JPS6147698A - Method of producing flexible both-side copper-lined board - Google Patents

Method of producing flexible both-side copper-lined board

Info

Publication number
JPS6147698A
JPS6147698A JP16978284A JP16978284A JPS6147698A JP S6147698 A JPS6147698 A JP S6147698A JP 16978284 A JP16978284 A JP 16978284A JP 16978284 A JP16978284 A JP 16978284A JP S6147698 A JPS6147698 A JP S6147698A
Authority
JP
Japan
Prior art keywords
sided copper
clad
copper
flexible double
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16978284A
Other languages
Japanese (ja)
Other versions
JPH0519838B2 (en
Inventor
高浜 隆
洋一 北村
地大 英毅
愛一郎 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16978284A priority Critical patent/JPS6147698A/en
Publication of JPS6147698A publication Critical patent/JPS6147698A/en
Publication of JPH0519838B2 publication Critical patent/JPH0519838B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、プリント基板に使用されるフレキシブル両面
銅張り板の新規な製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a novel method for manufacturing a flexible double-sided copper clad board used for printed circuit boards.

〔従来技術〕[Prior art]

従来この種の銅張り板は、銅箔にガラスクロス基材含有
のエポキシ系プリプレグやポリイミド系プリプレグを塗
装し、次いで加熱プレスすることにより製造されている
のが一般的である。ところが上記方法では、気泡の巻き
込みなどが生じやすく、耐電圧の信頼性に劣ることや、
連続生産が困難であるなどの欠点を有する。
Conventionally, this type of copper-clad board has generally been manufactured by coating copper foil with epoxy prepreg or polyimide prepreg containing a glass cloth base material, and then hot pressing. However, with the above method, air bubbles are easily trapped, and the reliability of withstand voltage is poor.
It has drawbacks such as difficulty in continuous production.

〔発明の概要〕[Summary of the invention]

本発明は上記欠点を解消する目的でなされたもので、長
尺の銅殖上に電着塗装により片面に絶縁層を形成したも
の2枚を、絶縁層の面を重ね合わせて接着または融着す
ることにより、経済的かつ高信頼性で、連続生産が可能
なフレキシブル両面銅張り板の製造方法を提案するもの
である。
The present invention was made for the purpose of solving the above-mentioned drawbacks, and consists of two long copper plates with an insulating layer formed on one side by electrodeposition coating, and then bonded or fused together by overlapping the insulating layer surfaces. By doing so, we propose a manufacturing method for flexible double-sided copper-clad plates that is economical, highly reliable, and capable of continuous production.

〔発明の構成〕[Structure of the invention]

本発明では、加熱により硬化可能な水分散型電着塗料ま
たは加熱により硬化しない水分散型電着塗料を混合した
ものを電着塗料として、銅箔の片面に電着塗装により析
出層を形成させ、析出層を有機溶剤に浸漬後、加熱によ
り析出層中の水分および有機溶剤を揮発させ連続皮膜の
絶縁層を形成させる。そして得られた2枚の片面銅張り
板を絶縁層の面を重ね合わせ、加熱プレスにより接着さ
せて両面銅張り板を形成させる。このような方法によれ
ば銅箔と絶縁層の界面は通常のブリフレグ接着に比べて
非常に密着力が高いため、電界銅箔はもちろんのこと圧
延銅箔を用いても優れた密着強度が得られる。
In the present invention, a precipitated layer is formed on one side of a copper foil by electrodeposition, using a mixture of a water-dispersed electrodeposition paint that can be cured by heating or a water-dispersion type electrodeposition paint that does not harden by heating as an electrodeposition paint. After the deposited layer is immersed in an organic solvent, the moisture and organic solvent in the deposited layer are evaporated by heating to form a continuous insulating layer. Then, the obtained two single-sided copper-clad boards are stacked with their insulating layers on top of each other and bonded together using a hot press to form a double-sided copper-clad board. With this method, the adhesive strength at the interface between the copper foil and the insulating layer is much higher than that of normal brief leg bonding, so excellent adhesion strength can be obtained not only with electro-field copper foil but also with rolled copper foil. It will be done.

