JP3854878B2 - Low carbon sulfur-based free-cutting steel wire and method for producing the same - Google Patents

Low carbon sulfur-based free-cutting steel wire and method for producing the same Download PDF

Info

Publication number
JP3854878B2
JP3854878B2 JP2002061332A JP2002061332A JP3854878B2 JP 3854878 B2 JP3854878 B2 JP 3854878B2 JP 2002061332 A JP2002061332 A JP 2002061332A JP 2002061332 A JP2002061332 A JP 2002061332A JP 3854878 B2 JP3854878 B2 JP 3854878B2
Authority
JP
Japan
Prior art keywords
steel wire
less
hot
wire
log
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002061332A
Other languages
Japanese (ja)
Other versions
JP2003253390A (en
Inventor
浩 家口
高裕 工藤
浩一 坂本
正人 鹿礒
雅実 染川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002061332A priority Critical patent/JP3854878B2/en
Publication of JP2003253390A publication Critical patent/JP2003253390A/en
Application granted granted Critical
Publication of JP3854878B2 publication Critical patent/JP3854878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、Pbなどの特殊元素を含有しない場合においても、被削性に優れた低炭素硫黄系快削鋼線材およびその製造方法に関する。なお、ここで記載する鋼線材とは、熱間圧延あるいは熱間鍛造した鋼線材だけでなく、その後に伸線(冷間引き抜き)を施した鋼線材をも含む。
【0002】
【従来の技術】
機械的性質をあまり重視しない部品類で、切削によって多量に製作される主に小物部品であるネジ類、ニップル類などにはSを多量に添加した低炭素硫黄系快削鋼が用いられる。さらに優れた被削性を有する快削鋼として、Sに加えてPbを含有する複合快削鋼も広く使用されている。しかし、Pbは健康を害する有害物質であるので、快削鋼中のPb使用量の削減が要望されている。Teも使用されることがあるが、毒性が有ると同時に熱間加工性を阻害するので、低減が求められている。
【0003】
低炭素硫黄系快削鋼の被削性向上の検討は、これまでも多くなされてきた。例えば、特許1605766号公報、特許1907099号公報、特許2129869号公報、特開平9−157791号公報、特開平11−293391号公報に記載されているように、その多くは硫化物系介在物の数、サイズ、形態の制御に関するものである。また、例えば、特許1605766号公報、特許1907099号(特公平4−54736号)公報、特許2922105号公報、特開平9−71838号公報、特開平10−158781号公報に記載されているように、酸化物系介在物を規定したものも多数ある。
一方、介在物以外の組織・特性(マトリックス特性)も被削性に重要な影響を及ばすが、これらに着目した技術は少なく、例えば、特許2125814号(特公平1−11069号)公報には圧延方向に連続した縞状パーライト組織を、特許2740982号公報には初析フェライト中の固溶C量を規定している。
【0004】
【発明が解決しようとする課題】
上記公報に開示された技術は重要なものであるが、未だ十分な被削性が得られていない。例えば、特許1907099号公報に開示の技術においては、鋼中の介在物について、長径5μm 以上、短径2μm 以上、長径/短径比が5以下のMnSを全MnS系介在物の50%以上で、酸化物系介在物中のAl23の含有率を平均15%以下と規定しているが、Pb、BiおよびTeの合計量を0.2%以上含有することを必須としており、これらの元素の添加なくしては十分な被削性が得られていない。
本発明は、かかる問題に鑑みなされたもので、毒性のあるPbや、Bi、Teなどの特殊元素を添加しない場合であっても、優れた被削性を有する低炭素硫黄系快削鋼線材およびその好適な製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
硫化物系介在物の生成量や分布状態は被削性に影響を及ぼすが、これらは鋼成分や溶解・鋳造条件によってほぼ決定される。本発明は、硫化物系介在物の生成量や分布状態を制御するのではなく、硫化物系介在物の形態のうち、特に被削性を左右する介在物の幅を熱延段階で展伸させることなく、線径に応じて所定サイズ以上に大きく維持することによって、優れた被削性を得ることに成功したものである。すなわち、本発明の低炭素硫黄系快削鋼線材は、mass%で、
C:0.02〜0.15%、
Mn:0.50〜2.0%、
P:0.05〜0.20%、
S:0.15〜0.50%、
Si:0.01%以下、
Al:0.01%以下、
N:0.002〜0.02%、
O:0.01〜0.03%
を含み、あるいはさらにBi:0.3%以下、Pb:0.4%以下、Te:0.1%以下、B:0.01%以下の少なくとも1種を含有し、残部Feおよび不可避的不純物からなる、熱間圧延あるいは熱間鍛造後に伸線された鋼線材であって、鋼線材の直径をd(mm)とするとき、外周面から深さ0.1mmよりd/8までの領域での硫化物系介在物の平均幅(μm )が2.8*logd以上であり、線材の降伏比が0.96以上とされたものである。なお、上記「*」は乗算記号、「log」は常用対数を意味する。以下同様。
【0006】
また、本発明の他の硫黄低炭素系快削鋼線材は、前記成分を有し、熱間圧延あるいは熱間鍛造された鋼線材であって、鋼線材の直径をD(mm)とするとき、外周面から深さ1μm よりD/8までの領域での硫化物系介在物の平均幅(μm )が2.8*logD以上であり、線材の降伏比が0.68以上とされたものである。
【0007】
また、本発明の製造方法は、前記成分を有する鋼片を1000℃以上に加熱し、仕上圧延温度を表面温度で700℃以上、800℃未満として熱間圧延を行い、熱間圧延した鋼線材をステルモアラインで冷却中に、ステルモアラインに実質的に載置直後から少なくとも500℃までの平均冷却速度V(℃/s)を鋼線材の直径をD(mm)とするとき、下記(1) 式を満足する限界冷却速度Vmin 以上で風冷する低炭素硫黄系快削鋼線材の製造方法である。また、本発明の他の製造方法は、前記製造方法により熱間圧延した鋼線材を得た後、さらに伸線加工を施して降伏比が0.96以上の鋼線材を製造する低炭素硫黄系快削鋼線材の製造方法である。
log Vmin =1.13(1−log D)
【0008】
【発明の実施の形態】
まず、本発明の低炭素硫黄系快削鋼線材の組成(単位mass%)について説明する。
C:0.02〜0.15%
Cは鋼の強度を確保するために添加するが、0.02%未満では強度が不十分であると同時に、靭性・延性が過剰となり被削性も低下する。一方、0.15%を超えると強度が過度に高くなり被削性が却って低下する。このため、Cの下限を0.02%、好ましくは0.04%とし、その上限を0.15%、好ましくは0.12%とする。
【0009】
Mn:0.50〜2.0%
Mnは鋼中のSと結合して硫化物を形成し、被削性を向上させる。また、FeS生成による赤熱脆性を抑制する。これらの効果を発揮させるために、下限を0.50%、好ましくは0.75%とする。しかし、2.0%を超えて添加しても強度が過剰に上昇し、却って被削性が低下するので、上限を2.0%、好ましくは1.8%とする。
【0010】
P:0.05〜0.20%
Pは被削性を向上させる効果があり、0.05%以上の添加が有効である。一方、0.20%を超えて添加しても効果は飽和するので、0.20%を上限とする。
【0011】
S:0.15〜0.50%
Sは硫化物を形成して被削性を向上させる元素であり、0.15%未満ではかかる効果が過少である。一方、0.50%を超えて添加すると熱間加工性の低下が懸念される。このため、下限を0.15%、好ましくは0.25%とし、一方その上限を0.50%、好ましくは0.45%とする。
【0012】
Si:0.01%以下、Al:0.01%以下
Si、Alは脱酸材として使用してもよいが、ともに0.01%を超えて添加すると硬質の酸化物が生成し、被削性が極端に低下するようになる。このため、各々0.01%以下に止める。
【0013】
N:0.002〜0.02%
Nは被削性、特に表面粗さを改善する効果がある。0.002%未満ではかかる効果が過少である。一方、0.02%を超えて添加しても効果が飽和するだけでなく、熱間加工性が低下する。このため、下限を0.002%、上限を0.02%とする。
【0014】
O:0.01〜0.03%
OはMnSのサイズや形態に影響を及ぼし、被削性を向上させる元素である。このためには、0.01%以上必要であるが、0.03%を超えて添加すると、硬質な酸化物が増加して被削性が低下する。このため、上限を0.03%とする。
【0015】
本発明の鋼線材は上記成分の他、残部Feおよび不可避的不純物によって構成されるが、さらに下記の範囲でBi、Pb、Teの一種以上、あるいはさらにBを添加することができる。
【0016】
Bi:0.3%以下
BiはPbと同様の効果により被削性を向上させる元素である。しかし、0.3%を超えて添加しても効果が飽和するので、0.3%以下とする。
【0017】
Pb:0.4%以下
Pbは毒性が有るので使用を避けるべき元素であるが、被削性向上には顕著な効果があるので、添加してもよい。しかし、0.4%を超えて添加しても効果が飽和するので、0.4%以下に止める。
【0018】
Te:0.1%以下
TeはMnSの熱間加工中の展伸を抑制する効果になどにより被削性を顕著に向上させるので添加しても良い。しかし、0.1%を超えても効果が飽和するので、上限を0.1%とする。
【0019】
B:0.01%以下
Bは熱間加工性を改善させる元素であり、添加しても良い。しかし、0.01%を超えると逆に熱間加工性が低下するので、0.01%以下に止める。
【0020】
次に、鋼線材の硫化物系介在物の形態について詳細に説明する。
MnSなどの硫化物系介在物(以下、単に硫化物と呼ぶ。)の量、分布は組成、溶解・鋳造条件によってほぼ決まるが、その形態は鋳造後の熱間圧延、熱間鍛造の工程で変化する。硫化物の形態が球形であるほど、圧延、鍛造時に展伸しにくく、加工後においても大きな幅の形態を備える。硫化物の幅は、熱間圧延、熱間鍛造された鋼線材あるいはその後に伸線加工した線材においても被削性に大きな影響を与え、一般的には幅が大きいほど被削性は向上する。もっとも、線径によって必要とされる平均幅は異なる。例えば、同じ体積、個数、形態(幅)の硫化物が線材中に存在する場合、線径が小さい方が被削性は良好であり、線径が大きいほど被削性は低下する。ここで形態に着目すれば、線径が大きくとも、十分な幅の硫化物とすることによって、被削性を改善することができる。
【0021】
硫化物の形態を規定する要素として種々の方法があるが、本発明では平均幅を規定する。平均幅とは、図1に示すように、個々の硫化物の最大長さを長径Lとし、この長径Lに対して垂直方向の幅で最も大きい幅を最大幅Wとするとき、観察視野内の全硫化物の最大幅Wの平均をいう。平均幅を形態の指標とするのは、測定の信頼性、再現性が最も高いからである。これに対して、硫化物の長径や介在物の面積は、測定による誤差が大きく、信頼できるデータが得られにくい。
【0022】
本発明者は、被削性に及ぼす硫化物の平均幅と鋼線材の線径(直径)との関係を調査したところ、後述の実施例から明らかなように、必要となる平均幅は、線材の直径をd(伸線材)あるいはD(熱間圧延線材、熱間鍛造線材)としたとき、2.8*log d以上あるいは2.8*log D以上であることが知見された。硫化物系介在物の最大幅がこれ未満であると被削性、特に表面粗さが低下するようになる。
【0023】
硫化物には、MnSに代表されるSを主とした化合物のほか、酸素が固溶される、あるいは酸化物と複合化した硫化物も含まれる。これらも被削性改善において同効だからである。個々の硫化物の最大幅は、100倍の倍率での光学顕微鏡観察結果を画像解析することによって求めるが、観察位置は重要であり、以下の領域を観察する。被削性に最も重要な部分は、図2に示すように、外周表面から深さ0.1mmの位置から探さd/8、あるいはD/8までの領域であるので、この領域を観察する。観察に際しては圧延・鍛造方向と平行な面で、測定領域面積は6mm2 以上とする。また、研磨のままで観察すればよく、エツチングを行う必要はない。なお、長径1μm 未満の介在物は除外して最大幅の測定解析を行う。これは、長径1μm 未満の介在物は測定誤差が大きいことと、被削性への影響が小さいためである。
【0024】
なお、特許1907099号(特公平4−54736号)公報には、硫化物の規定要素の一つとして短径2μm 以上と規定されているが、線材の直径の大小に関わらず、同一の規定とすると、線径が大きい場合には硫化物の最大幅も大きくしないと被削性向上効果が望めない。また、同公報には本発明における重要な要件である後述の降伏比については不問であり、本発明とは別異である。
【0025】
硫化物の最大幅の制御には、熱間圧延、熱間鍛造の際の鋼片加熱温度の最適化が必要であり、少なくとも1000℃以上とすることが必要であり、好ましくは1040℃以上にするのがよい。1000℃未満では、その後の圧延、鍛造において硫化物の伸展を抑制し、硫化物の平均幅を大きくすることが困難になる。鋼片の加熱温度はビレットが加熱炉を出た段階で測定される。前記鋼片加熱温度の制御に加えて、凝固時の冷却速度を遅くすること、溶鋼中の酸素量を多くすること、AlやSiなどの強力な脱酸元素を少なくすること等の方策を同時に行うことも、硫化物の平均幅の増大化効果をより期待することができる。もっとも、溶鋼中の酸素量が多すぎると、被削性に悪影響を及ぼす硬質酸化物を生成するようになるので、注意が必要である。
【0026】
被削性の改善のためには、硫化物の平均幅のみならず、降伏比(降伏強度/引張強度)YRを特定の値以上にすることが重要であることが知見された。
すなわち、伸線された鋼線材においては、YRを0.96以上とすることが必要である。0.96未満では、被削性の中で表面粗さだけでなく、寸法変化も大きくなり、寸法変化により規定される工具寿命が低下する。望ましくは、0.97以上とするのがよい。降伏比を高くすることにより、切り屑を生成するせん断域でのせん断変形のエネルギーが低下すると同時に切り屑のせん断が安定して起こるようになる。その結果、切削抵抗が減少し、工具摩耗が減少して寸法変化も良好になる。表面粗さは、上記に加えて切削の安定化により向上する。なお、本発明と同等の低炭素硫黄快削鋼(SAE、AISI規格)におけるYRは、通常、0.77〜0.84程度である(JSSC、VOL.8、NO.75、1972、p55、表3−1)。
【0027】
一方、伸線前の熱間圧延、熱間鍛造後の線材においては、YRを0.68以上とする。望ましくは、0.70以上とするのがよい。圧延・鍛造後に切削される場合の被削性を満足させるに0.68以上にする必要がある。また、熱間加工後に伸線する場合においても、この特性を満足しないと、通常の冷間引抜条件では、伸線後の線材のYRを0.96以上にすることが困難になる。引張強さの低い鋼では、降伏比が低くなる傾向があるので、上記YR値を達成するには、引張強さの観点では440MPa以上とすることが好ましい。なお、本発明と同等の低炭素硫黄快削鋼(SAE、AISI規格)における熱間圧延ままの鋼材のYRは、通常、0.50〜0.60程度である(前記文献の表3−1)。
【0028】
熱間圧延による線材の降伏比を制御するためには、仕上圧延条件、圧延後の冷却速度の制御が重要である。なお、熱間鍛造の場合も仕上鍛造条件、鍛造後の冷却速度の制御が重要であるが、これらの条件は熱間圧延の場合と同様なので、以下、熱間圧延の場合について詳細に説明する。
【0029】
本発明では、仕上圧延温度を表面温度で700℃以上、800℃未満で行う。700℃未満では、2相域での圧延になり、圧延後の組織が不均一になり、結果として降伏比などの機械的性質が劣化するようになる。一方、800℃以上の圧延では微細組織が得られず、所定の降伏比が得られないようになる。本発明のように降伏比を熱間圧延、熱間鍛造による線材で0.68以上、伸線による線材で0.96以上をコンスタントに得るためには、組織を従来レベルに比してより一層微細化することが不可欠であり、そのためには、上記したように仕上圧延温度を鋼材の表面において700℃以上、800℃未満で行うことが必要である。かかる条件であれば、熱間圧延材、熱間鍛造材の引張り強度についても440MPa以上にすることができる。従来、仕上圧延温度と鋼片加熱温度は連動することが多かったが、本発明にかかる硫化物の平均幅および降伏比を得るには、両者を独立して制御することが必要である。すなわち、鋼片加熱温度は硫化物系介在物の平均幅を大きくするために高いことが望ましいが、仕上圧延温度は低くする必要がある。
【0030】
なお、特開平1−224103号公報、特開平5−247585号公報、特開平5−331592号公報に記載されているように、従来、仕上圧延温度は800〜1000℃、あるいは800〜900℃が一般的であり、本発明に比して仕上圧延温度が高すぎる。特開平1−224103号公報には、鋼片の加熱温度よりも仕上圧延温度を低下させ、800〜1000℃の範囲で圧延することで、圧延後の微視的組織を細粒で均一にし、降伏比を上昇させることの必要性が記載されている。しかし、実際の降伏比や引張強度は記載されておらず、本発明にかかる降伏比が得られないことが明らかである。
【0031】
熱間圧延後の冷却速度について、本発明では熱間圧延した鋼線材をステルモアラインで冷却する際に、ステルモアラインに実質的に載置した直後から少なくとも500℃までの平均冷却速度V(℃/s)を鋼線材の直径をD(mm)とするとき、下記(1) 式を満足する限界冷却速度Vmin 以上で風冷する。「実質時に載置」とは、風冷設備がある最初の個所での載置を意味する。ステルモアコンベアにて冷却される場合の線材の冷却速度は、厳密には線材コイルの疎部と密部によって異なるが、これらの冷却速度の平均の冷却速度を意味する。
log Vmin =1.13(1−log D)……(1)
【0032】
ステルモアラインでの冷却において、500℃までの平均冷却速度が問題であるのは、500℃未満では相変態、結晶粒の成長が生じ難くなり、被削性への影響が小さくなるので冷却速度の影響を無視できるからである。本発明者は、前記仕上圧延温度の下で、前記冷却速度が熱間圧延線材の組織に影響を与え、引いては被削性に影響を及ぼしているのではないかと考えて、種々の冷却条件を与えてその組織を観察した結果、500℃までの平均冷却速度V(℃/s)を上記(1) 式を満足する限界冷却速度Vmin 以上で風冷することにより降伏比を熱間圧延線材で0.68以上に、あるいはさらに伸線した伸線材で0.96以上確保できることを知見した。これは、上記のように冷却速度を速めることによって、圧延材の組織を均一微細化することができ、このような均一微細組織を得ることで降伏比が上昇するためである。
【0033】
なお、低炭素硫黄系快削鋼線材の被削性に及ぼす熱間圧延、熱間鍛造後の冷却工程の影響について検討された例は少ない。特許2125814号(特公平7−11069号)公報には、縞状パーライトの制御が重要であるとし、圧延・鍛造後の冷却速度は遅い方が望ましいことが記載されているが、冷却速度が定量的に示されていないものの、冷却方法として炉冷あるいはステルモアライン上で線材をカバーして徐冷する例が示されており、かなりの徐冷であることが伺える。例えば、実施例の一つである直径18mmのサンプルにおいても、前記(1) 式による限界値0.51℃/sより遅い、0.4℃/s以下の遅い冷却速度であると予想される。また、特許2740982号公報には、500〜700℃までを徐冷して、初析フェライトを析出させた後、急冷して初析フェライト中に固溶Cを残留させることで被削性を向上させることが示されている。しかし、オーステナイト化する熱処理を室温から再加熱した後でもよく、あるいは熱間加工後でもよい、というだけであり、本発明のように最終圧延温度(仕上圧延温度)は要件とされておらず、開示、示唆されていない。
【0034】
伸線材の降伏比の制御には、上記の熱間圧延での仕上圧延温度、冷却速度のほか、熱間圧延後の冷間伸線加工率も影響する。伸線加工率は通常5〜30%程度である。この範囲を外れると真円性や直線性の確保が困難になり、また機械的不可が過大になる等の問題があり、大幅な変更は難しい。このため、伸線材の素材となる熱間圧延線材を得る段階で、前記降伏比0.68を確保しておくことが必要である。これによって、前記通常の伸線加工率によって0.96以上の降伏比をを確保することができる。
【0035】
【実施例】
[実施例1]
表1に示す種々の組成(mass%)の鋼を実機炉で溶製し、その後、表2に示す種々圧延条件、ステルモアラインに実質的に載置されてから500℃までの平均冷却速度(以下、単に平均冷却速度という。)にて熱間圧延線材を製造した。その後、一部の線材を除いて、さらに伸線加工を行った。この場合の伸線加工率、最終線径も同表に示した。
【0036】
得られた線材に対し、硫化物の平均幅を先に述べて要領で測定した。また、引張試験(JISZ2241)により機械的性質を測定した。また、下記の要領にて被削性試験を行った。図3に示すように、線材Wをその軸心回りに回転自在に自動旋盤に固定し、この線材Wに対してハイス工具(SKH4)Bを垂直に送り込んでフオーミングした後、切削後の線材片のフォーミング部Fの仕上げ面粗さを測定した。また、3000箇切削後、最初に切削した線材片と最後に切削した線材片のフォーミング部Fの寸法を測定し、寸法変化を求めた。また、熱間圧延ままの線材については、スケールを切削あるいはセンターレスグラインデイングなどで除去してから被削性試験を実施した。フォーミングの条件は、切削速度92m/min 、工具送り速度0.03mm/rev 、切り込み1.0mmとした。
【0037】
これらの測定結果を表3に示す。同表において、仕上げ面粗さ42μm 未満、寸法変化20μm 未満を被削性が優良であることの指標とし、これを満足する試料を発明例とした。また、本発明の降伏比の条件のみを満足した試料について、log d(d:伸線材の直径mm)、あるいはlog D(D:熱間圧延線材の直径mm)と硫化物平均幅μm との関係を発明例、比較例との区分したグラフを図4に示す。図4中の破線は平均幅(μm )=2.8*log d(D)の直線である。
【0038】
表3および図4より、圧延材の降伏比が0.68以上の試料では、伸線後の線材の降伏比も0.96以上を達成しており、しかも硫化物の平均幅が2.8log d(D)以上のものは、表面粗さおよび寸法変化とも良好であり、被削性に優れることがわかる。試料No. 12の鋼種Dは、強脱酸元素であるSiやAlが多く酸素量が少ないので、適切な硫化物が得られず、平均幅も基準より小さい。このため、被削性も低下している。
【0039】
【表1】

Figure 0003854878
【0040】
【表2】
Figure 0003854878
【0041】
【表3】
Figure 0003854878
【0042】
[実施例2]
表1に記載の鋼種Aを使用し、ビレット加熱温度1000〜1025℃とし、仕上圧延温度750〜800℃とし、圧延後、ステルモアラインでの平均冷却速度を表4に示すように種々変化させて、線径9.5mmの熱間圧延線材を得た。その後、伸線加工率を29%として伸線し、線径8.0mmの伸線材を得た。
【0043】
得られた線材について、実施例1と同様、硫化物の平均幅を測定したところ2.7〜3.1μm であり、log d(d=8.0)=0.90より大きい値であった。また、機械的性質および被削性を調べた。これらの結果を表4に併せて示す。log Vmin =1.13(1−log D)で求められる限界冷却速度は1.06℃/sである。
【0044】
表4より、熱間圧延後のステルモアライン上での平均冷却速度を限界冷却速度以上で冷却することにより、所定の降伏比が得られ、良好な被削性が得られることが確認された。
【0045】
【表4】
Figure 0003854878
【0046】
【発明の効果】
本発明の低炭素硫黄快削鋼線材は、所定成分、所定降伏比の下で、硫化物系介在物の平均幅を線材の直径d(伸線材)、D(熱間圧延線材、熱間鍛造線材)とするとき2.8*log d(D)以上とするので、Pbなどの特殊元素を用いない場合であっても、良好な被削性を得ることができる。また、本発明の製造方法によれば、本発明にかかる鋼線材を工業的に容易に製造することができ、生産性に優れる。
【図面の簡単な説明】
【図1】硫化物の形態を規定する寸法の測定要領説明図である。
【図2】硫化物の観察領域を示す線材の横断面図である。
【図3】実施例における被削性試験の切削要領説明図である。
【図4】実施例における硫化物の平均幅および2.8*log d(D)と、発明例・比較例(被削性の優劣)との関係を示すグラフである。[0001]
[Technical field to which the invention belongs]
The present invention relates to a low-carbon sulfur-based free-cutting steel wire excellent in machinability and a method for producing the same even when a special element such as Pb is not contained. In addition, the steel wire described here includes not only a hot-rolled or hot-forged steel wire but also a steel wire that has been drawn (cold drawing) thereafter.
[0002]
[Prior art]
Low-carbon sulfur free-cutting steel with a large amount of S added is used for screws, nipples, etc., which are parts that do not place much emphasis on mechanical properties, and are mainly small parts manufactured by cutting. Further, as a free-cutting steel having excellent machinability, a composite free-cutting steel containing Pb in addition to S is also widely used. However, since Pb is a harmful substance that is harmful to health, it is desired to reduce the amount of Pb used in free-cutting steel. Te may also be used, but it is toxic and at the same time hinders hot workability, so a reduction is required.
[0003]
Many studies have been made to improve the machinability of low-carbon sulfur-based free-cutting steel. For example, as described in Japanese Patent No. 1605766, Japanese Patent No. 19007099, Japanese Patent No. 2129869, Japanese Patent Laid-Open No. 9-157771, and Japanese Patent Laid-Open No. 11-293391, most of them are the number and size of sulfide inclusions. This relates to the control of the form. Further, for example, as described in Japanese Patent No. 1605766, Japanese Patent No. 19007099 (Japanese Patent Publication No. 4-54736), Japanese Patent No. 2922105, Japanese Patent Laid-Open No. 9-71838, Japanese Patent Laid-Open No. 10-158781, There are many that define oxide inclusions.
On the other hand, the structure and characteristics (matrix characteristics) other than inclusions also have an important influence on machinability, but there are few techniques that focus on these, for example, Japanese Patent No. 2125814 (Japanese Patent Publication No. 1-11069) A striped pearlite structure continuous in the rolling direction is specified in Japanese Patent No. 2740982 to define the amount of solid solution C in pro-eutectoid ferrite.
[0004]
[Problems to be solved by the invention]
Although the technique disclosed in the above publication is important, sufficient machinability has not been obtained yet. For example, in the technique disclosed in Japanese Patent No. 19007099, for inclusions in steel, MnS having a major axis of 5 μm or more, a minor axis of 2 μm or more, and a major axis / minor axis ratio of 5 or less is 50% or more of all MnS inclusions. The content of Al 2 O 3 in the oxide inclusions is defined as 15% or less on average, but it is essential that the total amount of Pb, Bi and Te be 0.2% or more. Without the addition of these elements, sufficient machinability cannot be obtained.
The present invention has been made in view of such a problem, and even when a special element such as toxic Pb, Bi, or Te is not added, the low carbon sulfur-based free cutting steel wire having excellent machinability. And it aims at providing the suitable manufacturing method.
[0005]
[Means for Solving the Problems]
The amount and distribution of sulfide inclusions affect machinability, but these are almost determined by the steel components and melting / casting conditions. The present invention does not control the amount and distribution of sulfide inclusions, but in the form of sulfide inclusions, the width of the inclusions that particularly affect machinability is expanded at the hot rolling stage. In this way, the present invention has succeeded in obtaining excellent machinability by maintaining it larger than a predetermined size according to the wire diameter. That is, the low carbon sulfur based free cutting steel wire of the present invention is mass%,
C: 0.02 to 0.15%,
Mn: 0.50 to 2.0%,
P: 0.05-0.20%
S: 0.15-0.50%,
Si: 0.01% or less,
Al: 0.01% or less,
N: 0.002 to 0.02%,
O: 0.01 to 0.03%
Or further containing at least one of Bi: 0.3% or less, Pb: 0.4% or less, Te: 0.1% or less, B: 0.01% or less, the balance Fe and inevitable impurities Is a steel wire drawn after hot rolling or hot forging, and when the diameter of the steel wire is d (mm), in the region from the outer peripheral surface to a depth of 0.1 mm to d / 8 The sulfide inclusions have an average width (μm) of 2.8 * logd or more, and the yield ratio of the wire is 0.96 or more. The “*” means a multiplication symbol, and “log” means a common logarithm. The same applies below.
[0006]
Another sulfur low-carbon free-cutting steel wire rod according to the present invention is a steel wire rod having the above-described components and hot-rolled or hot-forged, and the diameter of the steel wire rod is D (mm). The average width (μm) of sulfide inclusions in the region from the outer surface to a depth of 1 μm to D / 8 is 2.8 * logD or more, and the yield ratio of the wire is 0.68 or more It is.
[0007]
Moreover, the manufacturing method of this invention heats the steel slab which has the said component to 1000 degreeC or more, performs hot rolling by making a finishing rolling temperature into 700 degreeC or more and less than 800 degreeC in surface temperature, and hot-rolled steel wire rod When the average cooling rate V (° C./s) from immediately after being placed on the stealmore line to at least 500 ° C. is D (mm), 1) A method for producing a low-carbon sulfur-based free-cutting steel wire that is air-cooled at a critical cooling rate Vmin or higher that satisfies the equation (1) In addition, another production method of the present invention is a low carbon sulfur system in which a steel wire having a yield ratio of 0.96 or more is obtained by further drawing after obtaining a hot-rolled steel wire by the production method. This is a method of manufacturing a free-cutting steel wire.
log Vmin = 1.13 (1-log D)
[0008]
DETAILED DESCRIPTION OF THE INVENTION
First, the composition (unit mass%) of the low-carbon sulfur-based free-cutting steel wire of the present invention will be described.
C: 0.02-0.15%
C is added to secure the strength of the steel, but if it is less than 0.02%, the strength is insufficient, and at the same time, the toughness and ductility become excessive and the machinability also decreases. On the other hand, if it exceeds 0.15%, the strength becomes excessively high, and the machinability deteriorates. For this reason, the lower limit of C is 0.02%, preferably 0.04%, and the upper limit is 0.15%, preferably 0.12%.
[0009]
Mn: 0.50 to 2.0%
Mn combines with S in the steel to form sulfides and improves machinability. Moreover, the red hot embrittlement by FeS production | generation is suppressed. In order to exert these effects, the lower limit is made 0.50%, preferably 0.75%. However, even if added in excess of 2.0%, the strength increases excessively, and the machinability decreases on the contrary, so the upper limit is made 2.0%, preferably 1.8%.
[0010]
P: 0.05-0.20%
P has an effect of improving machinability, and addition of 0.05% or more is effective. On the other hand, even if added over 0.20%, the effect is saturated, so 0.20% is made the upper limit.
[0011]
S: 0.15-0.50%
S is an element that improves the machinability by forming a sulfide, and if it is less than 0.15%, such an effect is insufficient. On the other hand, if added over 0.50%, the hot workability may be degraded. Thus, the lower limit is 0.15%, preferably 0.25%, while the upper limit is 0.50%, preferably 0.45%.
[0012]
Si: 0.01% or less, Al: 0.01% or less Si and Al may be used as deoxidizers, but if both are added in excess of 0.01%, a hard oxide is formed and the material is cut. Sexually begins to decline. For this reason, each is stopped to 0.01% or less.
[0013]
N: 0.002 to 0.02%
N has an effect of improving machinability, particularly surface roughness. If it is less than 0.002%, such an effect is insufficient. On the other hand, adding over 0.02% not only saturates the effect, but also reduces hot workability. For this reason, the lower limit is made 0.002% and the upper limit is made 0.02%.
[0014]
O: 0.01 to 0.03%
O is an element that affects the size and form of MnS and improves the machinability. For this purpose, 0.01% or more is necessary, but if added over 0.03%, hard oxides increase and machinability deteriorates. For this reason, the upper limit is made 0.03%.
[0015]
In addition to the above components, the steel wire rod of the present invention is composed of the remaining Fe and unavoidable impurities. In addition, one or more of Bi, Pb, Te, or further B can be added within the following range.
[0016]
Bi: 0.3% or less Bi is an element that improves machinability by the same effect as Pb. However, even if added over 0.3%, the effect is saturated, so 0.3% or less.
[0017]
Pb: 0.4% or less Pb is an element that should be avoided because it is toxic, but may be added because it has a significant effect on improving machinability. However, even if added over 0.4%, the effect is saturated, so it is limited to 0.4% or less.
[0018]
Te: 0.1% or less Te may be added because the machinability is remarkably improved due to the effect of suppressing expansion during hot working of MnS. However, even if it exceeds 0.1%, the effect is saturated, so the upper limit is made 0.1%.
[0019]
B: 0.01% or less B is an element that improves hot workability and may be added. However, if it exceeds 0.01%, the hot workability is conversely reduced, so it is limited to 0.01% or less.
[0020]
Next, the form of the sulfide inclusions in the steel wire will be described in detail.
The amount and distribution of sulfide inclusions such as MnS (hereinafter simply referred to as sulfide) is almost determined by the composition and melting / casting conditions, but the form is determined by the hot rolling and hot forging processes after casting. Change. The more spherical the sulfide is, the harder it is to stretch during rolling and forging, and a larger width form after processing. The width of the sulfide has a great influence on the machinability even in a hot-rolled, hot-forged steel wire or a wire drawn thereafter, and in general, the larger the width, the better the machinability. . However, the required average width differs depending on the wire diameter. For example, when sulfides having the same volume, number, and form (width) are present in the wire, the smaller the wire diameter, the better the machinability, and the larger the wire diameter, the lower the machinability. If attention is paid to the form, the machinability can be improved by using a sulfide having a sufficient width even if the wire diameter is large.
[0021]
There are various methods for defining the form of sulfide. In the present invention, the average width is defined. As shown in FIG. 1, the average width means that the maximum length of each sulfide is the major axis L, and the largest width in the direction perpendicular to the major axis L is the maximum width W. The average of the maximum width W of all sulfides. The reason why the average width is used as a form index is that the measurement reliability and reproducibility are the highest. On the other hand, the major axis of the sulfide and the area of the inclusion have a large error due to measurement, and it is difficult to obtain reliable data.
[0022]
The present inventor investigated the relationship between the average width of sulfide and the wire diameter (diameter) of the steel wire on the machinability. As is apparent from the examples described later, the required average width is It was found that when the diameter was d (drawn wire) or D (hot rolled wire, hot forged wire), it was 2.8 * log d or more or 2.8 * log D or more. If the maximum width of the sulfide inclusions is less than this, the machinability, particularly the surface roughness, is lowered.
[0023]
In addition to compounds mainly composed of S typified by MnS, sulfides include sulfides in which oxygen is dissolved or complexed with oxides. This is because these are also effective in improving machinability. The maximum width of each sulfide is obtained by image analysis of an optical microscope observation result at a magnification of 100 times, but the observation position is important, and the following regions are observed. As shown in FIG. 2, the most important part for the machinability is a region from the position of a depth of 0.1 mm to the depth of d / 8 or D / 8 from the outer peripheral surface, and this region is observed. At the time of observation, the area of the measurement region is 6 mm 2 or more on a plane parallel to the rolling / forging direction. Moreover, it is only necessary to observe with polishing, and etching is not necessary. Exclude inclusions with a major axis of less than 1 μm, and measure and analyze the maximum width. This is because inclusions having a major axis of less than 1 μm have a large measurement error and a small effect on machinability.
[0024]
In addition, in Japanese Patent No. 19007099 (Japanese Patent Publication No. 4-54736), it is prescribed that the minor axis is 2 μm or more as one of the defining elements of sulfide, but the same provision is used regardless of the diameter of the wire. Then, when the wire diameter is large, the machinability improvement effect cannot be expected unless the maximum width of the sulfide is increased. In addition, the publication is unquestioned about the yield ratio described later, which is an important requirement in the present invention, and is different from the present invention.
[0025]
In order to control the maximum width of the sulfide, it is necessary to optimize the slab heating temperature at the time of hot rolling and hot forging, and it is necessary to set at least 1000 ° C. or higher, preferably 1040 ° C. or higher. It is good to do. If it is less than 1000 degreeC, it will become difficult to suppress extension of sulfide in subsequent rolling and forging, and to enlarge the average width of sulfide. The heating temperature of the billet is measured when the billet leaves the furnace. In addition to controlling the billet heating temperature, measures such as slowing the cooling rate during solidification, increasing the amount of oxygen in the molten steel, and reducing strong deoxidizing elements such as Al and Si are simultaneously performed. It can also be expected to increase the average width of the sulfide. However, if the amount of oxygen in the molten steel is too large, hard oxides that adversely affect the machinability are generated, so care must be taken.
[0026]
In order to improve machinability, it has been found that it is important to set not only the average width of sulfides but also the yield ratio (yield strength / tensile strength) YR to a specific value or more.
That is, in the drawn steel wire rod, YR needs to be 0.96 or more. If it is less than 0.96, not only the surface roughness but also the dimensional change in the machinability becomes large, and the tool life defined by the dimensional change is reduced. Desirably, it is 0.97 or more. By increasing the yield ratio, the shear deformation energy in the shear region where chips are generated decreases, and at the same time, shearing of the chips occurs stably. As a result, cutting resistance is reduced, tool wear is reduced, and dimensional change is also improved. In addition to the above, the surface roughness is improved by stabilizing the cutting. In addition, YR in the low carbon sulfur free-cutting steel equivalent to the present invention (SAE, AISI standard) is usually about 0.77 to 0.84 (JSSC, VOL.8, NO.75, 1972, p55, Table 3-1).
[0027]
On the other hand, YR is set to 0.68 or more in the wire rod after hot rolling before hot drawing and hot forging. Desirably, it should be 0.70 or more. In order to satisfy the machinability when cutting after rolling / forging, it is necessary to make it 0.66 or more. Even when wire drawing is performed after hot working, unless this characteristic is satisfied, it is difficult to set the YR of the wire after drawing to 0.96 or more under normal cold drawing conditions. In steels with low tensile strength, the yield ratio tends to be low. Therefore, in order to achieve the above YR value, it is preferable to set it to 440 MPa or more from the viewpoint of tensile strength. In addition, YR of the steel material as hot-rolled in low carbon sulfur free-cutting steel (SAE, AISI standard) equivalent to the present invention is usually about 0.50 to 0.60 (Table 3-1 in the above-mentioned document). ).
[0028]
In order to control the yield ratio of the wire rod by hot rolling, it is important to control the finish rolling conditions and the cooling rate after rolling. In addition, in the case of hot forging, it is important to control the finish forging conditions and the cooling rate after forging. However, these conditions are the same as those in the case of hot rolling, so the case of hot rolling will be described in detail below. .
[0029]
In the present invention, the finish rolling temperature is 700 ° C. or more and less than 800 ° C. as the surface temperature. If it is less than 700 degreeC, it will roll in a two-phase area | region, and the structure | tissue after rolling will become non-uniform | heterogenous, As a result, mechanical properties, such as a yield ratio, will deteriorate. On the other hand, in rolling at 800 ° C. or higher, a fine structure cannot be obtained, and a predetermined yield ratio cannot be obtained. In order to constantly obtain a yield ratio of 0.68 or more with a wire rod obtained by hot rolling and hot forging and 0.96 or more with a wire rod drawn by drawing as in the present invention, the structure is further increased as compared with the conventional level. Miniaturization is indispensable, and for that purpose, it is necessary to perform the finish rolling temperature at 700 ° C. or more and less than 800 ° C. on the surface of the steel material as described above. Under such conditions, the tensile strength of the hot rolled material and the hot forged material can be set to 440 MPa or more. Conventionally, the finish rolling temperature and the slab heating temperature are often linked, but in order to obtain the average width and yield ratio of the sulfide according to the present invention, it is necessary to control both independently. That is, the steel slab heating temperature is preferably high in order to increase the average width of the sulfide inclusions, but the finish rolling temperature needs to be low.
[0030]
In addition, as described in JP-A-1-224103, JP-A-5-247585, and JP-A-5-333192, the finish rolling temperature has conventionally been 800 to 1000 ° C, or 800 to 900 ° C. Generally, the finish rolling temperature is too high as compared with the present invention. In JP-A-1-224103, the finish rolling temperature is lowered than the heating temperature of the steel slab, and the rolling is performed in the range of 800 to 1000 ° C., thereby making the microscopic structure after rolling uniform with fine grains, It describes the need to increase the yield ratio. However, the actual yield ratio and tensile strength are not described, and it is clear that the yield ratio according to the present invention cannot be obtained.
[0031]
Regarding the cooling rate after hot rolling, in the present invention, when the hot-rolled steel wire rod is cooled by the stealmore line, the average cooling rate V (from 500 to at least 500 ° C. immediately after the steel wire material is substantially placed on the stealmore line. When the diameter of the steel wire rod is D (mm), the air cooling is performed at a critical cooling rate Vmin or more that satisfies the following formula (1). “Mounting in real time” means mounting at the first location where the air-cooling facility is located. Strictly speaking, the cooling rate of the wire rod when cooled by the stealth conveyor is different depending on the sparse part and the dense part of the wire coil coil, but means an average cooling rate of these cooling rates.
log Vmin = 1.13 (1-log D) (1)
[0032]
In cooling in the stealth line, the average cooling rate up to 500 ° C is a problem. Below 500 ° C, phase transformation and crystal grain growth are difficult to occur, and the effect on machinability is reduced. It is because the influence of can be ignored. The present inventor considered that the cooling rate has an influence on the structure of the hot-rolled wire rod, and in turn has an influence on the machinability under the finishing rolling temperature, and thus various cooling operations. As a result of observing the structure under conditions, the yield ratio was hot-rolled by air-cooling the average cooling rate V (° C / s) up to 500 ° C at or above the critical cooling rate Vmin that satisfies the above equation (1). It has been found that 0.68 or more can be secured with a wire, or 0.96 or more can be secured with a further drawn wire. This is because the structure of the rolled material can be uniformly refined by increasing the cooling rate as described above, and the yield ratio is increased by obtaining such a uniform microstructure.
[0033]
In addition, there are few examples examined about the influence of the cooling process after hot rolling and hot forging on the machinability of the low carbon sulfur free cutting steel wire. Japanese Patent No. 2125814 (Japanese Patent Publication No. 7-11069) describes that it is important to control striped pearlite, and it is desirable that the cooling rate after rolling and forging is slower, but the cooling rate is fixed. Although not specifically shown, as an example of cooling, an example in which the wire is covered and gradually cooled on a steermore line is shown, and it can be seen that the cooling is quite slow. For example, a sample having a diameter of 18 mm, which is one of the examples, is expected to have a slow cooling rate of 0.41 ° C./s or less, which is slower than the limit value of 0.51 ° C./s according to the equation (1). . In addition, in Japanese Patent No. 2740982, machinability is improved by gradually cooling to 500 to 700 ° C. to precipitate pro-eutectoid ferrite and then rapidly cooling to leave solid solution C in the pro-eutectoid ferrite. Has been shown to let However, the heat treatment to austenite may be after reheating from room temperature, or just after hot working, and the final rolling temperature (finish rolling temperature) is not a requirement as in the present invention, No disclosure or suggestion.
[0034]
In addition to the finish rolling temperature and cooling rate in the above hot rolling, the cold drawing ratio after hot rolling affects the yield ratio of the wire drawing material. The drawing rate is usually about 5 to 30%. Outside this range, it becomes difficult to ensure roundness and linearity, and there are problems such as excessive mechanical impossibility, and it is difficult to make significant changes. For this reason, it is necessary to ensure the yield ratio of 0.68 at the stage of obtaining a hot-rolled wire that is a material for the wire drawing material. Thereby, a yield ratio of 0.96 or more can be ensured by the normal wire drawing rate.
[0035]
【Example】
[Example 1]
Average cooling rate up to 500 ° C. after melting steels with various compositions (mass%) shown in Table 1 in an actual furnace and then being placed on the various rolling conditions and Stealmore lines shown in Table 2 (Hereinafter, simply referred to as an average cooling rate), a hot-rolled wire was produced. Thereafter, a part of the wire was removed and further wire drawing was performed. The drawing rate and final wire diameter in this case are also shown in the same table.
[0036]
For the obtained wire, the average width of the sulfide was measured in the manner described above. Further, mechanical properties were measured by a tensile test (JISZ2241). Moreover, the machinability test was done in the following manner. As shown in FIG. 3, a wire rod W is fixed to an automatic lathe so as to be rotatable about its axis, and a high speed tool (SKH4) B is fed perpendicularly to the wire rod W to form it, and then a wire rod piece after cutting The finished surface roughness of the forming part F was measured. Moreover, after 3000 pieces were cut , the dimension of the forming part F of the wire piece cut first and the wire piece cut last was measured, and the dimensional change was calculated | required. In addition, the machinability test was carried out after removing the scale by cutting or centerless grinding with respect to the hot-rolled wire. The forming conditions were a cutting speed of 92 m / min, a tool feed speed of 0.03 mm / rev, and a cutting depth of 1.0 mm.
[0037]
These measurement results are shown in Table 3. In the table, a finished surface roughness of less than 42 μm and a dimensional change of less than 20 μm were used as indicators of excellent machinability, and samples satisfying this were taken as invention examples. Further, for a sample that satisfies only the yield ratio condition of the present invention, log d (d: diameter mm of the drawn wire) or log D (D: diameter mm of the hot rolled wire) and the average sulfide width μm A graph in which the relationship is divided between the invention example and the comparative example is shown in FIG. The broken line in FIG. 4 is a straight line having an average width (μm) = 2.8 * log d (D).
[0038]
From Table 3 and FIG. 4, in the sample with the yield ratio of the rolled material of 0.68 or more, the yield ratio of the wire after the drawing has also achieved 0.96 or more, and the average width of the sulfide is 2.8 log. Those having d (D) or more have good surface roughness and dimensional change, and are excellent in machinability. Steel type D of sample No. 12 has a large amount of Si and Al, which are strong deoxidizing elements, and a small amount of oxygen. Therefore, an appropriate sulfide cannot be obtained, and the average width is smaller than the standard. For this reason, machinability is also reduced.
[0039]
[Table 1]
Figure 0003854878
[0040]
[Table 2]
Figure 0003854878
[0041]
[Table 3]
Figure 0003854878
[0042]
[Example 2]
Steel type A listed in Table 1 was used, billet heating temperature was 1000 to 1025 ° C., finishing rolling temperature was 750 to 800 ° C., and after rolling, the average cooling rate in the Stemmore line was varied as shown in Table 4. Thus, a hot rolled wire rod having a wire diameter of 9.5 mm was obtained. Thereafter, the wire was drawn at a wire drawing rate of 29% to obtain a wire drawing material having a wire diameter of 8.0 mm.
[0043]
About the obtained wire, the average width of the sulfide was measured in the same manner as in Example 1, and was 2.7 to 3.1 μm, which was larger than log d (d = 8.0) = 0.90. . In addition, mechanical properties and machinability were investigated. These results are also shown in Table 4. The critical cooling rate obtained by log Vmin = 1.13 (1-log D) is 1.06 ° C./s.
[0044]
From Table 4, it was confirmed that a predetermined yield ratio was obtained and good machinability was obtained by cooling the average cooling rate on the steermore line after hot rolling at or above the critical cooling rate. .
[0045]
[Table 4]
Figure 0003854878
[0046]
【The invention's effect】
The low-carbon sulfur free-cutting steel wire of the present invention has a predetermined component and a predetermined yield ratio, and the average width of sulfide inclusions is the wire diameter d (drawn wire), D (hot rolled wire, hot forged) Since it is 2.8 * log d (D) or more when the wire is used, good machinability can be obtained even when a special element such as Pb is not used. Moreover, according to the manufacturing method of this invention, the steel wire concerning this invention can be manufactured easily industrially, and it is excellent in productivity.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a measuring procedure of dimensions that define the form of sulfide.
FIG. 2 is a cross-sectional view of a wire showing an observation region of sulfide.
FIG. 3 is an explanatory diagram of a cutting procedure of a machinability test in an example.
FIG. 4 is a graph showing the relationship between the average width of sulfide and 2.8 * log d (D) in Examples and Invention Examples / Comparative Examples (Machinability).

Claims (5)

mass%で、
C:0.02〜0.15%、
Mn:0.50〜2.0%、
P:0.05〜0.20%、
S:0.15〜0.50%、
Si:0.01%以下、
Al:0.01%以下、
N:0.002〜0.02%、
O:0.01〜0.03%
を含み、残部Feおよび不可避的不純物からなる、熱間圧延あるいは熱間鍛造後に伸線された鋼線材であって、
鋼線材の直径をd(mm)、「*」を乗算記号、「log」を常用対数とするとき、外周面から深さ0.1mmよりd/8までの領域での硫化物系介在物の平均幅(μm )が2.8*logd以上であり、線材の降伏比が0.96以上である、低炭素硫黄系快削鋼線材。
mass%
C: 0.02 to 0.15%,
Mn: 0.50 to 2.0%,
P: 0.05-0.20%
S: 0.15-0.50%,
Si: 0.01% or less,
Al: 0.01% or less,
N: 0.002 to 0.02%,
O: 0.01 to 0.03%
A steel wire rod that is drawn after hot rolling or hot forging, comprising the balance Fe and inevitable impurities,
When the diameter of the steel wire is d (mm) , “*” is a multiplication symbol, and “log” is a common logarithm , the sulfide inclusions in the region from the outer surface to a depth of 0.1 mm to d / 8 A low-carbon sulfur-based free-cutting steel wire having an average width (μm) of 2.8 * logd or more and a yield ratio of the wire of 0.96 or more.
mass%で、
C:0.02〜0.15%、
Mn:0.50〜2.0%、
P:0.05〜0.20%、
S:0.15〜0.50%、
Si:0.01%以下、
Al:0.01%以下、
N:0.002〜0.02%、
O:0.01〜0.03%
を含み、残部Feおよび不可避的不純物からなる、熱間圧延あるいは熱間鍛造された鋼線材であって、
鋼線材の直径をD(mm)、「*」を乗算記号、「log」を常用対数とするとき、外周面から深さ1μm よりD/8までの領域での硫化物系介在物の平均幅(μm )が2.8*logD以上であり、線材の降伏比が0.68以上である、低炭素硫黄系快削鋼線材。
mass%
C: 0.02 to 0.15%,
Mn: 0.50 to 2.0%,
P: 0.05-0.20%
S: 0.15-0.50%,
Si: 0.01% or less,
Al: 0.01% or less,
N: 0.002 to 0.02%,
O: 0.01 to 0.03%
A hot-rolled or hot-forged steel wire consisting of the balance Fe and inevitable impurities,
The average width of sulfide inclusions in the region from the depth of 1 μm to D / 8 when the diameter of the steel wire is D (mm) , “*” is a multiplication symbol, and “log” is a common logarithm. A low-carbon sulfur-based free-cutting steel wire having a (μm) of 2.8 * log D or more and a yield ratio of the wire of 0.68 or more.
鋼成分として、さらに
Bi:0.3%以下、Pb:0.4%以下、Te:0.1%以下、B:0.01%以下の少なくとも1種を含有する請求項1または請求項2に記載した低炭素硫黄系快削鋼線材。
The steel component further contains at least one of Bi: 0.3% or less, Pb: 0.4% or less, Te: 0.1% or less, and B: 0.01% or less. The low-carbon sulfur-based free-cutting steel wire described in 1.
請求項2あるいは請求項3に記載した成分を有する鋼片を1000℃以上に加熱し、仕上圧延温度を表面温度で700℃以上、800℃未満として熱間圧延を行い、熱間圧延した鋼線材をステルモアラインで冷却中に、ステルモアラインに実質的に載置直後から少なくとも500℃までの平均冷却速度V(℃/s)を鋼線材の直径をD(mm)、「log」を常用対数とするとき、下記(1) 式を満足する限界冷却速度Vmin 以上で風冷する低炭素硫黄系快削鋼線材の製造方法。
log Vmin =1.13(1−log D)
A steel wire rod obtained by heating a steel slab having the component described in claim 2 or 3 to 1000 ° C or higher, performing hot rolling at a surface rolling temperature of 700 ° C or higher and lower than 800 ° C, and hot rolling. During cooling with the Stealmore line, the average cooling rate V (° C / s) from immediately after mounting on the Stealmore line to at least 500 ° C is used, the diameter of the steel wire is D (mm) , and "log" is commonly used A method for producing a low-carbon sulfur-based free-cutting steel wire that is air-cooled at a critical cooling rate Vmin or higher that satisfies the following formula (1) when logarithmic .
log Vmin = 1.13 (1-log D)
請求項4に記載された製造方法により熱間圧延した鋼線材を得た後、さらに伸線加工を施して降伏比が0.96以上の鋼線材を製造する低炭素硫黄系快削鋼線材の製造方法。  A low carbon sulfur free-cutting steel wire for producing a steel wire having a yield ratio of 0.96 or more by further drawing after obtaining a hot-rolled steel wire by the production method according to claim 4. Production method.
JP2002061332A 2002-03-07 2002-03-07 Low carbon sulfur-based free-cutting steel wire and method for producing the same Expired - Fee Related JP3854878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061332A JP3854878B2 (en) 2002-03-07 2002-03-07 Low carbon sulfur-based free-cutting steel wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061332A JP3854878B2 (en) 2002-03-07 2002-03-07 Low carbon sulfur-based free-cutting steel wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003253390A JP2003253390A (en) 2003-09-10
JP3854878B2 true JP3854878B2 (en) 2006-12-06

Family

ID=28670285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061332A Expired - Fee Related JP3854878B2 (en) 2002-03-07 2002-03-07 Low carbon sulfur-based free-cutting steel wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP3854878B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447273C (en) * 2003-12-01 2008-12-31 株式会社神户制钢所 Low carbon composite free-cutting steel product excellent in roughness of finished surface and method for production thereof
JP4441360B2 (en) * 2003-12-01 2010-03-31 株式会社神戸製鋼所 Low carbon composite free-cutting steel with excellent finish surface roughness
JP4507865B2 (en) * 2004-12-06 2010-07-21 住友金属工業株式会社 Low carbon free cutting steel
JP2006200032A (en) * 2005-01-24 2006-08-03 Kobe Steel Ltd Low-carbon sulfur free-cutting steel
JP4041511B2 (en) 2005-10-17 2008-01-30 株式会社神戸製鋼所 Low-carbon sulfur free-cutting steel with excellent machinability
JP5319169B2 (en) * 2008-06-10 2013-10-16 秋山精鋼株式会社 Manufacturing method of steel material and manufacturing method of steel parts
KR101281284B1 (en) 2010-12-22 2013-07-03 주식회사 포스코 Low-carbon lead-free free-cutting steel having excellent machinability and hot workability and method for manufacturing casting strip for the same
JP6504330B2 (en) * 2017-02-28 2019-04-24 Jfeスチール株式会社 Wire for cutting
CN111441004A (en) * 2020-05-19 2020-07-24 首钢贵阳特殊钢有限责任公司 Sulfur-lead-bismuth-tellurium composite series free-cutting steel
CN112404126B (en) * 2020-10-29 2022-04-08 中天钢铁集团有限公司 Controlled rolling and cooling method for improving sulfide form of free-cutting steel wire rod

Also Published As

Publication number Publication date
JP2003253390A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
CN102959115B (en) Steel wire material and process for producing same
EP3305931B1 (en) Steel sheet and manufacturing method therefor
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP2005206853A (en) High carbon steel wire rod having excellent wire drawability, and production method therefor
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
JP2007063589A (en) Steel bar or wire rod
JP3854878B2 (en) Low carbon sulfur-based free-cutting steel wire and method for producing the same
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP6828592B2 (en) Hot-rolled wire rod for wire drawing
WO2018117157A1 (en) Wire rod
WO2016158343A1 (en) Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
WO2020230880A1 (en) Steel wire and hot-rolled wire material
JP3737323B2 (en) Steel wire rod and bar steel excellent in cold forgeability after spheronization and manufacturing method thereof
EP3770291B1 (en) Steel
JP6519012B2 (en) Low carbon steel sheet excellent in cold formability and toughness after heat treatment and manufacturing method
CN109963960B (en) Wire rod and method for producing same
JP7226083B2 (en) wire and steel wire
KR20180117129A (en) Rolled wire rod
WO2017038436A1 (en) Steel wire for mechanical structure parts
JP2003171737A (en) Rolled wire rod for bearing
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP4180839B2 (en) Manufacturing method of medium carbon steel high strength steel wire
JP7274062B1 (en) High strength stainless steel wire and spring
EP4357477A1 (en) Wire rod having excellent drawability, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Ref document number: 3854878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees