JPH0284237A - Production of hot rolling stock for high carbon steel wire rod having high workability - Google Patents

Production of hot rolling stock for high carbon steel wire rod having high workability

Info

Publication number
JPH0284237A
JPH0284237A JP16527289A JP16527289A JPH0284237A JP H0284237 A JPH0284237 A JP H0284237A JP 16527289 A JP16527289 A JP 16527289A JP 16527289 A JP16527289 A JP 16527289A JP H0284237 A JPH0284237 A JP H0284237A
Authority
JP
Japan
Prior art keywords
wire
molten steel
steel
center
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16527289A
Other languages
Japanese (ja)
Other versions
JP2927823B2 (en
Inventor
Toshio Fujita
利夫 藤田
Nobuhisa Tabata
田畑 綽久
Shuzo Ueda
上田 修三
Shozaburo Nakano
中野 昭三郎
Tsutomu Nakajima
力 中島
Yoshiharu Yamamoto
義治 山本
Shinji Kojima
小島 信司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPH0284237A publication Critical patent/JPH0284237A/en
Application granted granted Critical
Publication of JP2927823B2 publication Critical patent/JP2927823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce growth of center segregation as less as possible and to prevent breaking of a wire at the time of the wire drawing work by continuously giving squeezing work at the time of continuously casting and controlling the ratio of C content at center part of a cast billet to C content in a ladle. CONSTITUTION:Molten steel having component composition of 0.4-1.0wt.% C. 0.1-1.5wt.% Si, 0.3-2.0% Mn and the balance Fe with inevitable impurities is continuously cast. Then, at solidified end part of molten steel in inner part of the cast billet, as the molten steel, which concentration of C progresses, exists near crater end and if it solidifies as it is, the center segregation is grown. In order to prevent the growth of the center segregation, the squeezing work is executed near the crater end, where the molten metal in the inner part of the cast billet completes the solidification. Then, the ratio C/Co of the C content (C) at the center part in the cast billet to the C content (Co) in molten steel in the ladle is controlled to 0.80-1.05. Therefore, C-concentrated molten steel is pushed out upward and concentration of C at center part is not risen so much. In this result, the ductility after the wire drawing work is improved and the breaking of the wire does not occur and the drawing work to high working ratio can be executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ワイヤロープ、PCi線、ビードワイヤ及び
タイヤコード等の高強度、高延靭性鋼線の素材として好
適な加工性の高い高炭素釘1線材用の熱延素材の製造方
法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a high carbon nail with high workability and suitable as a material for high strength, high ductility steel wire such as wire rope, PCi wire, bead wire and tire cord. The present invention relates to a method for producing a hot-rolled material for one wire rod.

(従来の技術) 高炭素硬鋼線であるピアノ線やタイヤコ−I・等は、熱
延素材に伸線加工と熱処理とを操り返し力■えることに
より、所定の線径に仕上げると共に、JIS等の規格を
満足する高強度を得ている。同時に絞り値や捻回値等の
延靭性に・ついても、各種用途に応じた適正な値に保持
する必要がある。
(Prior art) Piano wire, tire cord I, etc., which are high carbon hard steel wires, are finished to a predetermined wire diameter by subjecting the hot-rolled material to wire drawing and heat treatment. It has high strength that satisfies standards such as At the same time, it is necessary to maintain the ductility, such as the reduction of area and torsion value, at appropriate values depending on the various uses.

と(にタイヤコードについては、自動車の軽量化・\の
要請に伴って、350kgf/mm2以上の高張力化が
進められているが、そのためには素材である線材の内部
に欠陥がないことが重要である。特に線材中心部に見ら
れる中心偏析は伸線加工中の断線を招くおそれがあり、
生産性や歩留りの低下につながる。また断線に至らすと
も加工中に微小クラ7りを生成して加工後の延靭性を劣
化させ、最終製品の品質特性を損なうことになる。
With regard to tire cords, in response to the demand for lighter automobiles, efforts are being made to increase the tensile strength to over 350 kgf/mm2, but in order to do so, it is necessary that there are no defects inside the wire material. This is important.In particular, center segregation found in the center of the wire may lead to wire breakage during wire drawing.
This leads to a decrease in productivity and yield. Moreover, even if the wire breaks, micro cracks will be generated during processing, which will deteriorate the ductility and toughness after processing and impair the quality characteristics of the final product.

このような弊害をもたらす中心偏析は、連続鋳造で得ら
れる鋳片の場合、特に凝固先端部の凝固収縮のほか、凝
固シェルのバルジングなどによって生しる空隙の真空吸
収力も加わって、凝固先端部にc、p、sなどの濃化溶
鋼成分が吸込まれる結果、鋳片の断面中心部に正偏析と
なって残るものであり、かかる中心偏析に起因して線材
圧延後の中心偏析部に粒界セメンタイトの析出やミクロ
マルテンサイトの生成、さらにはミクロ組織の不均一な
どが生しる結果、伸線加工性が劣化するものと考えられ
る。
In the case of slabs obtained by continuous casting, center segregation, which causes such adverse effects, is caused by solidification shrinkage, especially at the solidified tip, as well as the vacuum absorption force of voids created by bulging of the solidified shell, etc. As a result, concentrated molten steel components such as c, p, and s are sucked into the slab, resulting in positive segregation remaining at the center of the cross section of the slab. It is thought that the wire drawability deteriorates as a result of the precipitation of grain boundary cementite, the formation of micromartensite, and the non-uniformity of the microstructure.

かかる中心偏析の防止策として、例えば2次冷却帯域に
おける電磁撹拌などが試みられたが、セミミクロ偏析ま
でを軽減するには至ってなく、その効果は十分とはいえ
ない。
As a measure to prevent such center segregation, attempts have been made to, for example, use electromagnetic stirring in the secondary cooling zone, but this has not been able to reduce even semi-micro segregation, and the effect cannot be said to be sufficient.

また、鋳片の凝固末期に一対のロールを用いて大圧下を
施すいわゆるインラインリダクション法(鉄と網筒60
年(1974)第7号875〜884頁)の適用も試み
られたが、この方法では、未凝固層の大きい鋳片領域に
おける圧下が不十分な場合には凝固界面に割れが発生し
、逆に圧下が十分である場合には鋳片の厚み中心部に強
い負偏析が生じる等の問題があった。
In addition, the so-called in-line reduction method (iron and mesh tube 60
(1974) No. 7, pp. 875-884), but with this method, if the reduction in the area of the slab with a large unsolidified layer was insufficient, cracks would occur at the solidification interface, and the opposite effect would occur. If the rolling reduction is sufficient, there are problems such as strong negative segregation occurring at the center of the thickness of the slab.