連続皮膜を形成するにあたっては、皮膜を完全硬化する
のではなく、いわゆるB段階の状態にする必要があり、
したがって、加熱の条件としては、電着塗料の種類にも
よるが100〜200℃で10〜30分間が好適である
。こうして得られた片面銅張り板2枚を加熱プレスによ
り接着させる場合、好適な条件としては200〜300
℃、10〜30分間、圧力2kg/cJ以上である。こ
れらが150℃未満、10分間未満、あるいは2kg/
C♂未満であれば絶縁皮膜と銅箔との接着力が乏しく、
実用的ではない。ホットロールにより接着させる場合も
ロール圧が5kg/c+f以上であることが望ましく、
ロール通過後も200℃以上にセットされた加熱炉で後
硬化することが望ましい。また片面銅張り板2枚を接着
させる際、その接着面に繊維状の基材を入れて補強効果
を出してもよく。
When forming a continuous film, it is necessary to bring the film to a so-called B stage state rather than completely curing it.
Therefore, the heating conditions are preferably 100 to 200° C. for 10 to 30 minutes, although it depends on the type of electrodeposition paint. When bonding two single-sided copper-clad boards obtained in this way by hot pressing, the preferred conditions are 200 to 300
℃ for 10 to 30 minutes at a pressure of 2 kg/cJ or more. These are below 150℃, less than 10 minutes, or 2kg/
If it is less than C♂, the adhesion between the insulating film and the copper foil is poor;
Not practical. Even when adhering by hot roll, it is desirable that the roll pressure is 5 kg/c+f or more,
Even after passing through the rolls, it is desirable to post-cure in a heating furnace set at 200° C. or higher. Furthermore, when bonding two single-sided copper-clad boards together, a fibrous base material may be inserted into the bonding surface to provide a reinforcing effect.

また片面銅張り板に接着を塗布すると、絶縁皮膜を特に
B段階の状態とする必要はなく、硬化条件が自由に選べ
る利点がある。
Furthermore, when adhesive is applied to a single-sided copper-clad board, there is no need to bring the insulating film into a B-stage state, and there is an advantage that the curing conditions can be freely selected.

ここで使用される繊維状基材としては、ガラスやポリア
ミドが使用でき、好適な例としては、ガラスクロス(有
沢製作所、EPCO50,EPC102、EPC16’
0.LPCO70,LPCllo)や芳香族ポリアミド
(カネボウ硝子繊維社、ケブラ49り0スに−1・20
.に−220,に−18L K−281)などがあげら
れる。基材は通常クロスの形で使用されるが不繊布でも
よい。
As the fibrous base material used here, glass or polyamide can be used, and a suitable example is glass cloth (Arisawa Seisakusho, EPCO50, EPC102, EPC16'
0. LPCO70, LPCllo) and aromatic polyamide (Kanebo Glass Fiber Co., Ltd., Kevlar 49-1・20
.. ni-220, ni-18L K-281), etc. The base material is usually used in the form of a cloth, but it may also be a nonwoven fabric.

また厚みに制限はないが、接着剤を使用しない場合、ク
ロスの厚みに比べ電着絶縁皮膜の厚みが十分大きいこと
が必要である。また接着剤は特に制限がなく、アクリル
系、エポキシ系、フェノール系、ゴム系などが使用でき
る。
Although there is no limit to the thickness, if no adhesive is used, the thickness of the electrodeposited insulating film must be sufficiently larger than the thickness of the cloth. The adhesive is not particularly limited, and acrylic, epoxy, phenol, rubber, and the like can be used.

本発明で使用される熱硬化型水分散電着塗料としては、
アクリル変性エポキシ系電着塗料、ポリエステルイミド
系電着塗料などが使用できるが、プリント基板などに使
用する場合には、ハンダ耐熱性の点で耐熱性の優れた塗
料(高温、短時間耐ハンダ性)が望ましい。
The thermosetting water-dispersed electrodeposition paint used in the present invention includes:
Acrylic-modified epoxy-based electrodeposition paints, polyesterimide-based electrodeposition paints, etc. can be used, but when used on printed circuit boards etc., paints with excellent heat resistance in terms of solder heat resistance (high temperature, short-time solder resistance ) is desirable.

