en) * 2011-03-02 2011-09-21 北京北方车辆集团有限公司 Method for performing extrusion molding on internal hexagon bolt of alloy steel track end coupling device

Similar Documents

Publication Publication Date Title
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
JPH083640A (en) Production of high-tensile non-heat treated bolt
JPH05192736A (en) Manufacture of hexagon socket head cap screw
CN110951953B (en) HRB500E steel bar and vanadium-nitrogen microalloying process thereof
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPH0762204B2 (en) Manufacturing method of high-toughness non-heat treated steel for hot forging and its steel bars and parts
JP3399780B2 (en) Manufacturing method of steel bars for hot forging
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JPS6135249B2 (en)
KR100920621B1 (en) Method for Manufacturing Billet of Bi-S Based Free-Cutting Steel
JPH02107743A (en) Ultrahigh tensile strength pc steel wire or steel rod excellent in uniform elongation and its production
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
US5658399A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP2862607B2 (en) Manufacturing method of steel with excellent drilling workability
JP2004269981A (en) Production method of steel bar
JP3091792B2 (en) Method of manufacturing a stepped shaft
JP3139560B2 (en) Manufacturing method of high strength and high toughness ultrafine wire
JPH0735545B2 (en) High tension non-heat treated bolt manufacturing method
JP3380032B2 (en) Method for producing high-strength steel wire with excellent drawability
JPH0578750A (en) Manufacture of forged steel roll for cold rolling
JP2791832B2 (en) Manufacturing method of mild steel wire rod with excellent workability during cold forging
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JPH0754042A (en) Manufacture of high-strength bolt
JPH0284237A (en) Production of hot rolling stock for high carbon steel wire rod having high workability