その他、特開昭49−121738号公報には、鋳片の
丑固先端部付近でロール対による軽圧下を施して、該部
分の凝固収縮量を圧下により補償する方法が、また特開
昭52−54623号公報には、鋳造金型を用いて鋳片
の別置完了点近傍を大圧下する方法がそれぞれ提案され
ている。
In addition, JP-A No. 49-121738 discloses a method in which light reduction is performed by a pair of rolls near the tip of a slab to compensate for the amount of solidification shrinkage in this area by reduction. Japanese Patent Publication No. 54623 proposes a method of greatly reducing the area near the point where the separate placement of the slab is completed using a casting mold.

しがしながらロールによる軽圧下の場合には、複数対の
ロールにより数mm/mの圧下を施したと1−でも、ロ
ールピッチ間に生じる凝固収縮やバルジングを十分に防
止することができず、まオー圧下位置が適切でなければ
かえって中心偏析が悪化する不利があった。他方、鍛造
金型を用いて鋳片の凝固完了点近傍を大圧下する方法は
、インラインリダクション法のようなロールによる大圧
下に比べて凝固界面が割れに(く、また負偏析も極力回
避することが可能で、セミマクロ偏析まで改善できるこ
とが明らかになっているものの、依然として未凝固層の
大きい鋳片領域における圧下が不十分だと凝固界面に割
れが発生し、逆に圧下が十分ずぎると鋳片の中心部に強
い負偏析が生じる不利があり、さらには未封固層の小さ
い領域を圧下してもその効果が得られないことから、最
適な圧下条件を模索しているのが現状である。
However, in the case of light reduction by rolls, even if a reduction of several mm/m is applied by multiple pairs of rolls, solidification shrinkage and bulging that occur between the roll pitches cannot be sufficiently prevented. However, if the rolling position was not appropriate, there was a disadvantage that center segregation would worsen. On the other hand, the method of applying a large reduction near the solidification completion point of the slab using a forging die is less prone to cracking at the solidification interface than the in-line reduction method, which uses large reductions using rolls, and also avoids negative segregation as much as possible. Although it has been shown that it is possible to improve semi-macro segregation, if the reduction in the area of the slab with a large unsolidified layer is insufficient, cracks will occur at the solidification interface, and conversely, if the reduction is too large, cracks will occur at the solidification interface. The disadvantage is that strong negative segregation occurs in the center of the piece, and furthermore, the effect cannot be obtained even if the small area of the unsealed solid layer is rolled down, so the current situation is to find the optimal rolling conditions. be.

従って鋳片に生成する中心偏析を飛躍的に改善するまで
には至ってなく、鋼種や用途によっては鋳片段階におい
て拡散焼鈍などを施して対処しているのが実状であり、
大幅なコストアンプにもなっている。
Therefore, it has not yet been possible to dramatically improve the center segregation that occurs in slabs, and the reality is that depending on the steel type and application, diffusion annealing is applied at the slab stage to deal with it.
It also becomes a significant cost amplifier.

(発明が解決しようとする課題) 本発明は、上記の問題を有利に解決するもので、連続鋳
造法を利用する場合であっても、中心偏析の生成を極力
低減し、もって伸線加“工時における断線の防止を可能
ならしめた加工性の高い高炭素鋼線材用熱延素材の有利
な製造方法を提案することを目的とする。
(Problems to be Solved by the Invention) The present invention advantageously solves the above problems, and even when using a continuous casting method, the generation of center segregation is reduced as much as possible, thereby making it possible to The purpose of this invention is to propose an advantageous manufacturing method for hot-rolled material for high-carbon steel wire with high workability, which makes it possible to prevent wire breakage during processing.

(課題を解決するための手段) すなわち本発明は、 C:0.4〜1..0wt%(以下単に%で示す)、S
i:0.1〜1.5%および Mn : 0.3〜2.0% を含み、残部はFeおよび不可避的不純物の組成になる
溶鋼を連続鋳造し、その際、鋳片内部溶鋼が凝固を完了
するクレータエンド近傍にて、取鍋中温鋼のC含有量(
C0)に対する鋳片軸心部におけるC含有量(C)の比
C/c、が0.8〜1.05となるように鍛圧加工を施
し、ついで熱間圧延にて線材とすることからなる加工性
の高い高炭素鋼線材用熱延素材の製造方法(第1発明)
である。
(Means for Solving the Problems) That is, the present invention provides C: 0.4 to 1. .. 0wt% (hereinafter simply indicated as %), S
Molten steel containing i: 0.1 to 1.5% and Mn: 0.3 to 2.0%, with the remainder consisting of Fe and unavoidable impurities, is continuously cast, and at this time, the molten steel inside the slab solidifies. Near the crater end where the process is completed, the C content of the ladle medium-temperature steel (
It consists of forging so that the ratio of C content (C) in the axial center of the slab to C0), C/c, is 0.8 to 1.05, and then hot rolling to form a wire rod. Method for producing hot-rolled material for high-carbon steel wire with high workability (first invention)
It is.

また本発明は、溶鋼の成分組成が、 C:0.4〜1.0%、 Si:0.1〜1.5%および Mn : 0.3〜2.0% を含み、かつ V : 0.05〜1.0%、 Cr : 0.05〜1.0%および Ni : 0.05〜1.0% のうちから選んだ少なくとも一種を合計量が1.0%を
超えない範囲において含有し、残部はFeおよび不可避
的不純物の組成になる加工性の高い高炭素鋼線材用熱延
素材の製造方法(第2発明)である。
Further, in the present invention, the composition of the molten steel includes: C: 0.4 to 1.0%, Si: 0.1 to 1.5%, and Mn: 0.3 to 2.0%, and V: 0. .05 to 1.0%, Cr: 0.05 to 1.0%, and Ni: 0.05 to 1.0%, in a range in which the total amount does not exceed 1.0%. However, the remainder is a composition of Fe and unavoidable impurities, which is a method for producing a hot-rolled material for high carbon steel wire rod with high workability (second invention).