本発明で使用される熱可塑性水分散電着塗料としては、
フェノキシ樹脂、ポリフェニレンサルファイド、ポリエ
ーテルスルホンなどが使用され、電着塗料にする一例と
しては、上記樹脂を30μm以下に粉砕したものを、界
面活性剤を含む水中に分散させる方法f採用される。こ
こで使用される界面活性剤としては、前述の熱硬化型水
分散塗料がアニオン型であれば、アニオン活性剤が使用
され、好適なものとしては、ラウリルベンゼンスルホン
酸ソーダ、ラウリル硫酸エステルソーダなどがあげられ
る。
The thermoplastic water-dispersed electrodeposition paint used in the present invention includes:
Phenoxy resin, polyphenylene sulfide, polyether sulfone, etc. are used, and one example of an electrodeposition coating is a method in which the resin is pulverized to 30 μm or less and dispersed in water containing a surfactant. As the surfactant used here, if the above-mentioned thermosetting water dispersion paint is anionic, an anionic surfactant is used, and preferred examples include sodium lauryl benzene sulfonate and sodium lauryl sulfate ester. can be given.

電着塗料の濃度は5〜20%程度が好ましく、5%以下
であれば、所望の膜厚を得るのに時間がかかり、また2
0%以上であれば、電着析出層を加熱前に水洗するなど
の工程が必要となり好ましくない。もちろん上記の電着
塗料を使用する場合に絶縁皮膜をさらに平滑に得るため
に、塗料中にレベリング効果を与えるフロン系界面汚性
剤を少量(0,01〜0.1%)添加することも可能で
ある。
The concentration of the electrodeposition paint is preferably about 5 to 20%; if it is less than 5%, it takes time to obtain the desired film thickness, and
If it is 0% or more, steps such as washing the electrodeposited layer with water before heating are required, which is not preferable. Of course, when using the above electrodeposition paint, in order to obtain an even smoother insulating film, a small amount (0.01 to 0.1%) of a fluorocarbon-based surface fouling agent that provides a leveling effect may be added to the paint. It is possible.

このようにして得られた電着析出層を有機溶剤に短時間
浸漬すると、析出層の水分散粒子を有機溶剤で部分的に
膨潤させ、加熱によりピンホールのない連続皮膜を形成
することができる。
When the electrodeposited layer obtained in this way is immersed in an organic solvent for a short time, the water-dispersed particles of the deposited layer are partially swollen by the organic solvent, and a continuous film without pinholes can be formed by heating. .

〔発明の実施例〕[Embodiments of the invention]

図はこの発明の一実施例を示す系統図であり、図におい
て、(1)は銅箔、(2)は繊維状基材、(3)は電着
槽、(4)は対向電極、(5)は電着塗料、(6)は有
機溶剤蒸気槽、(7)は−次焼付炉、(8)はホットロ
ーラ、(9)は二次焼付炉、(10)は巻取機である。
The figure is a system diagram showing one embodiment of the present invention. In the figure, (1) is a copper foil, (2) is a fibrous base material, (3) is an electrodeposition tank, (4) is a counter electrode, ( 5) is an electrodeposition paint, (6) is an organic solvent vapor tank, (7) is a secondary baking furnace, (8) is a hot roller, (9) is a secondary baking furnace, and (10) is a winding machine. .

フレキシブル両面銅張り板の製造方法は、電着塗料(5
)を満した電着槽(3)に連続した銅箔(1)を導入し
、銅箔側を陽極として、電着槽(3)内に設けた対向電
極(4)との間に電圧を印加し、電着塗装により析出層
を形成する。次いで銅箔(1)を有機溶剤蒸気槽(6)
に通して有機溶剤蒸気処理を行った後、温度100〜3
00℃の一次焼伺炉(7)に通して加熱し、さらに繊維
状基材(2)をはさみ込み、またははさみ込むことなく
、それぞれの電着面を重ねて温度200〜400℃のホ
ットローラ(8)で熱融着する。接着剤を用いるとぎは
ホットローラ(8)に入る前に塗付するか、または繊維
状基材(2)を使用する場合には前もって基材に接着剤
を塗布しておいてもよい。得られた積層物は必要により
二次焼付炉(9)でさらに硬化され、得られたフレキシ
ブル両面銅張り基板を巻取機(10)に巻取る。ホット
ローラ(8)の代りにプレスを用いる場合は一次焼付炉
(7)を出てきた片面銅張り板を一定長さに切断し、2
枚皮膜側を重ね合わせてプレスしてもよいし、ホットロ
ールのように長尺のものを押出しながらプレスをくり返
す方式をとってもよい。
The manufacturing method of flexible double-sided copper clad board is to use electrodeposition paint (5
) A continuous copper foil (1) is introduced into an electrodeposition tank (3) filled with 30% of the electrodeposition tank (3), and a voltage is applied between the copper foil side as an anode and the counter electrode (4) provided in the electrodeposition tank (3). A precipitated layer is formed by electrocoating. Next, the copper foil (1) is placed in an organic solvent vapor bath (6).
After organic solvent vapor treatment through
Heat it through a primary incineration furnace (7) at 00°C, and then sandwich the fibrous base material (2) with or without sandwiching the electrodeposited surfaces and heat with hot rollers at a temperature of 200 to 400°C. (8) Heat fusion. The adhesive sharpener may be applied before entering the hot roller (8) or, if a fibrous substrate (2) is used, the adhesive may be applied to the substrate beforehand. The obtained laminate is further cured in a secondary baking furnace (9) if necessary, and the obtained flexible double-sided copper-clad substrate is wound up in a winder (10). When using a press instead of the hot roller (8), cut the single-sided copper clad plate that comes out of the primary baking furnace (7) into a certain length, and
The sheet membranes may be overlapped and pressed, or a method may be used in which pressing is repeated while extruding a long piece like a hot roll.

以下、参考例および実施例について説明する。Reference examples and examples will be described below.

参考例1 四つ口のフラスコにイオン交換水1900gとラウリル
硫酸エステルソーダ2.4gを仕込み、かくはんしなが
ら約30分間N2ガスを通じる。
Reference Example 1 1,900 g of ion-exchanged water and 2.4 g of lauryl sulfate ester soda were placed in a four-necked flask, and N2 gas was passed through the flask for about 30 minutes while stirring.

次いでN2ガスを通じるのを止めて、温度70℃に昇温
する。次に、過硫酸アンモニウム2.0 g。
Next, the flow of N2 gas was stopped, and the temperature was raised to 70°C. Next, 2.0 g of ammonium persulfate.

亜硫酸水素ナトリウム0.7gを100gのイオン交換
水に溶かした液を加えた後、直ちにアクリロニトリル2
4.0 g、α−メチルスチレン60g、スチレン60
g、メタクリル酸20g、グリシジルメタクリレート2
0gの混合液を約30分間かけて滴下し、滴下終了後7
0℃で3時間反応させて、不揮発分19.5%の熱硬化
型水分散電着塗料(A)を製造した。
After adding a solution of 0.7 g of sodium bisulfite dissolved in 100 g of ion-exchanged water, immediately add 2 ml of acrylonitrile.
4.0 g, α-methylstyrene 60g, styrene 60
g, methacrylic acid 20g, glycidyl methacrylate 2
Drop 0g of the mixed solution over about 30 minutes, and after dropping 7
The mixture was reacted at 0° C. for 3 hours to produce a thermosetting water-dispersed electrodeposition paint (A) with a non-volatile content of 19.5%.

参考例2 四つ目フラスコにジアミノジフェニルメタン206g、
無水トリメリット400g、m−クレゾール600gを
仕込み、150℃で1時間反応させた後、200℃に昇
温し、ポリエチレンテレフタレート400g、トリス(
β−ヒドロキシエステル)イソシアヌレート200g、
テ1〜ラブチルチタネート4gを加え溶解させた。次い
で220〜240℃でm−クレゾールおよび生成するエ
チレングリコールを系外に留出させながら、約3.5時
間反応させた後、FC431(フッ素系界面活性剤、3
M社製)1.2gを加え、約15分間かくはんし、ポリ
エステルイミド樹脂を得た。得られ。
Reference example 2 206g of diaminodiphenylmethane in the fourth flask,
After charging 400 g of anhydrous trimellit and 600 g of m-cresol and reacting at 150°C for 1 hour, the temperature was raised to 200°C, and 400 g of polyethylene terephthalate and Tris(
β-hydroxyester) isocyanurate 200g,
4 g of butyl titanate was added and dissolved. Next, after reacting at 220 to 240°C for about 3.5 hours while distilling m-cresol and the produced ethylene glycol out of the system, FC431 (fluorosurfactant, 3
(manufactured by M Company) was added thereto and stirred for about 15 minutes to obtain a polyesterimide resin. Obtained.

た樹脂をジェットミルで平均粒子径11μmに粉砕した
。この粉末500gをラウリル硫酸エステルソーダ5g
を含むイオン交換水45’OOg中に分散させ、不揮発
分約10%の熱硬化型水分散電着塗料(B)を製造した
The resin was pulverized with a jet mill to an average particle size of 11 μm. 500g of this powder and 5g of lauryl sulfate ester soda
A thermosetting water-dispersed electrodeposition paint (B) having a non-volatile content of about 10% was produced by dispersing it in 45'OOg of ion-exchanged water containing:

参考例3 フェノキシ樹脂(UCC社製、P HK K)をジェッ
トミルで平均粒子径14μmに粉砕し、この粉末500
gをラウリルベンゼンスルホン酸ソーダ5g%含むイオ
ン交換水4500g中に分散させ、不揮発分約10%の
熱可塑性水分散電着塗料(C)を製造した。− 参考例4 ポリエーテルスルホン(三井東圧社、Victrex)
をジェットミルで平均粒子径13μmに粉砕し、この粉
末500gをラウリルベンゼンスルホン酸ソーダ4.0
g−FC431(3M社、フッ素系界面活性剤)1.0
gを含むイオン交換水4500g  −中側分散させ、
不揮発分約10%の熱可塑性水分散電着塗料(D)を製
造した。
Reference Example 3 Phenoxy resin (manufactured by UCC, PHK K) was ground to an average particle size of 14 μm using a jet mill, and this powder
g was dispersed in 4,500 g of ion-exchanged water containing 5 g% of sodium laurylbenzenesulfonate to produce a thermoplastic water-dispersed electrodeposition paint (C) with a nonvolatile content of about 10%. - Reference example 4 Polyether sulfone (Mitsui Toatsusha, Victrex)
was pulverized with a jet mill to an average particle size of 13 μm, and 500 g of this powder was mixed with 4.0 g of sodium laurylbenzenesulfonate.
g-FC431 (3M, fluorosurfactant) 1.0
4500 g of ion-exchanged water containing g - dispersed in the middle,
A thermoplastic water-dispersed electrodeposition paint (D) having a non-volatile content of about 10% was produced.

実施例1〜6 図の製造方法により、表1の電着塗料、繊維基材、接着
剤、有機溶剤を使用し、表1の条件でフレキシブル両面
銅張り板を製造した。銅箔(1)は幅500m1I+、
厚さ25μmの連続した箔であり、電着塗装の印加電圧
は50Vである。得られたフレキシブル両面銅張り板の
特性を表1に併記する。
Examples 1 to 6 Flexible double-sided copper-clad boards were manufactured according to the manufacturing method shown in the figure using the electrodeposition paint, fiber base material, adhesive, and organic solvent shown in Table 1 under the conditions shown in Table 1. Copper foil (1) width 500m1I+,
It is a continuous foil with a thickness of 25 μm, and the applied voltage for electrodeposition coating is 50V. The properties of the obtained flexible double-sided copper clad board are also listed in Table 1.

以上の結果より優れたフレキシブル両面銅張り板が得ら
れることがわかる。
From the above results, it can be seen that an excellent flexible double-sided copper-clad board can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、長尺の銅箔上に電着塗装により片面に
絶縁層を形成したものを2枚接合するようにしたので、
気泡の巻き込みはなく、耐電圧の信頼性が高いとともに
、ハンダ耐熱性および引きはがし強さに優れたフレキシ
ブル両面銅張り板が得られる効果がある。
According to the present invention, two pieces of long copper foil with an insulating layer formed on one side by electrodeposition coating are bonded together.
This has the effect of providing a flexible double-sided copper-clad plate with no air bubbles, high reliability in voltage resistance, and excellent solder heat resistance and peel strength.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例によるフレキシブル両面銅張り板
の製造方法を示す系統図である。 図において、(1)は銅箔、(2)は繊維状基材、(3
)は電着槽、(4)は対向電極、(5)は電着塗料、(
6)は有機溶剤蒸気槽、(7)は−次焼付炉、(8)は
ホットローラ、(9)は二次焼付炉、(10)は巻取機
である。
The figure is a system diagram showing a method for manufacturing a flexible double-sided copper clad plate according to an embodiment of the present invention. In the figure, (1) is copper foil, (2) is fibrous base material, (3
) is an electrodeposition tank, (4) is a counter electrode, (5) is an electrodeposition paint, (
6) is an organic solvent vapor tank, (7) is a secondary baking furnace, (8) is a hot roller, (9) is a secondary baking furnace, and (10) is a winding machine.

Claims (4)

【特許請求の範囲】[Claims] (1)長尺の銅箔上に電着塗装により片面に絶縁層を形
成した片面銅張り板2枚を、絶縁層の面を重ね合わせて
接着または融着することを特徴とするフレキシブル両面
銅張り板の製造方法。
(1) Flexible double-sided copper, characterized by bonding or fusing two single-sided copper-clad boards with an insulating layer formed on one side by electrodeposition coating on a long copper foil, overlapping the insulating layer surfaces. Method of manufacturing veneer.
(2)2枚の片面銅張り板の絶縁層の面を重ね合わせて
接着または融着させる際、繊維状の基材をはさみ込むこ
とを特徴とする特許請求の範囲第1項記載のフレキシブ
ル両面銅張り板の製造方法。
(2) A flexible double-sided structure according to claim 1, characterized in that when the insulating layer surfaces of two single-sided copper-clad boards are overlapped and bonded or fused, a fibrous base material is sandwiched therebetween. Method of manufacturing copper clad boards.
(3)2枚の片面銅張り板の絶縁層の、面を重ね合わせ
て接着または融着させる際、接着剤を塗布することを特
徴とする特許請求の範囲第1項または第2項記載のフレ
キシブル両面銅張り板の製造方法。
(3) The method according to claim 1 or 2, characterized in that an adhesive is applied when the surfaces of the insulating layers of two single-sided copper-clad boards are overlapped and bonded or fused together. A method for manufacturing flexible double-sided copper clad plates.
(4)2枚の片面銅張り板の絶縁層の面を重ね合わせて
接着または融着させる際、接着剤を塗布もしくは含浸し
た繊維状の基材をはさみ込むことを特徴とする特許請求
の範囲第1項記載のフレキシブル両面銅張り板の製造方
法。
(4) Claims characterized in that when the insulating layer surfaces of two single-sided copper-clad boards are overlapped and bonded or fused, a fibrous base material coated with or impregnated with an adhesive is sandwiched. 2. A method for producing a flexible double-sided copper clad board according to item 1.
JP16978284A 1984-08-14 1984-08-14 Method of producing flexible both-side copper-lined board Granted JPS6147698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16978284A JPS6147698A (en) 1984-08-14 1984-08-14 Method of producing flexible both-side copper-lined board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16978284A JPS6147698A (en) 1984-08-14 1984-08-14 Method of producing flexible both-side copper-lined board

Publications (2)

Publication Number Publication Date
JPS6147698A true JPS6147698A (en) 1986-03-08
JPH0519838B2 JPH0519838B2 (en) 1993-03-17

Family

ID=15892764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16978284A Granted JPS6147698A (en) 1984-08-14 1984-08-14 Method of producing flexible both-side copper-lined board

Country Status (1)

Country Link
JP (1) JPS6147698A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112190A (en) * 1989-09-26 1991-05-13 Matsushita Electric Works Ltd Electrolytic deposition adhesive, copper foil with electrolytic deposition adhesive, printed-circuit board using electrolytic deposition adhesive, and its manufacture
EP3544052A4 (en) * 2016-11-17 2020-06-03 Suncall Corporation Method for manufacturing substrate terminal board for mounting semiconductor element
WO2023158259A1 (en) * 2022-02-17 2023-08-24 주식회사 두산 Roll-type flexible metal laminate, method for manufacturing same, and printed circuit board comprising flexible metal laminate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0323803A1 (en) * 1987-12-30 1989-07-12 Ciba-Geigy Ag Stabilization of coatings by N-formylated hindered amines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112190A (en) * 1989-09-26 1991-05-13 Matsushita Electric Works Ltd Electrolytic deposition adhesive, copper foil with electrolytic deposition adhesive, printed-circuit board using electrolytic deposition adhesive, and its manufacture
EP3544052A4 (en) * 2016-11-17 2020-06-03 Suncall Corporation Method for manufacturing substrate terminal board for mounting semiconductor element
WO2023158259A1 (en) * 2022-02-17 2023-08-24 주식회사 두산 Roll-type flexible metal laminate, method for manufacturing same, and printed circuit board comprising flexible metal laminate

Also Published As

Publication number Publication date
JPH0519838B2 (en) 1993-03-17

Similar Documents

Publication Publication Date Title
CN104476847B (en) Flexible copper-clad plate having high peel strength and manufacture method thereof
EP0231737A2 (en) Continuous process for the manufacture of printed circuit boards
JP2002164253A (en) Capacitor material provided with thin dielectric layer used for formation of capacitor layer embedded in electronic component, and its manufacturing method
WO2010074085A1 (en) Resin composition, prepreg, resin sheet, metal-clad laminate, printed wiring board, multilayer printed wiring board, and semiconductor device
JPS6147698A (en) Method of producing flexible both-side copper-lined board
JPS6139324A (en) Method of producing both-side copper-lined insulating film
JPS61214495A (en) Metal foil having binder layer for covering laminate plate and manufacture of base material for printed circuit
AU683846B2 (en) Method of manufacturing a multilayer printed wire board
KR20210012325A (en) Preparation method of continuous sheet for circuit board production and continuous sheet for circuit board production produced therefrom
JPH0481504B2 (en)
JPH08150683A (en) Semi-cured metallic foil-clad laminated plate, and manufacture thereof
JP4759896B2 (en) Manufacturing method of printed wiring board manufacturing material
KR102242544B1 (en) Preparation method of continuous sheet for circuit board production and continuous sheet for circuit board production produced therefrom
JPH06256966A (en) Surface treated copper foil
JPH0992997A (en) Manufacture of shielding plate for multilayer flexible wiring board
JPS61170089A (en) Flexible printed wiring board
JPH11236456A (en) Resin sheet, metallic foil-clad laminate and multilayer printed wiring board
WO1999028126A1 (en) Prepreg for multilayer printed wiring boards and process for producing the same
JPH05318652A (en) Copper-plated laminated sheet
JPS63172641A (en) Copper-clad laminated board
JPH06143448A (en) Manufacture of laminated plate
JP3376907B2 (en) Manufacturing method of laminated board
JPH05318650A (en) Copper plated laminated sheet
JPH0423385A (en) Manufacture of copper-clad laminated plate
JPS58181640A (en) Metal lined board and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term