JPS6149270B2 - - Google Patents

Info

Publication number
JPS6149270B2
JPS6149270B2 JP52067026A JP6702677A JPS6149270B2 JP S6149270 B2 JPS6149270 B2 JP S6149270B2 JP 52067026 A JP52067026 A JP 52067026A JP 6702677 A JP6702677 A JP 6702677A JP S6149270 B2 JPS6149270 B2 JP S6149270B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
pressure
density
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52067026A
Other languages
Japanese (ja)
Other versions
JPS541313A (en
Inventor
Akira Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6702677A priority Critical patent/JPS541313A/en
Publication of JPS541313A publication Critical patent/JPS541313A/en
Publication of JPS6149270B2 publication Critical patent/JPS6149270B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 窒化硅素焼結体は低い熱膨張率を有するが故に
耐熱衝撃性に優れ、熱電対保護管に一部使用され
又、将来は自動車エンジン部品やタービンエンジ
ン・ブレードにも使用される可能性を秘めてい
る。但し、現状での最大の問題は複雑形状品を高
密度に、しかも安価に製造する事が難しい点にあ
る。例えば焼結助剤を添加しホツトプレス成型す
る方法でも数%のAl2O3、Y2O3、MgO等の添加
を必要とするが、この場合でも気孔率を0.5%以
下にするのは困難であり、又同時に上記配化物の
添加により熱膨張係数が増大し、本来の利点であ
る耐熱衝撃性の良さが損われてしまう欠点があ
る。最近では窒化硅素粉末の原料から見直しが行
われ、微粒で焼結性の良い窒化硅素粉末(例えば
プラズマ法による粉末)を用いる事により、焼結
助剤なしに、又ホツトプレス成型を行わず、所謂
コールドプレス成型で行なつたのち、通常焼結法
によつて焼結を行う製法で緻密な窒化硅素焼結体
を得る試みも成されている。
[Detailed Description of the Invention] Silicon nitride sintered bodies have a low coefficient of thermal expansion and therefore have excellent thermal shock resistance, and are used in some thermocouple protection tubes, and in the future will also be used in automobile engine parts and turbine engine blades. It has the potential to be used. However, the biggest problem at present is that it is difficult to manufacture products with complex shapes at high density and at low cost. For example, the method of adding a sintering aid and hot press molding requires the addition of several percent of Al 2 O 3 , Y 2 O 3 , MgO, etc., but even in this case it is difficult to reduce the porosity to 0.5% or less. At the same time, the thermal expansion coefficient increases due to the addition of the above-mentioned compound, which has the disadvantage that the original advantage of good thermal shock resistance is lost. Recently, the raw materials for silicon nitride powder have been reviewed, and by using fine-grained silicon nitride powder with good sinterability (for example, powder produced by plasma method), it is possible to produce products without sintering aids or hot press molding. Attempts have also been made to obtain a dense silicon nitride sintered body by a manufacturing method in which cold press molding is followed by sintering by a normal sintering method.