さらに本発明は、溶鋼の成分組成が、 C:0.4〜1.0%、 Si:0.1〜1.5%、 Mn : 0.3〜2.0%、 Cr : 0.05〜0.30%およびS : 0.0
08%以下 を含み、残部はFeおよび不可避的不純物の組成になる
加工性の高い高炭素鋼線材用熱延素材の製造方法(第3
発明)である。
Furthermore, in the present invention, the composition of the molten steel is as follows: C: 0.4 to 1.0%, Si: 0.1 to 1.5%, Mn: 0.3 to 2.0%, Cr: 0.05 to 0.30% and S: 0.0
08% or less, and the remainder is Fe and unavoidable impurities. Method for producing a hot-rolled material for high-carbon steel wire rod with high workability (Part 3)
invention).

(作 用) まず、本発明において溶鋼の成分組成を上記の範囲に限
定した理由について説明する。
(Function) First, the reason why the composition of molten steel is limited to the above range in the present invention will be explained.

C:0.4〜1.0% 硬鋼線やPC鋼線、ビードワイヤ、タイヤコードなどの
用途から加工後の強度を補償する必要があり、C量は0
.4%を下限とした。C量を高めるほど高強度の鋼線を
得ることができるが、反面で高C化は材料を脆化させ加
工中の断線発生頻度を高める。特に1゜0%を超えると
線材圧延後の制御冷却中に、旧オーステナイト粒界に網
目状のセメンタイトが析出し、その後の伸線加工性を大
きく阻害するので、上限は1.0%に定めた。なお特に
タイヤコードのような高強度、高加工性材では、0.6
5〜0.85%程度が好適である。
C: 0.4-1.0% It is necessary to compensate for the strength after processing for applications such as hard steel wire, PC steel wire, bead wire, and tire cord, and the amount of C is 0.
.. The lower limit was set at 4%. The higher the C content, the higher the strength of the steel wire, but on the other hand, increasing the C content makes the material brittle and increases the frequency of wire breakage during processing. In particular, if it exceeds 1.0%, mesh-like cementite will precipitate at the prior austenite grain boundaries during controlled cooling after wire rolling, which will greatly impede subsequent wire drawability, so the upper limit is set at 1.0%. Ta. In particular, for high-strength, high-workability materials such as tire cord, 0.6
Approximately 5 to 0.85% is suitable.

Si:0.1〜1.5% Siは、脱酸剤としてだけでなく、マトリックスの強化
を図る上で有用な元素であり、少なくとも0.1%を必
要とする。
Si: 0.1-1.5% Si is an element useful not only as a deoxidizing agent but also for strengthening the matrix, and requires at least 0.1%.

第1図に、0.7%C−0,7%MrHj21について
、Silを種々に変化させてパテンティング処理を施し
たものの引張り強さ(T、S、)および捻回値を示した
が、Si量の増加に伴って引張強さが向上している。
Figure 1 shows the tensile strength (T, S,) and torsion value of 0.7%C-0.7%MrHj21 subjected to patenting treatment with various Sil changes. The tensile strength improves as the amount of Si increases.

一方Siは、Cの活量を上げる作用があり、特に1.5
%を超えて含有されると脱炭層の生成が顕著となり、捻
回値が急激な低下を招く。かかる理由からSiの含有量
は0.1〜1.5%の範囲とした。
On the other hand, Si has the effect of increasing the activity of C, especially 1.5
If the content exceeds %, the formation of a decarburized layer becomes noticeable, leading to a rapid decrease in the twist value. For this reason, the Si content was set in the range of 0.1 to 1.5%.

なおパテンティングの強度を上げておけば、伸線加工度
を増さなくても最終線径で高強度を得ることが可能で、
延靭性の低下が少なくなる。従って高強度でかつ十分な
延性を確保する場合には、とくに0.6〜1.0%程度
とするのが好ましい。
By increasing the strength of the patenting, it is possible to obtain high strength at the final wire diameter without increasing the degree of wire drawing.
Decrease in ductility is reduced. Therefore, in order to ensure high strength and sufficient ductility, it is particularly preferable to set the content to about 0.6 to 1.0%.

Mn : 0.3〜2.0% Mnは、Siと同様、脱酸剤として作用するだけでなく
、鋼の脆化をもたらすSを固定させ、またさらには焼入
性を向上させて強度及び延性を高める上でも有用な元素
であるが、含有量が0.3%に満たないとその添加効果
に乏しく、一方2.0%を超えると高価となるばかりか
熱間圧延後の制御冷却あるいは加工途中の熱処理工程に
おいてミクロマルテンサイトの生成を促し、伸線加工性
を害するので、0.3〜2.0%の範囲で添加するもの
とした。
Mn: 0.3-2.0% Like Si, Mn not only acts as a deoxidizing agent, but also fixes S, which causes embrittlement of steel, and also improves hardenability, increasing strength and Although it is a useful element for increasing ductility, if the content is less than 0.3%, its addition effect will be poor, while if it exceeds 2.0%, it will not only be expensive but also require controlled cooling after hot rolling or Since it promotes the formation of micromartensite in the heat treatment step during processing and impairs wire drawability, it is added in a range of 0.3 to 2.0%.

V : 0.05〜1.0% ■は、焼入性向上元素であると同時に炭窒化物生成元素
であり、強度の向上に有効に寄与する。
V: 0.05-1.0% (2) is an element that improves hardenability and at the same time is a carbonitride-forming element, and effectively contributes to improving strength.

その効果を発揮させるためには、少なくとも0.05%
の添加を必要とする。しかしながら一方でVは、焼入性
を著しく向上させる作用があるため、あまりに多量に添
加すると伸線加工途中のパテンティングにおいてパーラ
イト組織が得られず、マルチンサイトやヘイナイト組織
が発生してその後の加工がかえって困難となるおそれが
あるので、上限を1.0%に定めた。
To be effective, at least 0.05%
Requires the addition of However, on the other hand, V has the effect of significantly improving hardenability, so if it is added in too large a quantity, a pearlite structure will not be obtained during patenting during wire drawing, and a martinsite or haynite structure will occur, resulting in the formation of a martinite or haynite structure during subsequent processing. Therefore, the upper limit was set at 1.0%.

第2図に、vlの異なる5WRH72A、 5.5mm
φ圧延線材の強度を示す。
Figure 2 shows 5WRH72A with different vl, 5.5mm.
φ indicates the strength of rolled wire.

同図より明らかなように、vlが0.05%以上の範囲
においてT、S、の良好な向上がみられる。
As is clear from the figure, good improvements in T and S can be seen in the range where vl is 0.05% or more.

ただ炭窒化物の溶解温度が約950°Cと低いため伸線
加工途中で中間パテンティングされる場合には、その析
出強化作用はあまり間待できない。従って熱処理が不要
の直引き材の強度向上にとりわけ有効である。
However, since the melting temperature of carbonitride is as low as about 950°C, when intermediate patenting is performed during wire drawing, the precipitation strengthening effect cannot be expected for long. Therefore, it is particularly effective for improving the strength of directly drawn materials that do not require heat treatment.

Cr : 0.05〜1.0% Crは、変態点を幾分下げ、パーライトラメラ−スペー
シングを小さくするので、熱間圧延後あるいは熱処理後
の強度を上昇させると共に、加工硬化も大きく、低加工
度で高い強度が得られるので、延靭性の低下が小さくな
るという利点があり、その効果を発揮させるためには、
少なくとも0.05%の添加を必要とする。
Cr: 0.05-1.0% Cr lowers the transformation point somewhat and reduces the pearlite lamella spacing, so it increases the strength after hot rolling or heat treatment, and also increases work hardening, resulting in low Since high strength can be obtained with a high degree of processing, there is an advantage that the decrease in ductility is small, and in order to make the most of this effect,
Requires addition of at least 0.05%.

しかしながらCrも、■と同様、焼入性を著しく向上さ
せる元素であるので、あまりに多量に添加すると伸線加
工途中のパテンティングにおいてパーライト組織が得ら
れず、マルテンサイトやヘイナイト組織が発生してその
後の加工がかえって困難となるおそれがあるので、上限
を1.0%(好ましくは0.3%)に定めた。
However, like Cr, Cr is an element that significantly improves hardenability, so if it is added in too large a quantity, a pearlite structure will not be obtained during patenting during the wire drawing process, and martensite and haynite structures will occur. Therefore, the upper limit was set at 1.0% (preferably 0.3%).

Ni : 0.05〜1.0% 本発明鋼の場合、中心偏析が顕著に改善されるので、例
えばCの増量による強度向上も容易に図り得るが、この
場合時効脆化が懸念されるので、マトリックスの延性劣
化を防(目的からNiを添加する。
Ni: 0.05 to 1.0% In the case of the steel of the present invention, central segregation is significantly improved, so it is easy to improve the strength by increasing the amount of C, for example, but in this case there is a concern about aging embrittlement. , Ni is added for the purpose of preventing ductility deterioration of the matrix.

第3図に、0.80%(、−0,6%l’In鋼の中間
パテンティング後の強度(T、S、)と絞り(R,A、
)に及ぼすNiの影否について調べた結果を示す。
Figure 3 shows the strength (T, S,) and reduction of area (R, A,
) shows the results of an investigation into the effect of Ni on

同図に示したとおり、強度のみならずとくに絞りの改善
に有効である。
As shown in the figure, this is effective in improving not only strength but also aperture.

したがって本発明では、Niを0.05%以上添加する
ものとした。しかしあまりに多量に添加することは製造
コストが高くなり好ましくないので、上限を1.0%に
定めた。
Therefore, in the present invention, 0.05% or more of Ni is added. However, since adding too much increases manufacturing costs, which is undesirable, the upper limit was set at 1.0%.

ところで、上記したV、Crおよび旧の合計量が1.0
%を超えると、焼入れ性があまりに向上してパーライト
組織が得難くなり、圧延後または熱処理後の加工が困難
になる他、高価でもあるので、これらの元素は合計量が
1.0%を超えない範囲で添加することが肝要である。
By the way, the total amount of V, Cr and old mentioned above is 1.0
If the total amount of these elements exceeds 1.0%, the hardenability will improve too much, making it difficult to obtain a pearlite structure, making it difficult to process after rolling or heat treatment, and also being expensive. It is important to add it within a range that is not exceeded.

S:0.008%以下 Sは、鋼の延性を劣化させる有害元素として知られてい
る。とくにクィヤコード等のように極細線に加工されて
高張力化を図る場合は、その延性向上が不可欠であるの
で、鋼中の不純物元素にも配慮する必要がある。
S: 0.008% or less S is known as a harmful element that deteriorates the ductility of steel. In particular, when the steel is processed into ultra-fine wires such as queuer cord to achieve high tensile strength, it is essential to improve the ductility, so consideration must also be given to impurity elements in the steel.

第4図に、S含有量を変化させ、鋼中のMnS量を種々
に変化させた5WR872Aを用い、3胴φでパテンテ
ィング後、0.4mmφまで伸線加工したのちの捻回値
についての調査結果を示す。
Figure 4 shows the torsion values after patenting with 3 cylinders φ and wire drawing to 0.4 mmφ using 5WR872A with varying S content and various MnS amounts in the steel. Showing the survey results.

開開に示したとおり、MnS量が減少するは・ど捻回値
は向上し、とくにMnSの面積率が0.10%以下でそ
の効果は著しい。
As shown in the figure, the torsion value improves as the amount of MnS decreases, and this effect is particularly significant when the area ratio of MnS is 0.10% or less.

そこで発明者らは、MnSの面積率が0.10%以下と
なるS含有量について調べたところ、0.008%以下
とすれば良いことを突き止めた。
Therefore, the inventors investigated the S content at which the area ratio of MnS is 0.10% or less, and found that it should be 0.008% or less.

さて本発明では、上述したような好適成分組成になる溶
鋼の連続鋳造に際し、i前片の内部溶鋼が凝固を完了す
るクレータエンド近傍にて鍛圧加工を施すことによって
、取鍋中溶鋼のC含有1(Go)に対する鋳片軸心部に
おけるC含有ff1(C)の比C/ COを0.80〜
1.05にff+lJ ?卸する。
Now, in the present invention, during continuous casting of molten steel having a preferable composition as described above, the C content of the molten steel in the ladle is reduced by performing forging near the crater end where the internal molten steel of the front piece i completes solidification. The ratio C/CO of C-containing ff1(C) at the axial center of the slab to 1(Go) is 0.80~
ff+lJ to 1.05? Wholesale.

ここに鍛圧加工によってC/Co比の制御が可能な理由
は、次のとおりである。
The reason why the C/Co ratio can be controlled by forging is as follows.

すなわち内部溶鋼の凝固末期には、Cの濃化が進んだ溶
鋼がクレータエンド近傍に存在するため、そのまま凝固
すれば中心偏析となるわけであるが、凝固前に鍛圧加工
を施すと、かようなC濃化溶銅は上方に押し出される結
果、中心部におけるC濃度はさほど上昇することはない
。従って鍛圧加工の実施時期をCの濃化程度に応して調
節すれば、鋳片軸心部におけるC含有量を調整できるわ
けてある。
In other words, at the final stage of solidification of the internal molten steel, molten steel with advanced C concentration exists near the crater end, so if it solidifies as it is, it will become centrally segregated, but if forging is performed before solidification, this will occur. As a result of the C-enriched molten copper being pushed upward, the C concentration in the center does not increase much. Therefore, by adjusting the timing of forging according to the degree of enrichment of C, the C content in the axial center of the slab can be adjusted.

