JPS6148795B2 - - Google Patents

Info

Publication number
JPS6148795B2
JPS6148795B2 JP55077203A JP7720380A JPS6148795B2 JP S6148795 B2 JPS6148795 B2 JP S6148795B2 JP 55077203 A JP55077203 A JP 55077203A JP 7720380 A JP7720380 A JP 7720380A JP S6148795 B2 JPS6148795 B2 JP S6148795B2
Authority
JP
Japan
Prior art keywords
substrate
diffusion
insulating film
solar cell
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55077203A
Other languages
Japanese (ja)
Other versions
JPS574177A (en
Inventor
Kesao Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7720380A priority Critical patent/JPS574177A/en
Publication of JPS574177A publication Critical patent/JPS574177A/en
Publication of JPS6148795B2 publication Critical patent/JPS6148795B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 本発明は太陽電池の製造方法に係り、特に拡散
源として半導体結晶基板表面に塗布法により形成
したドープドオキサイド膜を用いる熱拡散接合型
太陽電池の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solar cell, and more particularly to a method for manufacturing a thermal diffusion bonded solar cell using a doped oxide film formed by a coating method on the surface of a semiconductor crystal substrate as a diffusion source. be.

従来、p−n接合型太陽電池の製造には半導体
結晶基板とは異なる導電型層を熱拡散法によつて
該基板表面近傍に形成することが最も多く用いら
れている。拡散源として、通常、ガスソースもし
くは固体ソースを用いて形成されたドープドオキ
サイド膜が用いられているが、ガス供給装置の運
転もしくは固体ソースの防湿管理などの繁雑さ及
び被拡散基板の表裏両面に拡散される欠点があつ
た。前記欠点を解決する一方法として、拡散剤を
被拡散基板の表面に塗布し、その結果得られたド
ープドオキサイド膜を用いて、塗布面のみに拡散
層を形成する方法が用いられつつある。しかし、
前記塗布拡散法の場合にも次のような欠点があつ
た。すなわち拡散剤を均一に塗布するためにスピ
ンナーが用いられているがこのため、基板の縁に
塗布液が偏在し塗布面の裏面まで回り込みが生じ
ていた。又、化学エツチングなどによつて基板の
平坦度が悪化した場合にはこのような塗布液の回
り込みは特に著しかつた。前記の方法によつて形
成されたドープドオキサイド膜を用いて熱拡散を
行う結果、拡散層も回り込み、塗布拡散法の特徴
が失われていた。実際には基板の縁をメサエツチ
ングして回り込だ拡散層を除去し、表裏電極の短
絡を防ぐ必要があるという重大な欠点があつた。
Conventionally, in the manufacture of pn junction solar cells, it has been most often used to form a layer of a conductivity type different from that of a semiconductor crystal substrate near the surface of the substrate by thermal diffusion. As a diffusion source, a doped oxide film formed using a gas source or a solid source is usually used, but it is complicated to operate the gas supply equipment or manage moisture proofing of the solid source, and it is difficult to operate both the front and back sides of the substrate to be diffused. There was a shortcoming that spread to As one method for solving the above-mentioned drawbacks, a method is being used in which a diffusion agent is applied to the surface of a substrate to be diffused, and the resulting doped oxide film is used to form a diffusion layer only on the applied surface. but,
The coating-diffusion method also had the following drawbacks. That is, a spinner is used to uniformly apply the diffusing agent, but because of this, the coating liquid is unevenly distributed around the edges of the substrate and flows around to the back side of the coated surface. Further, when the flatness of the substrate is deteriorated due to chemical etching or the like, such circulation of the coating liquid becomes particularly significant. As a result of performing thermal diffusion using the doped oxide film formed by the above method, the diffusion layer also wraps around, and the characteristics of the coating diffusion method were lost. In practice, there was a serious drawback in that it was necessary to mesa-etch the edge of the substrate to remove the diffused layer that had wrapped around it to prevent short circuits between the front and back electrodes.

本発明の目的は上記従来の欠点を解決せしめか
つ、工程の簡略化を可能とする太陽電池の製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a solar cell, which solves the above-mentioned conventional drawbacks and allows the process to be simplified.

本発明によれば、半導体結晶基板に該基板とは
異なる導電型を有する層を熱拡散法により該基板
中に形成する接合型太陽電池であつて、拡散剤を
塗布することにより該基板の片側表面にドープド
オキサイド膜拡散源を形成する工程を備えた太陽
電池の製造方法において、前記拡散源の塗布工程
に先だつて、前記基板の裏面に絶縁膜を該基板の
縁で回り込みが生じる膜厚以上に形成することを
特徴とする太陽電池の製造方法が得られる。
According to the present invention, there is provided a junction solar cell in which a layer having a conductivity type different from that of the substrate is formed on a semiconductor crystal substrate by a thermal diffusion method, wherein one side of the substrate is coated with a diffusing agent. In a method for manufacturing a solar cell comprising a step of forming a doped oxide film diffusion source on the surface, prior to the step of applying the diffusion source, an insulating film is formed on the back surface of the substrate to a film thickness that causes wrapping around the edge of the substrate. A method for manufacturing a solar cell characterized by forming the solar cell as described above is obtained.

前記本発明によれば基板の縁で回り込んだ絶縁
膜が、該基板の側端及び拡散表面側の端の周囲を
覆うため、該部分にはドープドオキサイド膜が絶
縁膜上に回り込んで形成されても拡散層が形成さ
れない。ゆえに、拡散源を塗布する工程に先だつ
て絶縁膜を形成する工程を挿入することによつ
て、マスクを用いてメサエツチする繁雑な工程を
省くことができ、かつ表裏電極の短絡が起こらな
い。
According to the present invention, the insulating film that wraps around the edge of the substrate covers the side edges of the substrate and the edge on the diffusion surface side, so the doped oxide film wraps around onto the insulating film in these areas. Even if a diffusion layer is formed, a diffusion layer is not formed. Therefore, by inserting the step of forming an insulating film prior to the step of applying the diffusion source, the complicated step of mesa etching using a mask can be omitted, and short circuits between the front and back electrodes will not occur.

次に図を用いて詳細に説明する。 Next, it will be explained in detail using figures.

第1図a〜gは従来の太陽電池の塗布拡散法に
よるp−n接合形成の工程を説明するための図で
各工程における基板の縁の部分の拡大図である。
第1図aにおいて半導体結晶基板11はスライス
及び研磨などによる破砕層除去のために化学エツ
チングされている。このため、基板の縁の部分の
平坦度が損われている。次にbにおいて、拡散源
が有機溶媒中に混合された塗布液を基板11上に
スピンナーで塗布する。塗布被膜14は塗布面の
みならず、基板の側端及び裏面の端の周囲12ま
で回り込んで付着している。塗布皮膜は乾燥させ
た後cにおいて、拡散のためのドープドオキサイ
ド膜として用いられる。cにおいて、1150℃程度
に保持された拡散炉を用いて拡散層15を形成し
た。回り込んで付着したドープドオキサイド膜1
4によつて裏面の端の周囲12まで拡散層15が
形成されていた。したがつてドープドオキサイド
膜14を除去したdにおいて、このまま表裏の電
極を形成すると拡散層15が裏面電極と接触する
ので、短絡を起こしてしまう。この短絡を起こす
基板の周囲をメサエツチし拡散層を除去する目的
で、eにおいて、基板の周囲を除いた部分に、樹
脂レジスト16を用いてマスクを形成した。fに
おいて、弗硝酸系エツチング液を用いて、メサエ
ツチングを行つた。メサエツチングされた部分1
7は拡散層が残らず除去されていた。gにおい
て、樹脂レジストを除去した結果、基板の片面の
みのp−n接合となり、表裏に電極が形成され
て、太陽電池素子が完成する。以上の説明から、
従来法には、メサエツチングが必要であり、メサ
マスク形成は繁雑であることがわかる。又、該メ
サマスクは十分な耐酸性を有することが必要であ
つた。
FIGS. 1a to 1g are diagrams for explaining the steps of forming a p-n junction by a conventional coating-diffusion method for solar cells, and are enlarged views of the edges of the substrate in each step.
In FIG. 1a, a semiconductor crystal substrate 11 has been chemically etched to remove the fracture layer by slicing and polishing. Therefore, the flatness of the edge portion of the substrate is impaired. Next, in b, a coating liquid containing a diffusion source mixed in an organic solvent is applied onto the substrate 11 using a spinner. The coating film 14 extends around and adheres not only to the coated surface but also to the periphery 12 of the side edges and back edges of the substrate. After drying, the coated film is used as a doped oxide film for diffusion. In c, a diffusion layer 15 was formed using a diffusion furnace maintained at about 1150°C. Doped oxide film 1 wrapped around and attached
4, a diffusion layer 15 was formed up to the periphery 12 of the back surface. Therefore, if the front and back electrodes are formed as they are at point d where the doped oxide film 14 is removed, the diffusion layer 15 will come into contact with the back electrode, resulting in a short circuit. In order to mesa-etch the area around the substrate where this short circuit occurs and remove the diffusion layer, a mask was formed using a resin resist 16 in the area other than the area around the substrate in step e. In step f, mesa etching was performed using a fluoronitric acid-based etching solution. Mesa-etched part 1
No. 7 had all the diffusion layer removed. In g, the resin resist is removed, resulting in a pn junction on only one side of the substrate, electrodes are formed on the front and back sides, and the solar cell element is completed. From the above explanation,
It can be seen that the conventional method requires mesa etching and the formation of a mesa mask is complicated. Further, the mesa mask was required to have sufficient acid resistance.