この様に窒化硅素の焼結が容易になるにつれ、
同時に要求される事は焼結体の引張破壊強度もし
くは曲げ破壊強度の向上である。これ等の強度が
粒度の平方根の逆数に比例する事はアルミナ焼結
体と同様である事が本発明者によつても確認され
いる。即ち高密度であつても粗大な結晶粒を有す
る窒化硅素焼結体では強度不足の問題を解決出来
ず、微粒且つ高密度の窒化硅素焼結体の開発が今
後重要視されて来ると思われる。本発明は上記目
的に沿う為の製造法を提供する。本発明法の特徴
は予め適当な密度に予備焼成した窒化硅素焼結体
の表面にSiO2被膜を形成させ、その後熱間静圧
成型装置(HIP)内にて緻密化処理を施す点に見
られる。ここで云う適当な密度とは93%以上96%
以下であり、気孔率に換算して7%以下4%以上
に相当する。気率が7%を超えると後に続く酸化
処理により焼結体内部に迄酸化が進行し最終焼結
体の高温強度が(結晶粒界に残存するSiO2膜の
為に)低下する。又4%より少なければ酸化処理
を施さなくともHIP処理により高密度化を行う事
が可能となるが、コールドプレス成型を行つたの
ち、通常焼結法によつて焼結を行つたり、ホツト
プレス法で気孔率を4%より少なくするには1750
℃以上の高温(加圧)焼結体が必要となる為、結
晶粒が著しく成長し粗粒焼結体になつてしまう。
次に上記の予備焼結体の表面を残化せしめ、非通
気質のSiO2被膜を形成し、その後HIP装置内にて
圧密化させる。HIP処理条件は1350℃以上1700℃
以下、圧力は500気圧以上が実用上必要である。
温度が1350℃より低く、圧力が500気圧より低い
条件では圧密化に長時間(>10hr)が必要となる
為実用的でない。処理温度が1700℃を超えると
HIP処理中に粒成長が生じ、粗粒の焼結体しか得
られない。表面に形成させたSiO2被膜は被通気
性の圧力伝達媒体膜として1350℃〜1700℃で適正
な粘度を有する為、HIP装置内の高温高圧ガス
(Ar、N2等の不活性ガス)の圧力を有効に焼結体
に伝達させる事が出来る事が判明した。又、非通
気性SiO2被膜の存在によりN2が窒化硅素焼結体
より解離する事を防止する利点もある。以下、実
施例により本発明の説明を行う。
As the sintering of silicon nitride becomes easier,
What is also required is an improvement in the tensile fracture strength or bending fracture strength of the sintered body. The present inventor has also confirmed that the strength of these materials is proportional to the reciprocal of the square root of the particle size, similar to that of alumina sintered bodies. In other words, even with high density, silicon nitride sintered bodies with coarse grains cannot solve the problem of insufficient strength, and the development of fine-grained, high-density silicon nitride sintered bodies will likely become more important in the future. . The present invention provides a manufacturing method to meet the above objectives. The feature of the present invention method is that a SiO 2 film is formed on the surface of a silicon nitride sintered body that has been prefired to an appropriate density, and then densification treatment is performed in a hot isostatic press (HIP) device. It will be done. The appropriate density here is 93% or more and 96%.
This corresponds to 7% or less and 4% or more in terms of porosity. When the porosity exceeds 7%, oxidation progresses to the inside of the sintered body due to the subsequent oxidation treatment, and the high temperature strength of the final sintered body decreases (due to the SiO 2 film remaining at the grain boundaries). If it is less than 4%, it is possible to increase the density by HIP treatment without oxidation treatment, but after performing cold press molding, sintering is performed by the normal sintering method, or by hot pressing. 1750 to reduce the porosity to less than 4% using the method
Since a high temperature (pressure) sintered body at a temperature of ℃ or higher is required, crystal grains grow significantly and become a coarse grained sintered body.
Next, the surface of the pre-sintered body is left to form a non-porous SiO 2 film, and then it is consolidated in a HIP device. HIP processing conditions are 1350℃ or higher and 1700℃
Below, a pressure of 500 atmospheres or more is practically required.
If the temperature is lower than 1350℃ and the pressure is lower than 500 atmospheres, it is not practical because compaction requires a long time (>10 hours). If the processing temperature exceeds 1700℃
Grain growth occurs during the HIP process, resulting in only coarse-grained sintered bodies. The SiO 2 film formed on the surface has an appropriate viscosity at 1350°C to 1700°C as an air-permeable pressure transmission medium film, so it is suitable for high-temperature and high-pressure gases (inert gases such as Ar and N 2 ) in the HIP equipment. It has been found that pressure can be effectively transmitted to the sintered body. Furthermore, the presence of the non-porous SiO 2 coating has the advantage of preventing N 2 from dissociating from the silicon nitride sintered body. The present invention will be explained below with reference to Examples.

実施例 1 市販β・Si3N4粉末(平均粒径1μ)をホツト
プレス(1700℃×1hr、280Kg/cm2)して気光率7
%の焼結体を得た。この焼結体を1300℃×3hr大
気中にて加熱し表面酸化させた。その後HIP装置
内で1450℃×1hr、2000Kg/cm2の条件でArガスに
より圧密化処理を施した。得られた最終焼結体は
表面が透明なガラス質被膜で蔽われており、ガラ
ス質を取り除いた焼結体の密度は99.5%であり、
平均粒度は2〜3μであつた。抗折強度を測定す
ると室温(25℃)で70Kg/mm2、1200℃で68Kg/mm2
良好な強度特性を示した。
Example 1 Commercially available β・Si 3 N 4 powder (average particle size 1μ) was hot pressed (1700°C x 1hr, 280Kg/cm 2 ) to give an air light rate of 7.
% sintered body was obtained. This sintered body was heated in the atmosphere at 1300°C for 3 hours to oxidize the surface. Thereafter, the material was compacted using Ar gas in a HIP device at 1450°C for 1 hour and 2000Kg/cm 2 . The surface of the obtained final sintered body is covered with a transparent glassy film, and the density of the sintered body after removing the glassy substance is 99.5%.
The average particle size was 2-3 microns. The bending strength was measured to be 70Kg/mm 2 at room temperature (25°C) and 68Kg/mm 2 at 1200°C, showing good strength properties.

実施例 2 プラズマ溶解噴霧により作成したSi3N4粉末
(平均粒径0.3μ)98重量%、Y2O31重量%、
Al2O31重量%にパラフインを加え2t/cm2の圧力で
コールドプレスし、H2気流中1000℃×1hr脱パラ
フインした後、1700℃×1hr、0.2気圧のN2分圧下
にて焼結し、気孔率5%の焼結体を得た。この焼
結体を1200℃×1/2hr、酸素ガス気流中(O2分圧
≒1気圧)にて表面酸化させ、その後1600℃×1/
2hr700気圧でHIP処理を施した。得られた最終焼
結体の表面はガラス質の被膜で蔽われていた。ガ
ラス被膜を弗酸で取り除き、焼結体の密度と抗折
強度を測定すると密度は99.8%、抗折強度は85
Kg/mm2(室温)であつた。なお平均粒径は1.8μと
小さく、この焼結体が従来にない微粒高密度の窒
化硅素焼結体である事が判つた。
Example 2 Si 3 N 4 powder (average particle size 0.3μ) 98% by weight, Y 2 O 3 1% by weight, prepared by plasma dissolution spraying.
Paraffin was added to 1% by weight of Al 2 O 3 and cold pressed at a pressure of 2 t/cm 2 . After deparaffinization in a H 2 stream at 1000°C for 1 hr, it was baked at 1700°C for 1 hr under a partial pressure of N 2 of 0.2 atm. A sintered body with a porosity of 5% was obtained. The surface of this sintered body was oxidized at 1200°C x 1/2 hr in an oxygen gas stream (O 2 partial pressure ≒ 1 atm), and then at 1600°C x 1/2 hr.
HIP treatment was performed at 700 atm for 2 hours. The surface of the final sintered body obtained was covered with a glassy film. When the glass coating was removed with hydrofluoric acid and the density and bending strength of the sintered body were measured, the density was 99.8% and the bending strength was 85.
Kg/mm 2 (room temperature). The average grain size was as small as 1.8μ, and it was found that this sintered body was a silicon nitride sintered body with unprecedented fine grains and high density.

Claims (1)

【特許請求の範囲】[Claims] 1 Si3N4粉末もしくはSi3N4とAl2O3、Y2O3
MgOの1種又は2種以上を含む粉末をコールド
プレスしたのち、通常の常圧焼結するか、または
ホツトプレス法により予備焼成した後、酸化性雰
囲気中にて酸化させ予備焼成体表面SiO2膜で被
覆した状態で熱間静圧型装置内で不活性ガスを圧
力媒体とし、加圧再焼成する事を特徴とする高密
度窒化珪素部品の製造法。
1 Si 3 N 4 powder or Si 3 N 4 and Al 2 O 3 , Y 2 O 3 ,
After cold-pressing the powder containing one or more types of MgO, it is sintered under ordinary pressure or pre-fired by hot pressing, and then oxidized in an oxidizing atmosphere to form a SiO 2 film on the surface of the pre-fired product. 1. A method for producing high-density silicon nitride parts, which is characterized in that the coated silicon nitride parts are re-fired under pressure in a hot isostatic pressure device using an inert gas as a pressure medium.
JP6702677A 1977-06-06 1977-06-06 Method of making highhdensity silicon nitride Granted JPS541313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6702677A JPS541313A (en) 1977-06-06 1977-06-06 Method of making highhdensity silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6702677A JPS541313A (en) 1977-06-06 1977-06-06 Method of making highhdensity silicon nitride

Publications (2)

Publication Number Publication Date
JPS541313A JPS541313A (en) 1979-01-08
JPS6149270B2 true JPS6149270B2 (en) 1986-10-28

Family

ID=13332955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6702677A Granted JPS541313A (en) 1977-06-06 1977-06-06 Method of making highhdensity silicon nitride

Country Status (1)

Country Link
JP (1) JPS541313A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121972A (en) * 1979-03-09 1980-09-19 Ngk Spark Plug Co Airtightened silicon nitride sintered body

Also Published As

Publication number Publication date
JPS541313A (en) 1979-01-08

Similar Documents

Publication Publication Date Title
EP0180230A1 (en) Zircon-cordierite composite ceramic
JP2535768B2 (en) High heat resistant composite material
JPS6149270B2 (en)
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JPS63222075A (en) Manufacture of high density sintered body
JP3793553B2 (en) Black SiO2 corrosion-resistant member and method for producing the same
JPH0812417A (en) Rare earth element silicate sintered compact and its production
US5545362A (en) Production method of sintered silicon nitride
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JP2742619B2 (en) Silicon nitride sintered body
JPH025711B2 (en)
JP2694369B2 (en) Silicon nitride sintered body
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JP2003002760A (en) Method for producing ceramics porous body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH01103961A (en) Aluminum nitride sintered compact and its production
JPH0627029B2 (en) Silicon nitride sintered body and method for producing the same
JP4330218B2 (en) Method for producing bulk Si-C-N ceramic material
JP3111191B2 (en) Silicon nitride molded glass seal glass for HIP seal glass
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPH035370A (en) Raw powder for silicon nitride sintered body, sintered body using the powder and its production
JP2811493B2 (en) Silicon nitride sintered body
JPS60186470A (en) Manufacture of silicon nitride sintered body