第5図に、5WRII 82Bを用い、本発明に従い連
鋳片に連続的に鍛圧加工を行ったもの、ならびに鍛圧加
工を行わない従来法に従い得たものから、鋳片軸心部の
C/ CO比が種々に異なる鋼材を採取し、線材に圧延
した後、カッピー断線の生じ易い伸線条件(ダイスアプ
ローチ角度−25°)で伸線したときの断線発生状況に
ついて調べた結果を示す。
Figure 5 shows the C/CO of the axial center of the slab from the slabs obtained by continuous forging according to the present invention using 5WRII 82B, and from the conventional method without forging. The results of an investigation into the occurrence of wire breakage when steel materials with various ratios were collected, rolled into wire rods, and then drawn under wire drawing conditions (die approach angle -25°) where cuppy wire breakage is likely to occur are shown.

同図に示したとおり、C/C,比が0.8未満の負偏析
率の大きい場合、および逆にC/ CO比が1.1を超
える正偏析率の大きい場合にはいずれも、カッピー断線
が生じた。この理由は、線材横断面中心部におけるパー
ライト組織の不均一あるいは粒界セメンタイトの析出が
原因と考えられる。
As shown in the figure, when the C/C ratio is less than 0.8 and the negative segregation rate is large, and conversely when the C/CO ratio is more than 1.1 and the positive segregation rate is large, the cuppy A disconnection occurred. The reason for this is thought to be the non-uniformity of the pearlite structure at the center of the cross section of the wire or the precipitation of grain boundary cementite.

従って本発明では、鍛圧加工によって制御すべき鋳片軸
心部におけるC/C,比を0.80〜1.05の範囲に
限定したのである。
Therefore, in the present invention, the C/C ratio at the axial center of the slab to be controlled by forging is limited to a range of 0.80 to 1.05.

なお、好ましい鍛圧加工法としては、本発明者らが先に
特開昭60−82257号公報において開示した連続鍛
圧法がある。
In addition, as a preferable forging method, there is a continuous forging method previously disclosed by the present inventors in JP-A-60-82257.

次に上記した本発明法に従う鍛圧加工法により、C/C
,比を0.80〜1.05に制御した鋳片を、熱間圧延
により線材にしたところ、これらの圧延線材の横断面に
おける中心部0.5mm2中の最高硬さとマトリックス
の平均硬さとの比は1.1以下に収まった。
Next, by the forging method according to the method of the present invention described above, C/C
When the slabs with a ratio of 0.80 to 1.05 were hot rolled into wire rods, the maximum hardness in the center 0.5 mm2 of the cross section of these rolled wire rods and the average hardness of the matrix were The ratio was below 1.1.

一方、中心部とマトリックスとの硬さ比が種々のものに
ついて伸線加工を行ったところ、伸線加工中に検出した
内部クランク発生加工度は、第6図に示すように、硬さ
比が1.1を超えると急激に低下し、内部クランクが早
期に発生することが判明した。
On the other hand, when wire drawing was performed on wires with various hardness ratios between the center and the matrix, the degree of internal crank generation detected during wire drawing was as shown in Figure 6. It has been found that when it exceeds 1.1, it rapidly decreases and internal cranking occurs early.

(実施例) 第1表に示す化学組成になる溶鋼(記号A−L)を27
0X340mmのモールドで連続鋳造し、引き抜き中の
鋳片に対し、鋳片内部の溶鋼が凝固を完了するクレータ
エンド近傍にて、鋳片軸心部のC/C8比: 0.95
を目標として連続的に鍛圧加工を施し、C/C,比を0
.88〜1.03の範囲に制御してブルームを製造した
。その後、分塊及び鋼片ミルによって150X150m
mのヒレソトに熱間圧延した。さらに線材ミルにて5 
、5 mmφあるいは11mmφに熱間圧延後、前者は
850°C1一方後者は900°Cで巻取り、ステルモ
アラインで制御冷却した。
(Example) Molten steel (symbols A-L) having the chemical composition shown in Table 1 was
C/C8 ratio of the axial center of the slab: 0.95 near the crater end where the molten steel inside the slab completes solidification for the slab that is continuously cast in a 0x340mm mold and is being drawn.
With the goal of continuous forging processing, the C/C ratio is 0.
.. Bloom was produced by controlling it within the range of 88 to 1.03. Then, 150x150m by blooming and billet mill
It was hot rolled into a fillet size of m. Furthermore, in the wire mill 5
, 5 mmφ or 11 mmφ, the former was rolled up at 850°C, while the latter was rolled up at 900°C, and cooled under control in a Stelmore line.

なお第1表で、0.02%以下のCr、0.003%以
下の■および0.02%以下のNiはいずれも、不可避
的不純物として混入してきたものである。
In Table 1, 0.02% or less of Cr, 0.003% or less of ■, and 0.02% or less of Ni are all mixed as unavoidable impurities.

一方比較材は、従来工程どうり、連続鋳造後、鍛圧加工
を行わずに同様の線材圧延を行った。
On the other hand, the comparative material was subjected to the same wire rod rolling without forging after continuous casting according to the conventional process.

なお記号C,K及びLについて出鋼時の溶鋼加熱度を約
20°Cに制御した他はすべて27〜30゛Cの範囲で
鋳込んだ。また分塊圧延から線材圧延までの熱間圧延温
度は、本発明鋼及び比較材共に同一温度履歴となるよう
配慮した。
For symbols C, K, and L, the heating temperature of the molten steel at the time of tapping was controlled to about 20°C, but all the steels were cast in the range of 27 to 30°C. In addition, consideration was given to the hot rolling temperature from blooming to wire rod rolling so that the temperature history was the same for both the inventive steel and the comparative material.

これらの圧延線材の緒特性について調べた結果を第2表
に示す。
Table 2 shows the results of an investigation into the properties of these rolled wire rods.