次に本発明の一実施例について説明する。第2
図a〜eは本発明を説明するための図で各工程に
おける基板の縁の部分拡大図である。
Next, one embodiment of the present invention will be described. Second
Figures a to e are diagrams for explaining the present invention, and are partially enlarged views of the edge of the substrate in each step.

aにおいて、化学エツチングのため基板の縁の
部分の平坦度が損われていることは従来と同じで
ある。従来法と異なつて本発明による場合、bに
おいて、接合が形成される反対の裏面に絶縁膜を
形成する。スパツタ装置を用いてSiO2などの絶
縁膜23を0.5〜1μmの厚さに裏面に成長させ
た結果、基板の端の部分において裏面22、側面
のみならず表面にも回り込んで成長していた。c
において、従来法と同様に拡散源を塗布し、ドー
プドオキサイド膜24を形成した。基板の端の部
分は同様に回り込みが生じており、ドープドオキ
サイド膜はSiO2膜上に形成される。したがつ
て、従来法と同様にdにおいて拡散を行つたが表
面片側のみ拡散層25が形成され基板の端の部分
及び、側面及び裏面22には基板中に拡散層が生
じなかつた。よつてeにおいて拡散に用いたドー
プドオキサイド膜及び絶縁層を除去するだけで、
表裏の電極を形成しても短絡が生じず、太陽電池
素子が完成する。以上の説明から、本発明による
方法は、拡散源を塗布する以前に、裏面に絶縁膜
を形成する際、表面端部への回り込みが十分な厚
さとなる程度絶縁膜を成長させることによつて、
前記第1図を用いて説明したe,f,gで示す繁
雑なメサエツチング工程が不要となり、大幅に工
程が簡単化される。なお、絶縁膜形成は多数枚の
基板を同時に行えること、及びドープドオキサイ
ド膜除去に用いる弗酸系エツチング液によつて同
時に除去できることなど量産効果も有している。
In a, the flatness of the edge portion of the substrate is impaired due to chemical etching, as in the prior art. Unlike the conventional method, in the case of the present invention, in b, an insulating film is formed on the back surface opposite to where the junction is formed. As a result of growing an insulating film 23 such as SiO 2 on the back surface to a thickness of 0.5 to 1 μm using a sputtering device, it was found that the insulating film 23 had grown not only on the back surface 22 and the sides but also on the front surface at the edge of the substrate. . c.
In the same manner as in the conventional method, a diffusion source was applied to form a doped oxide film 24. Similarly, wraparound occurs at the edge of the substrate, and the doped oxide film is formed on the SiO 2 film. Therefore, although diffusion was performed in step d as in the conventional method, the diffusion layer 25 was formed only on one side of the surface, and no diffusion layer was formed in the substrate at the end portion, side surface, and back surface 22 of the substrate. Therefore, by simply removing the doped oxide film and insulating layer used for diffusion in e.
Even when the front and back electrodes are formed, no short circuit occurs, and the solar cell element is completed. From the above explanation, the method according to the present invention is such that when an insulating film is formed on the back surface before applying the diffusion source, the insulating film is grown to a sufficient thickness so that it wraps around to the edge of the front surface. ,
The complicated mesa etching steps indicated by e, f, and g explained using FIG. 1 are no longer necessary, and the process is greatly simplified. Incidentally, the insulating film formation also has the advantage of mass production in that it can be performed on a large number of substrates at the same time, and that it can be removed at the same time using a hydrofluoric acid-based etching solution used to remove the doped oxide film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜gは従来の塗布拡散法によるp−n
接合形成の工程を説明するための図で各工程にお
ける基板の縁の部分の拡大図であり、第2図a〜
eは本発明の一実施例について説明するための図
で各工程における基板の縁の部分の拡大図であ
る。図において11,12は基板、23は絶縁
膜、14,24はドープドオキサイド膜拡散源、
15,25は拡散層、16は樹脂レジスト、17
はメサエツチングされた部分を示す。
Figure 1 a to g are p-n obtained by the conventional coating diffusion method.
It is a diagram for explaining the process of forming a bond, and is an enlarged view of the edge portion of the substrate in each process, and FIGS.
e is a diagram for explaining one embodiment of the present invention, and is an enlarged view of the edge portion of the substrate in each step. In the figure, 11 and 12 are substrates, 23 is an insulating film, 14 and 24 are doped oxide film diffusion sources,
15, 25 is a diffusion layer, 16 is a resin resist, 17
indicates the mesa-etched part.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体結晶基板に該基板とは異なる導電形を
有する層を熱拡散法により該基板中に形成する接
合形太陽電池の製造方法であつて、拡散源を塗布
法により該基板の片側表面(受光表面)側に形成
する工程に先だつて、基板を化学エツチングする
工程と、次に拡散マスクとする絶縁膜を前記基板
の裏面に形成するとともに、該基板表面に基板の
縁から表面にも回り込ませて前記絶縁膜を形成す
る工程とを備えたことを特徴とする太陽電池の製
造方法。
1 A method for manufacturing a junction solar cell in which a layer having a conductivity type different from that of the substrate is formed on a semiconductor crystal substrate by a thermal diffusion method, wherein a diffusion source is applied to one surface of the substrate (light-receiving layer) by a coating method. Prior to the step of forming the film on the front surface side, there is a step of chemically etching the substrate, and then an insulating film to be used as a diffusion mask is formed on the back surface of the substrate, and at the same time, an insulating film is formed on the surface of the substrate from the edge of the substrate to the front surface. A method for manufacturing a solar cell, comprising the step of forming the insulating film.
JP7720380A 1980-06-10 1980-06-10 Manufacture of solar cell Granted JPS574177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7720380A JPS574177A (en) 1980-06-10 1980-06-10 Manufacture of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7720380A JPS574177A (en) 1980-06-10 1980-06-10 Manufacture of solar cell

Publications (2)

Publication Number Publication Date
JPS574177A JPS574177A (en) 1982-01-09
JPS6148795B2 true JPS6148795B2 (en) 1986-10-25

Family

ID=13627262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7720380A Granted JPS574177A (en) 1980-06-10 1980-06-10 Manufacture of solar cell

Country Status (1)

Country Link
JP (1) JPS574177A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327129A (en) 2000-05-18 2001-11-22 Mitsui High Tec Inc Manufacturing method of laminated core

Also Published As

Publication number Publication date
JPS574177A (en) 1982-01-09

Similar Documents

Publication Publication Date Title
CN108269864B (en) Flexible solar cell and preparation method thereof
US4347264A (en) Method of applying contacts to a silicon wafer and product formed thereby
US3412456A (en) Production method of semiconductor devices
JPS6148795B2 (en)
US4219373A (en) Method of fabricating a semiconductor device
JPS5910059B2 (en) Manufacturing method for semiconductor devices
JPH1197726A (en) Manufacture of solar battery
US3807038A (en) Process of producing semiconductor devices
JPH1012907A (en) Manufacture of solar battery cell
JPH0682853B2 (en) Solar cell manufacturing method
JPS5912020B2 (en) Manufacturing method of semiconductor device
JPS6129538B2 (en)
JPS6250974B2 (en)
JPS58115834A (en) Manufacture of semiconductor device
JP2683847B2 (en) Method for manufacturing semiconductor device
JP3007734B2 (en) Solar cell manufacturing method
JPS606089B2 (en) Manufacturing method of semiconductor device
JPS6142144A (en) Manufacture of semiconductor device
JPH04139725A (en) Manufacture of semiconductor device
JPH02265238A (en) Formation of aluminum selective diffusion layer on silicon substrate
JPH02216825A (en) Manufacture of semiconductor device
JPS6248070A (en) Manufacture of semiconductor device
JPS6116545A (en) Manufacture of semiconductor integrated device
JPH0542817B2 (en)
JPS6034065A (en) Manufacture of mos type semiconductor device