JPS6147495B2 - - Google Patents

Info

Publication number
JPS6147495B2
JPS6147495B2 JP52159838A JP15983877A JPS6147495B2 JP S6147495 B2 JPS6147495 B2 JP S6147495B2 JP 52159838 A JP52159838 A JP 52159838A JP 15983877 A JP15983877 A JP 15983877A JP S6147495 B2 JPS6147495 B2 JP S6147495B2
Authority
JP
Japan
Prior art keywords
starch
flour
defatted soybean
extraction residue
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52159838A
Other languages
Japanese (ja)
Other versions
JPS5492641A (en
Inventor
Masaru Myawaki
Akira Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP15983877A priority Critical patent/JPS5492641A/en
Publication of JPS5492641A publication Critical patent/JPS5492641A/en
Publication of JPS6147495B2 publication Critical patent/JPS6147495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grain Derivatives (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Noodles (AREA)
  • Confectionery (AREA)
  • Cereal-Derived Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は澱粉食品用老化防止剤に関する。さら
に詳しくは、α化した澱粉および(または)脱脂
大豆抽出残渣と澱粉分解酵素とからなる澱粉食品
用の老化防止剤に関する。 一般の澱粉食品たとえば生和菓子、生洋菓子、
パン類などは製造後の時間の経過にともない硬化
して食感が悪くなる。特に低温で保存した場合に
は硬化が速く進み、食感面で日持ちが著しく短か
くなる。これは澱粉食品特有の老化現象とされ、
一般的には澱粉食品の老化防止を目的として、界
面活性剤、糖類などを添加する方法や、加水量を
増やす方法で老化を抑制することが試みられてい
る。しかしこれらの老化防止剤を添加する方法で
は食味の点で好ましくなかつたり、食品によつて
老化防止効果が発現しない場合もある。また加水
量を増やす方法では使用する穀物粉にはおのずと
吸水量の限界があり、それを越えて加水すると生
地がやわらかくなりすぎ、著しい場合には離水を
生じて成形などの作業が困難になり、さらには保
形性が悪くなり商品価値が低下する。 本発明者らは澱粉食品の老化防止および作業性
改善、歩留向上を目的として研究した結果、これ
らの目的が達成できる老化防止剤を見出し本発明
を完成した。 すなわち本発明は、α化した澱粉および(また
は)脱脂大豆抽出残渣と澱粉分解酵素とからなる
澱粉食品用老化防止剤である。 本発明における澱粉食品とは、米粉、小麦粉、
そば粉、きび粉などの澱粉主体の穀物粉やコーン
スターチ、ばれいしよ澱粉、甘蔗澱粉、くず澱粉
などを主原料とする食品であり、米粉を主原料と
してつくられる大福餅、柏餅、笹だんご、きびだ
んご、よもぎだんごなどの餅類、だんご類やうい
ろうなど、小麦粉を主原料としてつくられるパ
ン、スポンジケーキ、カステラなどのケーキ類、
うどん、そばなどの麺類や焼売、ぎようざの皮な
どが挙げられる。 前述の米粉には、うるち米、もち米の粉末、お
よびこれらを精白した粉末、たとえば上新粉、白
玉粉などがあり、また小麦粉とは強力粉、薄力粉
などのいわゆる小麦粉である。生澱粉とは前記の
澱粉主体の穀物粉や澱粉類のα化していないもの
である。 本発明におけるα化した澱粉とは、米粉、小麦
粉、トウモロコシなどの穀物粉や、米澱粉、小麦
澱粉、コーンスターチ、甘しよ澱粉などの精製澱
粉を自体公知の加熱などによりα化したものをい
い、α化の方法には特に制限はない。またα化の
程度にも特に限定はないがα化の程度の高いもの
を使用するのが好ましい。 本発明でいう脱脂大豆抽出残渣とは脱脂大豆か
ら何らかの方法で一部または全部の、タンパク質
およびその他の可溶性成分を除去したものであ
る。通常の脱脂大豆には、約50%のタンパク質
と、約30%のタンパク質以外の可溶性成分が含ま
れている。ここでいう脱脂大豆抽出残渣とは、約
50%以下のタンパク質と約30%以下のタンパク質
以外の可溶性成分を含みかつ不溶性成分を40%以
上含むものである。さらに好ましくは、タンパク
質含量30%以下、タンパク質以外の可溶性成分を
10%以下、かつ不溶性成分60%以上とするとよ
い。 ここで、タンパク質以外の可溶性成分として
は、たとえば蔗糖、ラフイノース、スタキオース
のような少糖類、クエン類、リンゴ酸などの有機
酸、可溶性無機塩類などがあり、また不溶性成分
としては、たとえば常温の水で抽出されないある
いはされにくいヘミセルロース、セルロース、ペ
クチン質のような多糖類などがある。 脱脂大豆からタンパク質およびそれ以外の可溶
性成分を除去する方法としては、たとえば脱脂大
豆を2〜20倍量の水または弱アルカリ水溶液
(例、PH9の水酸化ナトリウム水溶液)などの水
性溶媒で抽出し、過・遠心分離などで抽出液を
除去して脱脂大豆抽出残渣を得る方法などがあげ
られる。このとき抽出温度、抽出時間などは適宜
さだめられるが一般には15〜90℃、15分〜2時間
が用いられる。このような抽出操作を2回以上く
り返えしてもよい。また、とくに低タンパク含量
の脱脂大豆抽出残渣を得たい場合には、抽出に用
いる溶媒のPHを高めればよい(例、PH11の水酸化
ナトリウム水溶液)。以上の例はタンパク質とそ
れ以外の可溶性成分を同時に除去する方法である
が、まず、可溶性成分を抽出除去し、次にタンパ
ク質を抽出除去して目的とする脱脂大豆抽出残渣
を得ることもできる。たとえば、脱脂大豆をまず
PH4.5前後に調整した水溶液、あるいはエタノー
ルのような親水性有機溶媒を含む水溶液で抽出し
て排タンパク態の可溶性成分を除き、次いで中性
ないしアルカリ性の水性溶媒でタンパク質を抽出
除去して脱脂大豆抽出残渣を得ることもできる。
以上何れの方法においてもタンパク質の抽出をた
すけるため、タンパク質分解酸素(例、プロナー
ゼ、パパイン)を利用してもよい。 このような方法によつて得た脱脂大豆抽出残渣
は、タンパク質含量が50%以下、それ以外の可溶
性成分が30%以下かつ不溶性成分が40%以上とな
り、脱脂大豆よりも保水性にすぐれ、白度が高
く、匂い・フレーバーなども改良されたものであ
る。 このタンパク質含量およびそれ以外の可溶性成
分の含量は、上記の操作をくりかえすことによ
り、あるいは上記の操作を適宜組合せることによ
り、それぞれの含量を下げることができる。 なお、本発明の目的のためのは、タンパク質含
量を約30%以下、それ以外の可溶性成分を約10%
以下かつ不溶性成分を60%以上とするのが特に好
ましい。また、タンパク質の含量を13%程度にま
で下げると好ましい場合がある。 このようにして得られた脱脂大豆抽出残渣は多
量の水を含むものであり、一般には次に乾燥工程
に付すのが好ましい。乾燥の方法としては公知の
ものが用いられ、たとえば真空乾燥、ドラム乾
燥、気流乾燥、通風乾燥などあるいはこれを2つ
以上組合せることにより乾燥される。特殊な例と
して原料の粒度が細かい場合には、水を含む抽出
残渣にさらに加水して分散させ、噴霧乾燥するこ
ともできる。何れの場合でも、水分含量を10%以
下とするのがよい。 本発明の脱脂大豆抽出残渣の粒度は、特に限定
されるものではなく、そのまま用いることができ
るが、粒度を細かくすると、より良好な効果が得
られる場合がある。 脱脂大豆抽出残渣の製造原料の脱脂大豆につい
ては、その形状はフレーク状のものから粉状のも
のまで種々の粒度のものを用いることができる。 粒度の細かいものを得るには、原料として用い
る脱脂大豆の粒度が細かく、噴霧乾燥によつて乾
燥できる場合には、乾燥品の粒度も細かいのでそ
のまま用いることができる。また乾燥品が微粒と
して得られない場合は、乾燥品について必要に応
じて粉砕、分級を行なうとよい。乾燥後の工程に
ついては粉砕のみを行なつて製品とする場合、分
級のみを行なつて製品とする場合、分級後粉砕す
る場合、粉砕後分級する場合があり、目的によつ
て何れの方法をとつてもよい。また必要に応じて
再粉砕してもよい。 原料として用いる脱脂大豆が充分除皮されてい
る場合は所定粒度に粉砕するのみで製品とするこ
とができるが、このような良質の脱脂大豆を原料
として得ることはむつかしいので一般には分級も
行なうことになる。上記の乾燥品について分級後
粉砕するかそれとも粉砕後分級するかは、乾燥品
の粒度によつて定めるのがよい。 粉砕の方法はとくに限定されず、たとえばハン
マーミル、ロールミル、衝撃式粉砕機などを用い
ればよい。分級の方法もとくに限定されず、たと
えば篩過、空気分級などの乾式分級法を適宜用い
ればよい。 このようにして得られた脱脂大豆抽出残渣は一
般にそのまま用いることができるが、0.15mmより
細かい粒径のものが、80%以上であることが好ま
しい。そのため必要に応じて再粉砕することもあ
る。 本発明における澱粉分解酵素としては、市販の
α−アミラーゼ、β−アミラーゼ、グルコアミラ
ーゼなどを含有するアミラーゼ製剤および天然物
でアミラーゼを豊富に含有する大豆粉や大麦、小
麦、米などの胚芽粉末が挙げられ、一般には力
価:100mg、マルトース/g−min。以上のもの
を使用するのがよい。従つて、力価の低い、たと
えば小麦粉、米粉などでも自体公知の精製法など
によつて力価を高めることによつて本発明の澱粉
分解酵素として使用することができる。 本発明における澱粉食品用老化防止剤の組成は
α化した澱粉および(または)脱脂大豆抽出残渣
と澱粉分解酵素から成り、その構成比は澱粉分解
酵素の種類および力価によつて変化するが、澱粉
分解酵素はα化した澱粉および(または)脱脂大
豆抽出残渣100重量部に対し0.05〜100重量部程度
であるが、一般に市販のアミラーゼ製剤を使用す
る場合は0.05〜10重量部程度を、またアミラーゼ
の力価が100〜500mg。マルトース/g−min程度
の胚芽粉末などを使用する場合は1〜100重量部
程度配合するのが好ましい。 本発明の老化防止剤の配合成分の粒度は澱粉食
品の主体をなす米粉、水麦粉などと同程度のもの
を使用するのが好ましい。配合成分の粉砕には、
前述のハンマーミル、ロールミル、衝撃式粉砕機
などが適宜使用しうる。また老化防止剤を製造す
るためには各配合成分を混合すればよく、その混
合は澱粉分解酵素が失活する温度以下であれば、
特に制限はなく、たとえばV型混合機、水平円筒
混合機などを使用することができる。 このような老化防止剤は粉末状が好ましく、主
原料の生澱粉に対し、0.5〜20重量%程度添加す
ることにより澱粉食品の老化が顕著に抑制され
る。 澱粉食品を製造するに際し、α化した澱粉およ
び(または)脱脂大豆抽出残渣と澱粉分解酵素を
生澱粉に添加する方法あるいは添加順序は特に限
定されないが、予じめ各添加剤を混合したもの
を、主原料となる米粉、小麦粉などの生澱粉に混
合するのが好ましい。それらの添加により、米
粉、小麦粉の吸水量が増すため、加水量を多くす
ることができる。そのため原料米粉または小麦粉
中に含まれる澱粉のα化が進むことにより老化が
抑制され、さらに澱粉分解酵素の作用も活発にな
り、常法にしたがつて製造される澱粉食品の老化
は著しく抑制される。 α化した澱粉、脱脂大豆抽出残渣および澱粉分
解酵素は、各々単独に添加しても老化防止効果を
発揮するが、これらを併用することによつて、さ
らに効果が顕著になり、相乗的な老化防止効果を
発揮するものである。 以下に、参考例、実験例および実施例を挙げて
本発明をさらに詳しく説明する。 なお、本明細書において、パーセント(%)
は、とくにことわりのないかぎり重量パーセント
〔%(重量/重量)〕を表わす。 参考例 1 粒径0.15mm以下の低変性脱脂大豆粉に10倍量の
水を加え、撹拌しながら30℃で30分間抽出する。
遠心分離によつて抽出液を除去し、固形物に原料
の4倍量の水を加え、30℃で30分間撹拌し抽出す
る。ふたたび遠心分離によつて抽出液を除去す
る。固形物に加水して固形分2.5%のスラリーと
し、噴霧乾燥によつて脱脂大豆抽出残渣の粉末を
得る。本品は乾燥減量3.1%、粗タンパク含量
17.4%、それ以外の可溶性成分9.8%不溶性成分
69.7%または粒径0.15mm以下のものが95%以上で
あつた。 参考例 2 低変性脱脂大豆粉に10倍量のPH8.3に調整した
水酸化ナトリウム水溶液を加え、70℃で30分間抽
出し、遠心分離によつて抽出液を除去し固形物を
採取する。固形物にさらに5倍量の水を加えて30
℃で15分間撹拌水洗してふたたび遠心分離して固
形物をあつめる。まずドラムドライヤーによつて
水分がほぼ40%になるまで予備乾燥し、次に熱風
乾燥によつて水分を6%以下とする。これをピン
ミルによつて粉砕し、粒径0.15mm以下のものが98
%の脱脂大豆抽出残渣を得る。本品の粗タンパク
含量は20.4%、それ以外の可溶性成分は7.3%、
不溶性成分66.3%である。 参考例 3 低変性脱脂大豆粉に水酸化ナトリウムでPH8.5
とした水溶液10倍量を加えて70℃で30分間抽出す
る。遠心分離によつて抽出液を除去し、固形物を
あつめる。固形物に原料の5倍量の水を加え30℃
で15分抽出し、さらに遠心分離によつて固形物を
採取する工程を2回くりかえす。固形物をあらか
じめドラムドライヤーで水分約50%になるまで乾
燥し、次に真空乾燥によつて水分を約5%とす
る。乾燥したものを0.5mmのスクリーンを備えた
アトマイザーにより粉砕する。粒径0.25mm以下の
ものが96%であり、空気分級により細かい方から
60%に相当する脱脂大豆抽出残渣を得る。これは
すべて0.15mmより細かい。本品の粗タンパク含量
は7.6%、それ以外の可溶性成分は5.1%、不溶性
成分82.3%であつた。 参考例 4 低変性脱脂大豆フレークに10倍量の水を加え、
30℃で20分間さらに90℃まで加温して10分間撹拌
抽出したのち遠心分離により抽出液を除去して得
られた固形物に固形物の4倍量の水を加えて水洗
し、遠心分離により固形物を採取する。この固形
物をドラムドライヤーで水分約9%になるまで乾
燥し、直径1mmのスクリーンを備えたフイツツミ
ルで粉砕する。粉砕品の40%が粒径0.25mm以下で
あつた。この粉砕品を目の開きが0.20mmの篩で篩
過し、通過品を得た(粉砕品の約35%)。これを
粒径0.15mm以下になるよう再粉砕して脱脂大豆抽
出残渣を得た。本品の乾燥減量は8.9%、粗タン
パク含量31.9%、それ以外の可溶性成分は11.1
%、不溶性成分49.1%であつた。 実験例 1 参考例1で得た脱脂大豆抽出残渣をそれぞれ
0.3および7重量%になるように上新粉に添加
し、さらに脱脂大豆抽出残渣の無添加区および3
%添加区には澱粉分解酵素(β−アミラーゼ、力
価:2800mgマルトース/g−min)を0.05%添加
混合し、以下の方法で団子を調製した。 脱脂大豆抽出残渣(および澱粉分解酵素)を含
有する上新粉の200gをブラベンダープラストグ
ラフのボールに採取し、180B.U.になるまで加水
して生地を調製し、これを直径4.5cm、厚さ1.5cm
に成形したのち、プラスチツクフイルムで密封
し、100℃で30分間加熱殺菌後冷却して団子とし
た。 10℃および25℃に保存して経日的に団子の硬さ
をテクスチユロメーター(株式会社 全研製)で
測定した。 結果は第1表および第2表に示すとおりであ
り、脱脂大豆抽出残渣を添加することにより、生
地が一定の硬さ(180B.U.)になるまでの加水量
が増加し、さらに、増脂大豆抽出残渣と澱粉分解
酵素を併用した団子は顕著に老化が抑制された。
The present invention relates to anti-aging agents for starch foods. More specifically, the present invention relates to an anti-aging agent for starch foods comprising gelatinized starch and/or defatted soybean extraction residue and a starch degrading enzyme. General starch foods such as fresh Japanese sweets, fresh Western sweets,
Breads and the like harden over time after being manufactured, resulting in poor texture. In particular, when stored at low temperatures, hardening progresses rapidly and the shelf life is significantly shortened in terms of texture. This is considered to be an aging phenomenon peculiar to starch foods.
Generally, attempts have been made to prevent aging of starch foods by adding surfactants, sugars, etc., or increasing the amount of water added. However, these methods of adding anti-aging agents may not be desirable in terms of taste, or may not exhibit anti-aging effects depending on the food. In addition, in the method of increasing the amount of water added, the grain flour used has a natural water absorption limit, and if water is added beyond that, the dough becomes too soft, and in severe cases, water syneresis occurs, making it difficult to perform operations such as molding. Furthermore, shape retention deteriorates and the commercial value decreases. As a result of research aimed at preventing aging of starch foods, improving workability, and increasing yield, the present inventors discovered an antiaging agent that can achieve these objectives and completed the present invention. That is, the present invention is an anti-aging agent for starch foods comprising gelatinized starch and/or defatted soybean extraction residue and a starch degrading enzyme. Starch foods in the present invention include rice flour, wheat flour,
Foods whose main ingredients are starch-based grain flours such as buckwheat flour and millet flour, corn starch, potato starch, cane starch, and kudzu starch. , rice cakes such as mugwort dumplings, breads made from wheat flour such as dumplings and uiro, cakes such as sponge cakes and castella cakes,
Examples include noodles such as udon and soba, shumai, and gyoza skin. The rice flour mentioned above includes non-glutinous rice, glutinous rice powder, and refined powders of these, such as joshinko and shiratamako, and wheat flour refers to so-called wheat flour such as strong flour and soft flour. Raw starch is the aforementioned starch-based grain flour or starch that has not been gelatinized. In the present invention, pregelatinized starch refers to grain flour such as rice flour, wheat flour, and corn, and purified starch such as rice starch, wheat starch, corn starch, and amashiyo starch, which have been pregelatinized by heating, etc., which are known per se. , there are no particular restrictions on the method of gelatinization. There is also no particular limitation on the degree of gelatinization, but it is preferable to use a material with a high degree of gelatinization. The defatted soybean extraction residue referred to in the present invention is defatted soybean from which some or all of the proteins and other soluble components have been removed by some method. Regular defatted soybeans contain about 50% protein and about 30% soluble components other than protein. The defatted soybean extraction residue referred to here is approximately
Contains 50% or less protein, approximately 30% or less soluble components other than protein, and 40% or more insoluble components. More preferably, the protein content is 30% or less, and the soluble components other than protein are
The content of insoluble components is preferably 10% or less and 60% or more. Here, soluble components other than protein include, for example, oligosaccharides such as sucrose, raffinose, and stachyose, citric acids, organic acids such as malic acid, and soluble inorganic salts, and insoluble components include, for example, water at room temperature. There are polysaccharides such as hemicellulose, cellulose, and pectin that cannot be extracted or are difficult to extract. As a method for removing protein and other soluble components from defatted soybeans, for example, defatted soybeans are extracted with an aqueous solvent such as 2 to 20 times the amount of water or a weak alkaline aqueous solution (e.g., aqueous sodium hydroxide solution with a pH of 9). Examples include a method of removing the extract liquid by filtration or centrifugation to obtain a defatted soybean extraction residue. At this time, the extraction temperature, extraction time, etc. can be adjusted as appropriate, but generally 15 to 90°C and 15 minutes to 2 hours are used. Such extraction operation may be repeated two or more times. Furthermore, when it is desired to obtain a defatted soybean extraction residue with a particularly low protein content, the pH of the solvent used for extraction may be increased (eg, an aqueous sodium hydroxide solution with a pH of 11). Although the above example is a method for simultaneously removing protein and other soluble components, it is also possible to first extract and remove the soluble components and then extract and remove the protein to obtain the desired defatted soybean extraction residue. For example, start with defatted soybeans.
Extract with an aqueous solution adjusted to around PH4.5 or an aqueous solution containing a hydrophilic organic solvent such as ethanol to remove soluble components in the form of excreted proteins, then extract and remove proteins with a neutral or alkaline aqueous solvent to defatte. A soybean extraction residue can also be obtained.
In any of the above methods, proteolytic oxygen (eg, pronase, papain) may be used to assist in protein extraction. The defatted soybean extraction residue obtained by this method has a protein content of less than 50%, other soluble components less than 30%, and insoluble components more than 40%, and has better water retention than defatted soybeans, and has a white color. It has a high alcohol content, and has an improved smell and flavor. The protein content and the content of other soluble components can be reduced by repeating the above operations or by appropriately combining the above operations. For the purpose of the present invention, the protein content should be about 30% or less, and the other soluble components should be about 10%.
It is particularly preferable that the amount of insoluble components be 60% or more. Additionally, it may be preferable to lower the protein content to about 13%. The defatted soybean extraction residue thus obtained contains a large amount of water, and is generally preferably subjected to a drying step next. A known drying method may be used, such as vacuum drying, drum drying, flash drying, ventilation drying, or a combination of two or more of these methods. As a special example, when the particle size of the raw material is fine, it is also possible to further add water to the water-containing extraction residue for dispersion and spray drying. In either case, the water content is preferably 10% or less. The particle size of the defatted soybean extraction residue of the present invention is not particularly limited and can be used as is, but better effects may be obtained by making the particle size finer. The defatted soybean used as the raw material for producing the defatted soybean extraction residue can have a variety of particle sizes, from flakes to powder. In order to obtain a product with a fine particle size, if the defatted soybean used as a raw material has a fine particle size and can be dried by spray drying, the dried product has a fine particle size and can be used as is. Further, if the dried product cannot be obtained as fine particles, the dried product may be crushed and classified as necessary. Regarding the process after drying, there are cases in which the product is made by only pulverization, the case where it is made into a product by only classification, the case where it is crushed after classification, and the case where it is classified after crushing, depending on the purpose. Very good. It may also be ground again if necessary. If the defatted soybeans used as raw materials have been sufficiently dehulled, they can be made into products by simply pulverizing them to a specified particle size, but it is difficult to obtain such high-quality defatted soybeans as raw materials, so it is generally necessary to also classify them. become. Whether the above dried product is classified and then crushed or crushed and then classified is preferably determined depending on the particle size of the dried product. The method of pulverization is not particularly limited, and for example, a hammer mill, roll mill, impact pulverizer, etc. may be used. The classification method is not particularly limited, and for example, dry classification methods such as sieving and air classification may be used as appropriate. The defatted soybean extraction residue thus obtained can generally be used as is, but it is preferable that 80% or more of the defatted soybean extraction residue has a particle size smaller than 0.15 mm. Therefore, it may be re-pulverized if necessary. The starch-degrading enzyme used in the present invention includes commercially available amylase preparations containing α-amylase, β-amylase, glucoamylase, etc., and germ powders of soybean flour, barley, wheat, rice, etc., which are natural products rich in amylase. generally titer: 100 mg, maltose/g-min. It is better to use the above. Therefore, even wheat flour, rice flour, etc. having low titer can be used as the starch degrading enzyme of the present invention by increasing the titer by a purification method known per se. The composition of the antiaging agent for starch foods in the present invention consists of pregelatinized starch and/or defatted soybean extraction residue and an amylolytic enzyme, and the composition ratio varies depending on the type and potency of the amylolytic enzyme. The amount of starch degrading enzyme is about 0.05 to 100 parts by weight per 100 parts by weight of pregelatinized starch and/or defatted soybean extraction residue, but generally, when using a commercially available amylase preparation, the amount is about 0.05 to 10 parts by weight. Amylase titer 100-500mg. When using germ powder of about maltose/g-min, it is preferable to add about 1 to 100 parts by weight. It is preferable that the particle size of the ingredients of the anti-aging agent of the present invention be comparable to that of rice flour, water-wheat flour, etc., which are the main components of starch foods. For grinding the ingredients,
The aforementioned hammer mill, roll mill, impact crusher, etc. can be used as appropriate. In addition, in order to produce an anti-aging agent, all the ingredients need to be mixed is the temperature below which the starch-degrading enzyme is deactivated.
There are no particular limitations, and for example, a V-type mixer, a horizontal cylindrical mixer, etc. can be used. Such an antiaging agent is preferably in powder form, and by adding about 0.5 to 20% by weight of raw starch as the main raw material, aging of starch foods can be significantly suppressed. When producing starch foods, the method or order of adding pregelatinized starch and/or defatted soybean extraction residue and starch degrading enzyme to raw starch is not particularly limited; It is preferable to mix it with raw starch such as rice flour or wheat flour, which is the main raw material. By adding them, the amount of water absorbed by rice flour and wheat flour increases, so it is possible to increase the amount of water added. Therefore, aging is suppressed by the progress of gelatinization of the starch contained in the raw rice flour or wheat flour, and the action of starch-degrading enzymes is also activated, which significantly suppresses the aging of starch foods produced by conventional methods. Ru. Pregelatinized starch, defatted soybean extract residue, and starch-degrading enzyme each exhibit an anti-aging effect even when added alone, but when used together, the effect becomes even more pronounced, resulting in a synergistic anti-aging effect. It has a preventive effect. The present invention will be explained in more detail below with reference to reference examples, experimental examples, and examples. In addition, in this specification, percentage (%)
represents weight percentage [% (weight/weight)] unless otherwise specified. Reference Example 1 Add 10 times the volume of water to low-denatured defatted soybean flour with a particle size of 0.15 mm or less, and extract at 30°C for 30 minutes while stirring.
The extract is removed by centrifugation, water is added to the solid material in an amount four times the amount of the raw material, and the mixture is stirred at 30°C for 30 minutes for extraction. Remove the extract by centrifugation again. Water is added to the solid substance to make a slurry with a solid content of 2.5%, and a powder of defatted soybean extraction residue is obtained by spray drying. This product has a drying loss of 3.1% and a crude protein content.
17.4%, other soluble components 9.8% insoluble components
69.7% or more than 95% had a particle size of 0.15 mm or less. Reference Example 2 Add 10 times the volume of an aqueous sodium hydroxide solution adjusted to pH 8.3 to low-denatured defatted soybean flour, extract at 70°C for 30 minutes, remove the extract by centrifugation, and collect the solid matter. Add 5 times the amount of water to the solids to make 30
Stir for 15 minutes at °C, wash with water, and centrifuge again to collect the solids. First, it is pre-dried using a drum dryer until the moisture content is approximately 40%, and then dried with hot air to reduce the moisture content to 6% or less. This is crushed using a pin mill, and 98 particles with a particle size of 0.15 mm or less are
% defatted soybean extraction residue is obtained. The crude protein content of this product is 20.4%, other soluble components are 7.3%,
The insoluble component is 66.3%. Reference example 3 Low modified defatted soybean flour with sodium hydroxide to pH8.5
Add 10 times the volume of the aqueous solution and extract at 70°C for 30 minutes. Remove the extract by centrifugation and collect the solids. Add 5 times the amount of water to the solid material and heat at 30°C.
The process of extracting for 15 minutes and then collecting solid matter by centrifugation is repeated twice. The solid material is first dried with a drum dryer until the moisture content is about 50%, and then vacuum dried to reduce the moisture content to about 5%. The dried material is pulverized using an atomizer equipped with a 0.5 mm screen. 96% of the particles are less than 0.25mm in size, and are separated from the finer particles by air classification.
A defatted soybean extraction residue corresponding to 60% is obtained. All of this is finer than 0.15mm. The crude protein content of this product was 7.6%, other soluble components were 5.1%, and insoluble components were 82.3%. Reference example 4 Add 10 times the amount of water to low-denatured defatted soybean flakes,
After heating to 90℃ for 20 minutes, stirring and extracting for 10 minutes, remove the extract liquid by centrifugation. To the solid obtained, add 4 times the amount of water to the solid, wash with water, and centrifuge. Collect solid matter. This solid is dried in a drum dryer to a moisture content of about 9% and ground in a Fitzmill equipped with a 1 mm diameter screen. 40% of the crushed products had a particle size of 0.25 mm or less. This pulverized product was passed through a sieve with an opening of 0.20 mm to obtain a passable product (approximately 35% of the pulverized product). This was re-pulverized to a particle size of 0.15 mm or less to obtain a defatted soybean extraction residue. Loss on drying of this product is 8.9%, crude protein content is 31.9%, and other soluble components are 11.1%.
%, and the insoluble component was 49.1%. Experimental Example 1 The defatted soybean extraction residue obtained in Reference Example 1 was
0.3 and 7% by weight were added to Joshin flour, and the defatted soybean extraction residue was added to the non-additive group and 3.
% addition group, 0.05% of starch degrading enzyme (β-amylase, titer: 2800 mg maltose/g-min) was added and mixed, and dumplings were prepared by the following method. Collect 200g of Joshin flour containing defatted soybean extract residue (and starch degrading enzyme) into a Brabender Plastograph bowl, add water to 180B.U. to prepare dough, and mix it into a dough with a diameter of 4.5cm. Thickness 1.5cm
After molding, the mixture was sealed with plastic film, heat sterilized at 100°C for 30 minutes, and then cooled to form dumplings. The dumplings were stored at 10°C and 25°C, and the hardness of the dumplings was measured over time using a texturometer (manufactured by Zenken Co., Ltd.). The results are shown in Tables 1 and 2. By adding the defatted soybean extraction residue, the amount of water added until the dough reached a certain hardness (180 B.U.) increased; Dango prepared using a combination of fatty soybean extract residue and starch-degrading enzyme was significantly inhibited from aging.

【表】【table】

【表】 実験例 2 上新粉に対し、α化澱粉である寒梅粉を0、ま
たは10%添加し、さらにα化米粉無添加区および
10%添加区には、澱粉分解酵素(松谷化学製マツ
ラーゼMOO)を0.1%添加し、実験例1の方法で
団子を調製して、10℃および25℃に保存して、経
日的に団子の硬さをテクスチユロメーターで測定
した。 結果は第3表のとおりであり、α化米粉と澱粉
分解酵素を併用した団子は顕著に老化が抑制され
た。
[Table] Experimental example 2 Added 0 or 10% of Kanbai powder, which is pregelatinized starch, to Joshin flour, and added pregelatinized rice flour-free group and
In the 10% addition group, 0.1% of starch-degrading enzyme (Matsurase MOO manufactured by Matsutani Chemical Co., Ltd.) was added, and dumplings were prepared by the method of Experimental Example 1, stored at 10℃ and 25℃, and the dumplings were grown over time. The hardness was measured using a texturometer. The results are shown in Table 3, and the aging of the dumplings prepared in combination with pregelatinized rice flour and starch degrading enzyme was significantly suppressed.

【表】 実験例 3 上新粉に対し、参考例2で得た脱脂大豆抽出残
渣を0および3%添加し、さらに低変性脱脂大豆
粉(不二製油製、ゴールデンプロテインGF)を
0.3%添加し、実験例1)の方法で団子を調製し
た。 10℃および25℃に保存して経日的に団子の硬さ
を測定した。 結果は第4表のとおりであり、脱脂大豆抽出残
渣と澱粉分解酵素を含有する脱脂大豆粉を併用し
た団子は顕著に老化が抑制された。
[Table] Experimental Example 3 0 and 3% of the defatted soybean extraction residue obtained in Reference Example 2 were added to Joshin flour, and low-denatured defatted soybean flour (Fuji Oil Co., Ltd., Golden Protein GF) was added.
0.3% was added and dumplings were prepared by the method of Experimental Example 1). The hardness of the dumplings was measured over time after storage at 10°C and 25°C. The results are shown in Table 4, and the aging of the dumplings prepared in combination with the defatted soybean extraction residue and defatted soybean flour containing starch degrading enzyme was significantly suppressed.

【表】 実施例 1 上新粉1Kgに参考例3で得た脱脂大豆抽出残渣
50gと市販の澱粉分解酵素(長瀬産業製#1500)
0.5gを添加、混合して団子用米粉を用意する。
この粉に2分間茹でて脱水したよもぎ100gと水
950gを加えて混浬し生地をつくつた。生地を30
gずつに分割し、あらかじめ用意しておいたねり
あん20gを中あんとして包あんし、笹につつんで
20分間蒸して笹だんごとした。 脱脂大豆抽出残渣および澱粉分解酵素を含まな
い原料粉から調製した製品と比較したところ、や
わらかくて、ねばりのある食感が長時間保持され
た。 実施例 2 小麦粉(強力粉)500gに参考例3で得た脱脂
大豆抽出残渣15gと澱粉分解酵素(松谷化学製マ
ツラーゼMOO)0.5gを添加混合してパン用粉末
を用意する。この粉に水330g、ドライイースト
10g、上白糖30g、パン用シヨートニング25g、
食塩5gをミキサーで練合しドウをつくる。常法
どおり発酵、ガス抜きを行ない焙焼してパンとす
る。密封して冷蔵庫に保存したとき、やわらかい
食感を保持した。 実施例 3 小麦粉500g、寒梅粉25g、参考例4で得た脱
脂大豆抽出残渣10gおよび澱粉分解酵素0.3gを
あらかじめよく混合し、これに水340g、ドライ
イースト10g、上白糖30g、バター25g、食塩5
gを練合してドウをつくり、常法によりパンをつ
くる。 密封して保存したとき、やわらかい食感を保持
した。 実施例 4 小麦粉500gと上新粉25gの混合粉末にさらに
参考例2で得た脱脂大豆抽出残渣10gと澱粉分解
酵素0.5gを加えてよく混合し、これに水335g、
ドライイースト15g、上白糖30g、パン用シヨー
トニング25g、食塩5gを練合してドウをつくり
常法によりパンをつくる。 密封して冷蔵庫に保存したときやわらかい食感
を保持した。 実施例 5 参考例4で得た脱脂大豆抽出残渣および寒梅粉
1Kgを夫々澱粉分解酵素(マツラーゼMOO)10
gとV型混合機中で均一に混合して2種の老化防
止剤を用意する。 上新粉1Kgづつに上記の老化防止剤を夫々50g
加えこれに水950gを加えて充分にこねつけ約20
分間蒸して臼でつき、放冷後成型し、串ざしし、
別に用意したたれをつけて串だんごとする。密封
して20℃で保存したとき、いずれもやわらかい粘
りのある食感を保持した。
[Table] Example 1 Add defatted soybean extraction residue obtained in Reference Example 3 to 1 kg of Joshin flour
50g and commercially available starch degrading enzyme (#1500 manufactured by Nagase Sangyo)
Add 0.5g and mix to prepare rice flour for dumplings.
Add this powder to 100g of mugwort that was boiled for 2 minutes and dehydrated, and water.
Add 950g and knead to make dough. 30 pieces of dough
Divide into 2g portions, use 20g of the prepared nerian as a middle layer, wrap the dough, and wrap it in bamboo leaves.
Steamed for 20 minutes and made into bamboo dumplings. When compared with products prepared from defatted soybean extraction residue and raw material flour that does not contain starch-degrading enzymes, the product retains its soft and sticky texture for a long time. Example 2 15 g of the defatted soybean extraction residue obtained in Reference Example 3 and 0.5 g of starch degrading enzyme (Maturase MOO manufactured by Matsutani Chemical Co., Ltd.) were added and mixed to 500 g of wheat flour (strong flour) to prepare bread powder. This powder, 330g of water, and dry yeast
10g, white sugar 30g, bread flour toning 25g,
Mix 5g of salt with a mixer to make a dough. Ferment, degas, and roast as usual to make bread. It retained its soft texture when sealed and stored in the refrigerator. Example 3 500 g of wheat flour, 25 g of Kanbai powder, 10 g of the defatted soybean extraction residue obtained in Reference Example 4, and 0.3 g of starch degrading enzyme were mixed well in advance, and to this was added 340 g of water, 10 g of dry yeast, 30 g of white sugar, 25 g of butter, and salt. 5
Knead g to make a dough and make bread using the usual method. When stored in a sealed container, it retained its soft texture. Example 4 10 g of the defatted soybean extraction residue obtained in Reference Example 2 and 0.5 g of starch degrading enzyme were further added to a mixed powder of 500 g of wheat flour and 25 g of Joshin flour, and mixed well. To this was added 335 g of water,
Knead 15g of dry yeast, 30g of caster sugar, 25g of bread flour, and 5g of salt to make a dough and make bread using the usual method. It retained its soft texture when sealed and stored in the refrigerator. Example 5 The defatted soybean extraction residue obtained in Reference Example 4 and 1 kg of Kanbai powder were each treated with starch degrading enzyme (Matulase MOO) 10
Prepare two types of anti-aging agents by uniformly mixing them in a V-type mixer. Add 50g of each of the above anti-aging agents to each 1kg of Joshin powder.
Add 950g of water to this and knead thoroughly for about 20 minutes.
Steam for a minute, pound in a mortar, let cool, then shape and skewer.
Dip the sauce prepared separately and serve as skewered dumplings. When sealed and stored at 20°C, all of them retained their soft and sticky texture.

Claims (1)

【特許請求の範囲】[Claims] 1 α化した澱粉および(または)脱脂大豆抽出
残渣と澱粉分解酵素とからなる澱粉食品用老化防
止剤。
1. An anti-aging agent for starch foods consisting of pregelatinized starch and/or defatted soybean extraction residue and a starch degrading enzyme.
JP15983877A 1977-12-28 1977-12-28 Antiiageing agent for starch food and production of said food Granted JPS5492641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15983877A JPS5492641A (en) 1977-12-28 1977-12-28 Antiiageing agent for starch food and production of said food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15983877A JPS5492641A (en) 1977-12-28 1977-12-28 Antiiageing agent for starch food and production of said food

Publications (2)

Publication Number Publication Date
JPS5492641A JPS5492641A (en) 1979-07-23
JPS6147495B2 true JPS6147495B2 (en) 1986-10-20

Family

ID=15702335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15983877A Granted JPS5492641A (en) 1977-12-28 1977-12-28 Antiiageing agent for starch food and production of said food

Country Status (1)

Country Link
JP (1) JPS5492641A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279746A (en) * 1985-10-01 1987-04-13 Showa Sangyo Kk Prevention of retrogradation of starchy food
JPH0463544A (en) * 1990-07-02 1992-02-28 Ezaki Glico Co Ltd Method for preparing starchy food
WO2007015400A1 (en) * 2005-08-01 2007-02-08 Fuji Oil Company, Limited Rice cake excellent in low temperature storage property and process for producing the same
WO2011142439A1 (en) * 2010-05-13 2011-11-17 オリエンタル酵母工業株式会社 Method for improving the quality of bread, etc.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116247A (en) * 1973-03-09 1974-11-06
JPS5024468A (en) * 1973-07-04 1975-03-15
JPS51121540A (en) * 1975-04-17 1976-10-23 Japan Maize Prod Production of cooked noodles
JPS52105239A (en) * 1976-03-01 1977-09-03 Keiji Fujine Production of noodles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116247A (en) * 1973-03-09 1974-11-06
JPS5024468A (en) * 1973-07-04 1975-03-15
JPS51121540A (en) * 1975-04-17 1976-10-23 Japan Maize Prod Production of cooked noodles
JPS52105239A (en) * 1976-03-01 1977-09-03 Keiji Fujine Production of noodles

Also Published As

Publication number Publication date
JPS5492641A (en) 1979-07-23

Similar Documents

Publication Publication Date Title
US4435429A (en) Processing aqueous treated cereals
JP4393385B2 (en) Rice flour production method and its use
US6610349B1 (en) Milled cereal by-product which is an additive for increasing total dietary fiber
CA2289498C (en) Milled cereal by-product which is an additive for increasing total dietary fiber
JPS6012958A (en) Easily dispersible food fiber product and production thereof
JP2938471B2 (en) Foods and beverages containing water-soluble dietary fiber
NZ202330A (en) Production of foodstuffs from treated whole cereal grains
JP3075556B2 (en) Method for producing rice flour and processed food using it
CN107347954A (en) A kind of preparation method for improving whole-wheat bread baking quality
JPH06165658A (en) Organic compound
JP4035308B2 (en) Process for producing processed grain germs
JPS6147495B2 (en)
KR101395691B1 (en) Manufacturing for powder of synurus deltoides and making of rice cake comprising synurus deltoides powder thereof
KR101845048B1 (en) Gluten-free rice bread and manufacturing method thereof
JPH06296471A (en) Production of noodle of 100% sweet potato powder
JP5782270B2 (en) Rice flour blended powder for making confectionery and confectionery using the same
US2025705A (en) Manufacture of mill products for alimentary purposes and of paste goods and baked products from such milled products
KR101871758B1 (en) Composition for Retrogradation Delay Tteok Comprising Mulberry Leave Powder and Method the Same
JPS6320501B2 (en)
JPS5820178A (en) Preparation of sesame powder
JPS5858065B2 (en) Flour processed food and its manufacturing method
JPH0276545A (en) Health food composed mainly of gelatinized whole rice flour and preparation thereof
JPS6133532B2 (en)
US2621126A (en) Process of manufacturing foodstuffs from cereals
JPH04281764A (en) Production of drink and food