ここに引づ長試験片は、圧延コイルの両端部及び中央部
の3ケ所から採取したリングより連続サンプリングした
合計50本の平均値で示す。その他の特性については、
引張試片採取コイルから約200kgを10分割し、そ
の横断面について調査した結果を示している。 なおセ
ンタースポットはその程度を問わず有無で表した。
Here, the length test piece is shown as the average value of a total of 50 rings that were continuously sampled from three rings taken from both ends and the center of the rolled coil. For other characteristics,
Approximately 200 kg of the tensile specimen collection coil was divided into 10 parts, and the cross section thereof was investigated.The results are shown below. Note that the center spot was expressed as presence or absence regardless of its degree.

同表より明らかなように、本発明鋼は中心偏析を示すセ
ンタースポットは全く認められず、またミクロマルテン
サイトや粒界セメンタイトの析出もない。
As is clear from the same table, in the steel of the present invention, no center spot indicating center segregation was observed, and there was no precipitation of micromartensite or grain boundary cementite.

これに対し比較材にはいずれも、センタースポットが認
められ、しかも一部にはミクロマルテンサイトおよび粒
界セメンタイトが検出された。
In contrast, in all comparative materials, center spots were observed, and micromartensite and grain boundary cementite were also detected in some parts.

このような差異は伸線加工性の指標の一つである絞りに
表れ、いずれの綱においても本発明鋼の方が明らかに高
い値を示す。
Such a difference is manifested in the area of area, which is one of the indicators of wire drawability, and the steel of the present invention clearly shows a higher value in any of the steels.

次にC量の高い記号B、CおよびJの圧延材について、
ドローヘンチを用いカッビー破壊促進法(ダイスアプロ
ーチ角度25°)により伸線性を調べた。
Next, regarding rolled materials with symbols B, C, and J with high C content,
Wire drawability was examined by the Cubbie fracture acceleration method (dice approach angle 25°) using a draw hench.

その結果を第3表に示す。The results are shown in Table 3.

結果は第3表に示したとおりで、いずれの鋼種について
も本発明鋼の伸線性の方が明らかに優れており、過酷な
条件であっても本発明鋼は更に伸線できることが判る。
The results are shown in Table 3, and it can be seen that the wire drawability of the steel of the present invention is clearly superior for all steel types, and that the steel of the present invention can be further drawn even under severe conditions.

また記号Bの鋼種について、伸線加工度と絞りとの関係
を第7図に示したが、加工後においても本発明鋼の延性
の方が高いことは明瞭である。
FIG. 7 shows the relationship between the degree of wire drawing and the reduction of area for the steel type designated by symbol B, and it is clear that the ductility of the steel of the present invention is higher even after processing.

次に、需要家においては線材から中間線まで伸線するの
で、記号A、D、E、F、G、HおよびIについて5.
5珊φから2.0mmφまで9パスで通常伸線条件によ
り連続伸線し、その材質を調べた。
Next, since the customer draws the wire from the wire to the intermediate wire, 5.
Continuous wire drawing was carried out under normal wire drawing conditions in 9 passes from 5 mm φ to 2.0 mm φ, and the material properties were investigated.

その結果を第4表に示す。The results are shown in Table 4.

なお引張試片及び捻回試片はそれぞれ連続で30本づつ
採取し、その平均値で示した。
In addition, 30 tensile specimens and 30 torsion specimens were consecutively collected, and the average value is shown.

第4表 同表に示した結果から明らかなように、本発明鋼の延靭
性は従来鋼に比べて格段に優れており、伸線加工性の良
いことを裏付けている。ま7こ強度および絞りに対する
Si、 Mnおよび■の効果も十分に発揮されている。
As is clear from the results shown in Table 4, the ductility of the steel of the present invention is much superior to that of conventional steel, which proves that it has good wire drawability. The effects of Si, Mn and ■ on strength and aperture are also fully demonstrated.

さらに記号K及びLについて、11価φから4.3胴φ
まで9バスで通常伸線条件により連続伸線して4.3m
mφとしたものの材質を同様に調査した。
Furthermore, regarding symbols K and L, from 11 valent φ to 4.3 cylinder φ
4.3m by continuous wire drawing under normal wire drawing conditions with 9 buses.
The material of the mφ was similarly investigated.

なお画調はC,Mnともに高く、断線あるいは内部クラ
ンクが発生しやすいので、カンビー破面率(引張試験後
の破面がカッピー状になっている割合)についても調べ
た。
Since the image quality is high in both C and Mn, and wire breakage or internal cranking is likely to occur, the Cambie fracture surface ratio (the percentage of the fracture surface having a cuppy shape after the tensile test) was also investigated.

第5表に、それぞれ連続50本の引張試験値の平従来鋼
のK及びLにはカッピー破面率が約5%認められ、また
絞りも低かった。この理由は加工中に微小内部クランク
の生成があったためと推定される。さらにLには一部に
断線も認められた。
Table 5 shows that the cuppy fracture surface ratio of about 5% was observed in the flat conventional steels K and L, which were tested in 50 consecutive tensile tests, and the reduction of area was also low. The reason for this is presumed to be that minute internal cranks were generated during machining. Furthermore, some disconnections were observed in L.

これに対し、中心偏析の改善された本発明鋼はカッビー
破面率及び断線も皆無であり、また絞りも良好であった
。なお絞りに対するNiの効果も明らかに認、められた
On the other hand, the steel of the present invention, which had improved center segregation, had no Cubby fracture ratio or wire breakage, and had good drawing performance. The effect of Ni on the aperture was also clearly recognized.

実施例2 第6表に示す化学組成になる溶鋼(記号M−R)を27
0 X 340mmのモールドで連続鋳造し、引き抜き
中の鋳片に対し、鋳片内部の溶銅が凝固を完了するクレ
ータエンド近傍にて、鋳片輔心部のC/c。
Example 2 Molten steel (symbol M-R) having the chemical composition shown in Table 6 was
C/c of the center part of the slab in the vicinity of the crater end where the molten copper inside the slab completes solidification for the slab that is continuously cast in a 0 x 340mm mold and is being drawn.

比: 0.95を目標として連続的に鍛圧加工を施し、
C/C,比を0.88〜1.03の範囲に制御してブル
ームを製造した。その後、分塊及び鋼片ミルによって1
50 X 150mmのビレットに熱間圧延した。さら
に線材ミルにて5.5mmφに熱間圧延後、850°C
で巻取り、ステルモアラインで制御冷却した。
Ratio: Continuously subjected to forging processing with the aim of achieving a ratio of 0.95,
Bloom was produced by controlling the C/C ratio within a range of 0.88 to 1.03. Then 1 by blooming and billet mill
Hot rolled into a 50 x 150 mm billet. Further, after hot rolling to 5.5mmφ in a wire mill, 850°C
It was wound up and cooled in a controlled manner using a Stelmore line.

一方比較材は、従来工程どうり、連続鋳造後、鍛圧加工
を行わずに同様の線材圧延を行った。
On the other hand, the comparative material was subjected to the same wire rod rolling without forging after continuous casting according to the conventional process.

また分塊圧延から線材圧延までの熱間圧延温度は、本発
明鋼及び比較材共に同一温度履歴となるよう配慮した。
In addition, consideration was given to the hot rolling temperature from blooming to wire rod rolling so that the temperature history was the same for both the inventive steel and the comparative material.

これらの圧延線材の緒特性について調べた結果を第7表
に示す。
Table 7 shows the results of an investigation of the strength properties of these rolled wire rods.

同表より明らかなように、比較材にはいずれも、センタ
ースポットが認められ、しかも一部にはミクロマルテン
サイトおよび粒界セメンタイトが検出されたのに対し、
本発明鋼は中心偏析を示すセンタースポットは全く認め
られず、またミクロマルテンサイトや粒界セメンタイト
の析出もなかった。
As is clear from the table, center spots were observed in all comparative materials, and micromartensite and grain boundary cementite were also detected in some parts.
In the steel of the present invention, no center spot indicating center segregation was observed, and no micromartensite or grain boundary cementite was precipitated.

次に記号NおよびQの圧延材について、ドローヘンチを
用いカッビー破壊促進法(ダイスアプローチ角度25°
)により伸線性を調べた。
Next, the rolled materials with symbols N and Q were examined using the Cubby fracture acceleration method (dice approach angle 25°) using a draw hench.
) was used to examine wire drawability.

その結果を第8表に示す。The results are shown in Table 8.

結果は第8表に示したとおりで、いずれの鋼種について
も本発明鋼の伸線性の方が明らかに優れており、過酷な
条件であっても本発明鋼は更に伸線できることが判る。
The results are shown in Table 8, and it can be seen that the wire drawability of the steel of the present invention is clearly superior for all steel types, and that the steel of the present invention can be further drawn even under severe conditions.

さらに前記の熱延素材(5,5mmφ)から伸線と熱処
理を繰り返し、仕上げ伸線前の線径を1 、65mmφ
とし、ここでの最終パテンティング条件を加熱温度:9
30°C9鉛浴温度:565°Cに設定後、連続的に処
理した。その後プラスめっき工程を経て、仕上げ伸線を
行い仕上げ径: 0.25mmφとした。
Furthermore, wire drawing and heat treatment are repeated from the hot-rolled material (5.5 mmφ) to reduce the wire diameter to 1.65 mmφ before finishing wire drawing.
The final patenting conditions here are heating temperature: 9
After setting the lead bath temperature at 30°C and 565°C, the treatment was continued. Thereafter, the wire was subjected to a plus plating process and then subjected to final wire drawing to a finished diameter of 0.25 mmφ.

かくして得られた鋼線の引張強さ、絞りおよび捻回値に
ついて調べた結果を第9表に示す。
Table 9 shows the results of examining the tensile strength, reduction of area, and torsion value of the steel wire thus obtained.

第 表 同表より明らかなように、本発明鋼は従来鋼に比べて強
度が高く、しかも高強度であるにもがかわらず、絞りお
よび捻回値は同等もしくはそれ以上であり、極細線とし
ての特性を十分満足するものである。時にCrを適量添
加した上でSの混入を抑制したものは、とりわけ良好な
値が得られている。
As is clear from Table 1, the steel of the present invention has higher strength than conventional steel.Although it has high strength, the drawing and twist values are the same or higher, and it can be used as an ultra-fine wire. This sufficiently satisfies the characteristics of Particularly good values have been obtained in cases where a suitable amount of Cr is added and S contamination is suppressed.

(発明の効果) かくして本発明に従い、連続鋳造時に鍛圧加工を連続的
に付与し鋳片軸心部のC/C,を制御することによって
、特に伸線加工後の延靭性を顕著に改善し、従来鋼のよ
うに断線を招くことなく高加工度まで加工できる。この
ことは熱処理省略によるコストダウンにもつながるし、
また従来からとられている中心偏析軽減のための種りの
制約を解消することが可能となるばかりか、品質の安定
化に寄与するところ大である。
(Effects of the Invention) Thus, according to the present invention, by continuously applying forging during continuous casting and controlling the C/C of the axial center of the slab, the ductility, especially after wire drawing, can be significantly improved. , it can be processed to a high degree of processing without causing wire breakage like conventional steel. This also leads to cost reduction by omitting heat treatment,
In addition, it not only becomes possible to eliminate the conventional restrictions on seeds for reducing center segregation, but it also greatly contributes to stabilizing quality.

士たV、CrあるいはNiを添加することOこよって鋼
線の強度や延靭性を高めることができ、本発明の適用に
よって更に強度、延靭性に優れる高炭素鋼線等を製造す
ることができる。
By adding V, Cr or Ni, the strength and ductility of the steel wire can be increased, and by applying the present invention, it is possible to produce high carbon steel wires etc. that have even better strength and ductility. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、パテンティング材のSi量と強度及び捻回値
との関係を示したグラフ、 第2図は、圧延線材のVlと強度との関係を示したグラ
フ、 第3図は、パテンティング材のNl量と強度及び絞りと
の関係を示したグラフ、 第4図は、硫化物系介在物の面積率と捻回値との関係を
示したグラフ、 第5図は、圧延線材のC/C,比とカッピー断線発生数
との関係を示したグラフ、 第6図は、圧延線材の中心部とマトツクスの硬さの比と
内部クランク発生加工度との関係を示したグラフ、 第7図は、特殊伸線条件による加工後の加工度と絞りと
の関係を示したグラフである。 第1図 第3図 05       f、0 57 f((utt%) 第2図 し N1量(νt%) 第4図 V f (utt7.> 1走化特系介在特の面積g(%) 第5図 鋪庁軸l乙静のC/Ca 第6図 中ノ巳釣りでl−リIクスのi更ざの比第7図 f、0  15  2.0 加工贋21nDo/D 2.5
Figure 1 is a graph showing the relationship between Si content and strength and twist value of patented material. Figure 2 is a graph showing the relationship between Vl and strength of rolled wire rod. Fig. 4 is a graph showing the relationship between the area ratio of sulfide inclusions and twist value, Fig. Figure 6 is a graph showing the relationship between the C/C ratio and the number of cuppy wire breaks. FIG. 7 is a graph showing the relationship between the degree of processing and the reduction of area after processing under special wire drawing conditions. Fig. 1 Fig. 3 05 f, 0 57 f ((utt%) Fig. 2 Amount of N1 (vt%) Fig. 4 V f (utt7.> 1 Area of chemotactic system intervention g (%) Figure 5: C/Ca of Itsuji, Figure 6: Ratio of l-lix, I-sharaku, in Nakanomi fishing Figure 7: f, 0 15 2.0 Processing forgery: 21nDo/D 2.5

Claims (1)

【特許請求の範囲】 1、C:0.4〜1.0wt%、 Si:0.1〜1.5wt%および Mn:0.3〜2.0wt% を含み、残部はFeおよび不可避的不純物の組成になる
溶鋼を連続鋳造し、その際、鋳片内部溶鋼が凝固を完了
するクレータエンド近傍にて、取鍋中溶鋼のC含有量(
C_0)に対する鋳片軸心部におけるC含有量(C)の
比C/C_0が0.8〜1.05となるように鍛圧加工
を施し、ついで熱間圧延にて線材とすることを特徴とす
る加工性の高い高炭素鋼線材用熱延素材の製造方法。 2、溶鋼の成分組成が、 C:0.4〜1.0wt%、 Si:0.1〜1.5wt%および Mn:0.3〜2.0wt% を含み、かつ V:0.05〜1.0wt%、 Cr:0.05〜1.0wt%および Ni:0.05〜1.0wt% のうちから選んだ少なくとも一種を合計量が1.0wt
%を超えない範囲において含有し、残部はFeおよび不
可避的不純物の組成になる請求項1記載の製造方法。 3、溶鋼の成分組成が、 C:0.4〜1.0wt%、 Si:0.1〜1.5wt%、 Mn:0.3〜2.0wt%、 Cr:0.05〜0.30wt%および S:0.008wt%以下 を含み、残部はFeおよび不可避的不純物の組成になる
請求項1記載の製造方法。
[Claims] 1. Contains C: 0.4 to 1.0 wt%, Si: 0.1 to 1.5 wt%, and Mn: 0.3 to 2.0 wt%, the remainder being Fe and inevitable impurities. Molten steel with a composition of
It is characterized by forging so that the ratio C/C_0 of the C content (C) at the axial center of the slab to C_0) is 0.8 to 1.05, and then hot rolling to form a wire rod. A method for producing hot-rolled material for high-carbon steel wire with high workability. 2. The composition of the molten steel includes C: 0.4 to 1.0 wt%, Si: 0.1 to 1.5 wt%, and Mn: 0.3 to 2.0 wt%, and V: 0.05 to 1.0 wt%. The total amount of at least one selected from 1.0 wt%, Cr: 0.05 to 1.0 wt%, and Ni: 0.05 to 1.0 wt% is 1.0 wt%.
2. The manufacturing method according to claim 1, wherein the content is within a range not exceeding %, and the remainder is composed of Fe and unavoidable impurities. 3. The composition of the molten steel is: C: 0.4 to 1.0 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.3 to 2.0 wt%, Cr: 0.05 to 0.30 wt% % and S: 0.008 wt % or less, with the remainder being Fe and unavoidable impurities.
JP16527289A 1988-06-30 1989-06-29 Method of manufacturing hot-rolled material for high carbon steel wire rod with high workability Expired - Fee Related JP2927823B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-161038 1988-06-30
JP16103888 1988-06-30

Publications (2)

Publication Number Publication Date
JPH0284237A true JPH0284237A (en) 1990-03-26
JP2927823B2 JP2927823B2 (en) 1999-07-28

Family

ID=15727415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16527289A Expired - Fee Related JP2927823B2 (en) 1988-06-30 1989-06-29 Method of manufacturing hot-rolled material for high carbon steel wire rod with high workability

Country Status (1)

Country Link
JP (1) JP2927823B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199307A (en) * 1989-12-28 1991-08-30 Kawasaki Steel Corp Production of steel products having excellent friction pressure weldability
CN114657313A (en) * 2022-04-29 2022-06-24 包头钢铁(集团)有限责任公司 Production method of high-chromium high-strength mining steel strand wire rod

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199307A (en) * 1989-12-28 1991-08-30 Kawasaki Steel Corp Production of steel products having excellent friction pressure weldability
CN114657313A (en) * 2022-04-29 2022-06-24 包头钢铁(集团)有限责任公司 Production method of high-chromium high-strength mining steel strand wire rod

Also Published As

Publication number Publication date
JP2927823B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
JP3440937B2 (en) Method of manufacturing steel wire and steel for steel wire
JP2008261028A (en) High-carbon steel wire rod having excellent wire drawability
JP4646850B2 (en) High carbon steel wire rod with excellent resistance to breakage of copper
JP3601388B2 (en) Method of manufacturing steel wire and steel for steel wire
JP2609387B2 (en) High-strength high-toughness ultrafine steel wire wire, high-strength high-toughness ultrafine steel wire, twisted product using the ultrafine steel wire, and method for producing the ultrafine steel wire
JPS62256950A (en) High-strength steel wire rod excellent in wiredrawability
KR100430068B1 (en) Direct patenting high strength wire rod and method for producing the same
JP3572993B2 (en) Steel wire, steel wire, and method of manufacturing the same
JP3854878B2 (en) Low carbon sulfur-based free-cutting steel wire and method for producing the same
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP2000178685A (en) Steel wire rod excellent in fatigue characteristic and wire drawability and its production
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JP2888726B2 (en) Ultra-fine steel wire excellent in wire drawability and fatigue strength and method for producing the same
JP7226083B2 (en) wire and steel wire
JPH0284237A (en) Production of hot rolling stock for high carbon steel wire rod having high workability
US5665182A (en) High-carbon steel wire rod and wire excellent in drawability and methods of producing the same
JPH11269607A (en) Wire drawing type high strength steel wire rod and its production
JP3428502B2 (en) Steel wire, extra fine steel wire and twisted steel wire
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
US5647918A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP3091793B2 (en) Method of manufacturing steel wire with excellent fatigue fracture resistance
JP3139560B2 (en) Manufacturing method of high strength and high toughness ultrafine wire
JPH03281049A (en) Manufacture of hot-rolled raw material for high carbon steel wire rod having high workability
JPH0735545B2 (en) High tension non-heat treated bolt manufacturing method
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees