JPS6279746A - Prevention of retrogradation of starchy food - Google Patents

Prevention of retrogradation of starchy food

Info

Publication number
JPS6279746A
JPS6279746A JP60216096A JP21609685A JPS6279746A JP S6279746 A JPS6279746 A JP S6279746A JP 60216096 A JP60216096 A JP 60216096A JP 21609685 A JP21609685 A JP 21609685A JP S6279746 A JPS6279746 A JP S6279746A
Authority
JP
Japan
Prior art keywords
amylase
starch
aging
enzyme
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60216096A
Other languages
Japanese (ja)
Inventor
Shigetaka Okada
岡田 茂孝
Masataka Higashihara
東原 昌孝
Shinsuke Mitsuyoshi
三吉 新介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKASHI
Showa Sangyo Co Ltd
Osaka City
Original Assignee
OOSAKASHI
Showa Sangyo Co Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKASHI, Showa Sangyo Co Ltd, Osaka City filed Critical OOSAKASHI
Priority to JP60216096A priority Critical patent/JPS6279746A/en
Publication of JPS6279746A publication Critical patent/JPS6279746A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cereal-Derived Products (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make it possible to produce amylolysis below the gelatinization temperature of starch and prevent the retrogradation of a starchy food, e.g. breads or dumplings, etc., with ready control and good thermal stability and economic efficiency, by using beta-amylase produced by bacteria. CONSTITUTION:For example, Bacillus megaterium IFO3003, etc., is cultivated to give beta-amylase. >=0.5 unit (U), based on 1g starch or grain flour in the raw material is normally added to a starchy food in a suitable step depending on the kind, form, production process, etc., of the starchy food.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は細菌の生産するβ−アミラーゼを使用したでん
ぷん質食品の老化を防止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for preventing the aging of starchy foods using β-amylase produced by bacteria.

(従来の技術) 糊化したでんぷんの老化現象については従来から研究さ
れ、また老化によって生じる食品の物性変化を防ぐため
の、いわゆる老化防止方法についても種々の方法が提案
されている。その多くは乳化剤や抱水剤などの物質を老
化防止剤としてでんぷん質食品に添加するものであるが
、これまでに提案された老化防止剤としては次のような
ものがある。
(Prior Art) The aging phenomenon of gelatinized starch has been studied for a long time, and various methods for preventing aging have been proposed to prevent changes in the physical properties of foods caused by aging. Most of them involve adding substances such as emulsifiers and hydrating agents to starchy foods as anti-aging agents, and the anti-aging agents that have been proposed so far include the following.

(ll糖類      ショ糖、麦芽糖、ぶどう糖果糖
、[I!、デキストリン等 (2)t1アルコール  ソルビトール、マルチトール
等 (31Ml 肪酸エステル シフ糖脂肪酸エステル、脂
肪酸エステルモノグリセ リド等 (4)多糖      こんにゃく、ヤマノイモ等(5
)  タンパク   大豆タンパク、小麦グルテン等 これらは老化防止剤としてそれぞれ効果を有するもので
はあるが、糖類、糖アルコール、脂肪酸エステル等では
食味を大きく変化させろ欠点があり、また多糖、タンパ
ク等は効果のある食品が限られ、しかも製品ロフトによ
って効果バラツキを生じる欠点がある。
(1l sugars sucrose, maltose, glucose fructose, [I!, dextrin, etc.) (2) T1 alcohols sorbitol, maltitol, etc. (31Ml fatty acid esters Schiff sugar fatty acid ester, fatty acid ester monoglyceride, etc.) (4) Polysaccharides Konjac, yam, etc. ( 5
) Proteins Soy protein, wheat gluten, etc. Each of these has an effect as an anti-aging agent, but sugars, sugar alcohols, fatty acid esters, etc. have the disadvantage of greatly changing the taste, and polysaccharides, proteins, etc. have no effect. The disadvantage is that the food available is limited and the effectiveness varies depending on the product loft.

老化防止剤としては以上のほか、a−1β−アミラーゼ
、グルコアミラーゼ等の酸素剤が知られている。
In addition to the above-mentioned anti-aging agents, oxygen agents such as a-1β-amylase and glucoamylase are known.

そもそもでんぷん質食品の老化は、加熱調理によって糊
化し、互いに水分子をはさんで膨潤した状態となったで
んぷん中の長鎖α−1,4グルカンが、冷却保存中に再
結合することにより生じる現象であるが、アミラーゼは
との長鎖α−1,4グルカンを分断してその再結合を防
げるので、゛これにより老化を遅延させる効果をあられ
すものである。これら酸素剤は前記のような老化防止剤
と異って、食味に大きな変化をもたらさない利点がある
In the first place, aging of starchy foods occurs when the long-chain α-1,4 glucan in starch, which becomes gelatinized during cooking and becomes swollen with water molecules sandwiched between them, recombines during cold storage. This phenomenon occurs because amylase can cleave long-chain α-1,4 glucans and prevent their recombination, which has the effect of delaying aging. These oxygen agents have the advantage that, unlike the above-mentioned anti-aging agents, they do not cause any major changes in taste.

その作用機作は、食品が加熱調理され、でんぷんが糊化
すると同時に、急激に長鎖α−1゜4グルカンを分解す
るものと考えられている。
Its mechanism of action is thought to be that when food is cooked and starch gelatinizes, long-chain α-1°4 glucan is rapidly decomposed.

糊化する以前の、いわゆる生でんぷんの状態では、この
ような分解は殆どすすまず、また、加熱により品温が上
昇するにつれて酵素剤自体の熱による失活が急速にすす
むので、使用する酵素剤の熱安定性が高い程、加熱調理
中のでんぷんの分解がすすみ、従って老化防止効果も太
きいO この目的に使用される酵素剤としてはα−1β−アミラ
ーゼ、グルコアミラーゼ等があげられるが、α−アミラ
ーゼは老化遅延効果を発現するものの、でんぷん質食品
の骨格をもくずしてしまい、いわゆるブレの現象を起こ
す欠点がある。
In the so-called raw starch state before gelatinization, such decomposition hardly occurs, and as the temperature of the product increases due to heating, the enzyme agent itself is rapidly deactivated due to heat, so the enzyme agent used is The higher the thermal stability of the starch, the faster the decomposition of starch during cooking, and therefore the stronger the anti-aging effect. Although α-amylase exhibits the effect of delaying aging, it has the disadvantage that it destroys the skeleton of starchy foods, causing a so-called blurring phenomenon.

従って、使用にあたり望ましい効果を得るためのコント
ロールが難しく、この点で実用的とはいい難い。
Therefore, it is difficult to control the use to obtain the desired effect, and in this respect it is difficult to say that it is practical.

グルコアミラーゼはa−アミラーゼのようにで八ぶ九質
食品の骨格をくずすことはないが、熱安定性にすぐれた
ものがなり、シかも加熱処理中のでんぷん分解が極めて
わずかであるため、多量の酵素を必要とし、そのうえグ
ルコアミラーゼによる分解で生成したグルコースによっ
て加熱後の食品の着色が顕著であるため、実際に老化防
止剤として利用されることは殆どない。
Unlike α-amylase, glucoamylase does not break down the structure of fatty foods, but it has excellent thermal stability and decomposes starch during heat treatment very little, so it can be used in large quantities. In addition, it is rarely used as an anti-aging agent because the glucose produced by the decomposition by glucoamylase causes noticeable coloring of foods after heating.

サラニ市販の食品用グルコアミラーゼの殆どはa−アミ
ラーゼが混在しており、前記のα−アミラーゼ使用によ
る欠点が生ずるため、この点からもグルコアミラーゼは
実用的な老化防止剤とはいえない。
Most of the commercially available glucoamylases for food contain α-amylase, which causes the disadvantages caused by the use of α-amylase. From this point of view as well, glucoamylase cannot be considered a practical anti-aging agent.

これに対し、β−アミラーゼは前記α−アミラーゼ、グ
ルコアミラーゼのような欠点がなく、グルコアミラーゼ
よりも熱安定性にすぐれ、また分解生成するのもマルト
ースであるため、加熱後の食品の着色も少いので酵素剤
としては最もすぐれているといえる。
On the other hand, β-amylase does not have the disadvantages of α-amylase and glucoamylase, has better thermal stability than glucoamylase, and also produces maltose, so it does not discolor foods after heating. Since the amount is small, it can be said to be the best enzyme agent.

しかしながら、実際にはβ−アミラーゼを単独で多量に
使用しても限られた老化防止効果しか得られないため、
一般に他の物質と併用されることが多い。(たとえば特
開昭54−493また、老化防止剤として従来使用され
たβ−アミラーゼは大豆起源のものであって、微生物起
源のものを老化防止の目的で用いた例は報告されていな
い。
However, in reality, even if β-amylase is used alone in large amounts, only a limited anti-aging effect can be obtained.
Generally, it is often used in combination with other substances. (For example, JP-A-54-493) β-amylase, which has been conventionally used as an anti-aging agent, is derived from soybean, and there have been no reports of using microbial-derived products for anti-aging purposes.

(発明の解決しようとする問題点) 本発明は細菌の生産するβ−アミラーゼ(以下「細菌由
来β−アミラーゼ」と略称する)が高い熱安定性を有す
るうえ、でんぷんが糊化湯度に達しない時点で著しく高
いでんぷん分解性を有するという、従来の大豆起源のβ
−アミラーゼにはみられない性質をもつことを発見した
ことに基き、乙のβアミラーゼの性質を利用して、でん
ぷん質食品の老化防止効果をいっそう高めることのでき
る方法を提供するものである。
(Problems to be Solved by the Invention) The present invention is characterized in that β-amylase produced by bacteria (hereinafter referred to as "bacterial β-amylase") has high thermal stability, and starch reaches a gelatinized temperature. Conventional soybean-based β
- Based on the discovery that the present invention has properties not found in amylase, the present invention provides a method for further enhancing the anti-aging effects of starchy foods by utilizing the properties of β-amylase.

(問題を解決するための手段) 本発明者らは、細菌の生産するβ−アミラーゼ(細菌由
来β−アミラーゼ)が高い熱安定性を有すると同時に、
従来の大豆起源のβ−アミラーゼ(以下「大豆β−アミ
ラーゼ」と略称する)にはみられない特異なでんぷん分
解作用をもつことを発見した。
(Means for Solving the Problem) The present inventors have discovered that β-amylase produced by bacteria (bacterial-derived β-amylase) has high thermostability, and at the same time
It was discovered that it has a unique starch-degrading action not found in conventional soybean-derived β-amylase (hereinafter abbreviated as "soybean β-amylase").

バチルス属、シュードモナス属、ストレプトマイセス属
等に属する細菌がβ−アミラーゼを生産することは従来
知られていたが、以上のようなβ−アミラーゼの性質に
ついてはこれまで知られていなかったものである。
Although it was previously known that bacteria belonging to the genus Bacillus, Pseudomonas, and Streptomyces produce β-amylase, the properties of β-amylase as described above were unknown until now. be.

これを具体的な例で示すなら、たとえばバチルス属に属
するバチルス・メガテリウムIFO3003を培養して
得られる培養物を精製したものを大豆β−アミラーゼと
比較すると、第1図に示すように、大豆β−アミラーゼ
では小麦でんぷんの糊化温度である60℃以下では殆ど
でんぷんを分解せず、60℃以上ではじめてでんぷんの
分解がすすむのに対し、細菌由来β−アミラーゼでは糊
化温度(60℃)以下ですでに著しいでんぷん分解能力
(マルトース生成量で表わす)が認められる。
To illustrate this with a specific example, if we compare the purified culture obtained by culturing Bacillus megaterium IFO3003, which belongs to the genus Bacillus, with soybean β-amylase, as shown in Figure 1, - Amylase hardly decomposes starch below the gelatinization temperature of wheat starch (60℃), and decomposition of starch only progresses at temperatures above 60℃, whereas bacterial β-amylase does not degrade starch below the gelatinization temperature (60℃). A remarkable ability to decompose starch (expressed in the amount of maltose produced) has already been observed.

また、第2図にみるように、大豆β−アミラーゼは糊化
温度以下においては分解時間を延長しても分解率の上昇
はわずかであるのに対し、細菌由来β−アミラーゼは糊
化温度以下においても分解率は時間とともに顕著な上昇
を示している。そして、糊化温度付近(60℃)で酵素
反応を続けると、でんぷんの分解率は細菌由来β−アミ
ラーゼでは大豆β−アミラーゼの場合よりも極めて大巾
な増加率で上昇することも第2図から認められる。
Furthermore, as shown in Figure 2, the decomposition rate of soybean β-amylase increases only slightly at temperatures below the gelatinization temperature even if the decomposition time is extended, while for bacterial β-amylase The decomposition rate also shows a remarkable increase with time. Furthermore, if the enzymatic reaction is continued near the gelatinization temperature (60°C), the starch decomposition rate increases at a much greater rate with bacterial β-amylase than with soybean β-amylase, as shown in Figure 2. It is recognized from

さらに、第3図に示すように、生でんぷんを常温(30
℃)でブレインキュベートしたのち、酵素を添加して反
応温度を上昇させつつ酵素反応を行ったとき、細菌由来
β−アミラーゼでは大豆β−アミラーゼよりも早くでん
ぷん分解が起こり、温度上昇にともなって大豆アミラー
ゼをはるかに上まわるでんぷん分解率を示すことが認め
られる。
Furthermore, as shown in Figure 3, raw starch was prepared at room temperature (30
When the enzyme reaction was carried out by adding an enzyme and increasing the reaction temperature after incubation at 10°F (°C), bacterial β-amylase decomposed starch faster than soybean β-amylase, and as the temperature increased, soybean It is recognized that the starch decomposition rate is far higher than that of amylase.

これらの試験において、小麦生でんぷん20oIIIg
、pH6,0の500mM酢酸緩衝液1mlに脱イオン
水を加え、所定温度で2分間ブレインキュベートしたの
ち20U/mj酵素液0.5mlを加え、所定温度で反
応させ、生成した還元糖をSomo g y 1−Na
 l s o n法で定量し、マルトースとして表わし
た。
In these tests, wheat raw starch 20oIIIg
, add deionized water to 1 ml of 500 mM acetate buffer, pH 6.0, and incubate for 2 minutes at the specified temperature, then add 0.5 ml of 20 U/mj enzyme solution, react at the specified temperature, and transfer the resulting reducing sugar to Somo g. y 1-Na
It was quantified by the lson method and expressed as maltose.

このような細菌由来β−アミラーゼの特異な性質は、こ
こで用いたバチルス・メガテリウムIF03003以外
の細菌、たとえばバチルス・ポリミキサ、バチルス・サ
ーキュランス、バチルス・セレウス等、あるいはシュー
ドモナス属、ストレプトマイセス属に属するβ−アミラ
ーゼ生産菌の生産するβ−アミラーゼのいずれにも認め
られ、従来公知の大豆β−アミラーゼのそれとは異なる
ことが明らかになった。これら細菌由来β−アミラーゼ
の特性は前記小麦でんぷんのみならず、その他のでんぷ
んに対しても同様に発揮されるものである。
These unique properties of bacterial-derived β-amylase may be due to bacteria other than Bacillus megaterium IF03003 used here, such as Bacillus polymyxa, Bacillus circulans, Bacillus cereus, etc., or Pseudomonas and Streptomyces. This was found in all β-amylases produced by the β-amylase-producing bacteria belonging to the same group, and it was revealed that this was different from that of conventionally known soybean β-amylases. These characteristics of bacterial-derived β-amylase are exhibited not only for the above-mentioned wheat starch but also for other starches.

以上のように本酵素は糊化開始温度以下の生でんぷんに
作用する能力をもっている。このため、生でんぷんに本
酵素を加えて加熱すると、でんぷんが糊化しない温度域
において酵素が失活せずに酵素反応が進行する。
As described above, this enzyme has the ability to act on raw starch at temperatures below the gelatinization initiation temperature. Therefore, when this enzyme is added to raw starch and heated, the enzymatic reaction proceeds without the enzyme being deactivated in a temperature range where starch does not gelatinize.

小麦粉中には活性の高いβ−アミラーゼが存在するが、
これは上記のような糊化しないでんぷんへの作用は認め
られない。
Although highly active β-amylase exists in wheat flour,
This has no effect on starch that does not gelatinize as described above.

従って本酵素の上記のような作用は、従来からいわれて
いるような、β−アミラーゼはでんぷんの糊化温度以下
では作用しない、糊化点に達するとβ−アミラーゼは熱
により失活するので作用しない、という常識を破るもの
である。
Therefore, the above-mentioned action of this enzyme is due to the conventional belief that β-amylase does not work below the gelatinization temperature of starch, and that once the gelatinization point is reached, β-amylase is inactivated by heat. This breaks the common sense of not doing so.

このようなβ−アミラーゼをでんぷんを含む食品の老化
防止に利用するなら、従来よりもいっそう大きな効果が
期待でき、産業上有利である。
If such β-amylase is used to prevent aging of starch-containing foods, it can be expected to have even greater effects than conventional methods, and is industrially advantageous.

本発明は、以上のような細菌由来β−アミラーゼを用い
てでんぷん質食品の老化防止をはかるものである。
The present invention aims to prevent starchy foods from aging using the above-mentioned bacterial-derived β-amylase.

細菌由来β−アミラーゼは、バチルス属、シュードモナ
ス属、ストレプトマイセス属等に属するβ−アミラーゼ
生産菌を常法により培養して得られた培養物、もしくは
これを精製したものを用いる。これらは対象とするでん
ぷん質食品の種類、形態、製法等に応じて適宜原材料中
、あるいは途中の工程で添加して使用される。
As the bacterial-derived β-amylase, a culture obtained by culturing β-amylase-producing bacteria belonging to the genus Bacillus, Pseudomonas, Streptomyces, etc. by a conventional method, or a purified product thereof is used. These are used by being added to the raw materials or in the middle of the process depending on the type, form, manufacturing method, etc. of the target starchy food.

酵素の使用量は食品の種類、希望する効果の程度等によ
り異なるが、原材料中のでんぷんないし穀粉1グラム当
りおよそ0.5単位(U)以上であれば十分である。な
お、1単位とは40℃において1分間に1μモルのマル
トースを生産する酵素量をいい、国際単位である。
The amount of enzyme used varies depending on the type of food, the degree of desired effect, etc., but it is sufficient to use approximately 0.5 units (U) or more per gram of starch or flour in the raw materials. Note that 1 unit refers to the amount of enzyme that produces 1 μmol of maltose per minute at 40°C, and is an international unit.

細菌由来β−アミラーゼは単独で用いても十分な効果を
泰するが、必要により、他の酵素や糖類、乳化剤等、公
知の老化防止剤の一種またはそれ以上と併用してもよい
Bacterial-derived β-amylase exhibits a sufficient effect even when used alone, but if necessary, it may be used in combination with one or more known anti-aging agents such as other enzymes, saccharides, and emulsifiers.

本発明方法によればパン類、団子、うぃろう、絣類、求
肥等の菓子類、およびその他のでんぷん質食品の老化防
止を極めて効果的に行うことができる。
According to the method of the present invention, it is possible to very effectively prevent the aging of breads, dumplings, uiro, Kasuri, sweets such as gyuhi, and other starchy foods.

(実施例) 実施例1 食パンを70%中種法によって作成した。(Example) Example 1 Bread was made using the 70% dough method.

配合 上級強力粉(昭和産業■製ネオン)   3500gイ
ースト             100gイーストフ
ード            5g水        
             2000醜I捜上温度  
           24℃発酵時間       
      4時間発酵室温度           
 28℃熟成終点温度          295℃本
捏(β−アミラーゼ添加) 上級小粉粉(tt   )    1500 g砂糖 
             200gグルコース   
         100g食塩          
     100gショートニング         
 250g脱脂粉乳            100g
混捏内訳   低速2分 高速4分 ↓ ショートニング添加 ↓ 中速2分 高速5分 捏上温度            28℃フロア−タイ
ム20分 ベンチタイム15分焙炉温度  38℃ 焙
炉時間 40分焼成後15℃にて保存し官能試験した。
Combined high-grade strong flour (Neon manufactured by Showa Sangyo) 3500g yeast 100g yeast food 5g water
2000 Ugly I Sojo Temperature
24℃ fermentation time
4 hours fermentation room temperature
28℃ Ripening end point temperature 295℃ Real kneading (β-amylase added) High-grade fine powder (TT) 1500 g Sugar
200g glucose
100g salt
100g shortening
250g skimmed milk powder 100g
Kneading details Low speed 2 minutes High speed 4 minutes ↓ Shortening addition ↓ Medium speed 2 minutes High speed 5 minutes Kneading temperature 28℃ Floor time 20 minutes Bench time 15 minutes Roasting temperature 38℃ Roasting time 40 minutes After baking, store at 15℃ A sensory test was conducted.

(結果) ○評価  ○: 食感良好 X: 食感悪 ×X:不可食 実施例2,3,4の評価表示も同じ。(result) ○ Evaluation ○: Good texture X: Bad texture ×X: Inedible The evaluation display for Examples 2, 3, and 4 is also the same.

○酵素単位 添加酵素の単位(U)は、国際単位を用いた。○Enzyme unit The unit (U) of the added enzyme was the international unit.

40℃において1分間に1μmolのマルトースを生成
する酵素量を1単位とする。
One unit is the amount of enzyme that produces 1 μmol of maltose per minute at 40°C.

実施例2 ういろう (方法) 梗米粉100重量部、  砂[114重量部水262重
1部に所定量のβ−アミラーゼを加え、捜上後、上記配
合物400gを塩化ビニリデンケーシングチューブにつ
め込み両端を密封後、沸騰水で1時間加熱し、室温で3
0分放置後、冷蔵保存(4℃)した後官能試験を行った
Example 2 Uiro (method) A predetermined amount of β-amylase was added to 100 parts by weight of fried rice flour, 114 parts by weight of sand, and 262 parts by weight of water. After sealing, heat in boiling water for 1 hour, then heat at room temperature for 3 hours.
After being left for 0 minutes, it was stored refrigerated (4°C) and then subjected to a sensory test.

(結果) 実施例3 うどん (方法) 麺用小麦粉(昭和産業■製、星空臼)100重量部、食
塩2W量部及び水32重量部に所定量のβ−アミラーゼ
を加え、常法による混捏、成型、ロール圧延を行って得
た厚さ2.5mの麺帯をNo、 10の切刃を用い細切
してうどんの麺線とし、長さ300mmに切断したもの
を沸騰水で25分間ゆで上げ、5℃で保存した後、沸騰
水中で2分間湯洗し、官能試験を行った。
(Results) Example 3 Udon (Method) A predetermined amount of β-amylase was added to 100 parts by weight of wheat flour for noodles (manufactured by Showa Sangyo ■, Hoshizorausu), 2W parts of salt, and 32 parts by weight of water, and kneaded by a conventional method. Noodle strips with a thickness of 2.5 m obtained by molding and rolling were cut into udon noodle strips using a No. 10 cutting blade, and the pieces were cut into 300 mm lengths and boiled in boiling water for 25 minutes. After raising the temperature and storing it at 5°C, it was washed in boiling water for 2 minutes and subjected to a sensory test.

(結果) 実施例4 だんご 餅粉100重量部、梗米粉200重量部、馬鈴薯澱粉6
.4重量部、水200重量部に所定量のβ−アミラーゼ
を加え均一に練り、20gずつ分割成型後宮ぺい容器中
で60〜65℃に1時間保持後セイロを用いて20分蒸
煮し、15℃で保存後官能試験を行った。
(Results) Example 4 100 parts by weight of dango mochi powder, 200 parts by weight of fried rice flour, 6 parts by weight of potato starch
.. A predetermined amount of β-amylase was added to 4 parts by weight and 200 parts by weight of water, kneaded uniformly, molded into 20g portions, kept at 60 to 65°C for 1 hour in a steamer, then steamed for 20 minutes in a steamer at 15°C. A sensory test was conducted after storage.

(発明の効果) 前記したように、本発明で使用する細菌由来β−アミラ
ーゼはでんぷんの糊化温度以下で顕著なでんぷん分解性
を示し、しかも高い熱安定性を有するので、従来用いら
れてきた大豆β−アミラーゼにくらべてでんぷんの分解
がすすみ、従って大きな老化防止効果が得られる。そし
てでんぶ八を糊化させずに酵素を作用させられるので、
糊化による粘度上昇を避けることができ、食品製造工程
中の材料のとりあつかいが容易となり、酵素反応のコン
トロールもし易くなる。
(Effects of the Invention) As described above, the bacterial-derived β-amylase used in the present invention exhibits remarkable starch decomposition properties below the starch gelatinization temperature and has high thermal stability, so it has not been used conventionally. It decomposes starch more rapidly than soybean β-amylase, and therefore has a greater anti-aging effect. And since the enzyme can be applied without gelatinizing Denbuhachi,
Increase in viscosity due to gelatinization can be avoided, making it easier to handle materials during the food manufacturing process and making it easier to control enzyme reactions.

そのうえ、β−アミラーゼを単独で、しかも従来の大豆
β−アミラーゼの場合よりも少fjk使用することがで
き、極めて経済的である。
Moreover, β-amylase can be used alone and in a smaller amount fjk than in the case of conventional soybean β-amylase, making it extremely economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酵素反応時間を5分間としたときの各温度にお
ける大豆β−アミラーゼ、細菌由来β−アミラーゼ(バ
チルス・メガテリウム IF03003の生産したもの
、以下同じ)のでんぷん分解性を比較したもの、第2図
は酵素反応時間の経時変化に対する各温度における大豆
β−アミラーゼ、細菌由来β−アミラーゼのでんぷん分
解性の変化を比較したもの、第3図は生でんぷんを室W
x (30℃)より直時的に温度上昇させたときの大豆
β−アミラーゼ、細菌由来β−アミラーゼのでんぷん分
解性を比較したものである。 Temperature (℃) 第1図 ○印は細菌由来β−アミラーゼ ・印(よ大豆β−アミラーゼ (各図共通) (η 細菌由来β−アミラーゼ  大豆β−アミラーゼ第2図 (′82 (点線は昇温曲線) 第3図 手続補正書(自発)(4) 昭和60年12月02日 特許庁長官  宇 賀  道 部  殴1 事件の表示 昭和60年特許願第216096号 2 発明の名称 でんぷん質食品の老化を防止する方法 3 補正をする者 事件との関係  特許出願人 東京都千代田区内神田2丁目2番1号 昭和産業株式会社 4 代理人 東京都港区赤坂2丁目17番54号 パレロワイヤル赤坂1号館919号室 5 補正の対象 (1)明細書の「発明の詳細な説明」欄(2)  代理
人の代理権を証する書面6 補正の内容 ■ 明細書第2頁最下行 「酸素剤」を 「酵素剤」と補正する。 ■ 同第3頁第9行 「酸素剤」を 「酵素剤」と補正する。 ■ 同第11頁第3行 「泰する」を 「奏する」と補正する。 (2)別紙添付のとおり委任状2通を提出する。 7 添付書類の目録 委任状             2通以      
 上 手続補正書(方式・指令) 昭和61年02月27日 1 事件の表示 昭和60年特許願第216096号 2 発明の名称 でんぷん質食品の老化を防止する方法 3 補正をする者 事件との関係  特許出願人 東京都千代田区内神田2丁目2番1号 岡1)茂孝      カニ、 。 4 代理人 東京都港区赤坂2丁目17番54号 パレロワイヤル赤坂1号館919号室 中島敏法律特許事務所 5 補正指令書の日付 昭和61年01月08日 (発送日 昭和61年01月28日) 6 補正の対象 願書添付の図面 7 補正の内容 別紙添付図面のとおり 以    上
Figure 1 shows a comparison of the starch decomposition properties of soybean β-amylase and bacterial β-amylase (produced by Bacillus megaterium IF03003, the same applies hereinafter) at various temperatures when the enzyme reaction time was 5 minutes. Figure 2 shows a comparison of changes in starch decomposition properties of soybean β-amylase and bacterial β-amylase at various temperatures with respect to changes in enzyme reaction time. Figure 3 shows raw starch in a room W.
This is a comparison of the starch decomposition properties of soybean β-amylase and bacterial β-amylase when the temperature was immediately raised from x (30°C). Temperature (°C) Figure 1: Bacterial β-amylase (○) indicates soybean β-amylase (common to all figures) Curve) Figure 3 Procedural amendment (voluntary) (4) December 2, 1985 Commissioner of the Patent Office Michibe Uga 1 Indication of the case 1985 Patent Application No. 216096 2 Name of the invention Aging of starchy foods Method to prevent 3. Relationship with the case of the person making the amendment Patent applicant: 2-2-1 Uchikanda, Chiyoda-ku, Tokyo Showa Sangyo Co., Ltd. 4 Agent: Palais Royal Akasaka 1, 2-17-54 Akasaka, Minato-ku, Tokyo Building No. 919, Room 5 Subject of amendment (1) "Detailed description of the invention" column of the specification (2) Document proving the agent's power of representation 6 Contents of amendment■ Change "oxygen agent" on the bottom line of page 2 of the specification to ■ Correct “oxygen agent” on page 3, line 9 of the same page to “enzyme agent”. ■ Correct “yasuru” in line 3 of page 11 of the same page to “play”. (2 ) Submit two copies of the power of attorney as attached. 7 List of attached documents At least two copies of the power of attorney
Written amendment (method/directive) February 27, 1985 1 Indication of the case 1985 Patent Application No. 216096 2 Name of the invention Method for preventing aging of starchy foods 3 Person making the amendment Relationship with the case Patent applicant: 2-2-1 Oka, Uchikanda, Chiyoda-ku, Tokyo 1) Shigetaka Kani, . 4 Agent: Satoshi Nakajima Law and Patent Office, Room 919, Building 1, Palais Royal, Akasaka 2-17-54, Minato-ku, Tokyo 5 Date of amended order: January 8, 1985 (Shipping date: January 28, 1985) ) 6 Drawings attached to the application to be amended 7 Contents of the amendments As shown in the attached drawings

Claims (1)

【特許請求の範囲】[Claims] 細菌の生産するβ−アミラーゼを使用することを特徴と
するでんぷん質食品の老化を防止する方法
A method for preventing aging of starchy foods characterized by using β-amylase produced by bacteria
JP60216096A 1985-10-01 1985-10-01 Prevention of retrogradation of starchy food Pending JPS6279746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216096A JPS6279746A (en) 1985-10-01 1985-10-01 Prevention of retrogradation of starchy food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216096A JPS6279746A (en) 1985-10-01 1985-10-01 Prevention of retrogradation of starchy food

Publications (1)

Publication Number Publication Date
JPS6279746A true JPS6279746A (en) 1987-04-13

Family

ID=16683183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216096A Pending JPS6279746A (en) 1985-10-01 1985-10-01 Prevention of retrogradation of starchy food

Country Status (1)

Country Link
JP (1) JPS6279746A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023094A (en) * 1989-08-10 1991-06-11 Gist-Brocades N.V. Retarding the firming of bread crumb during storage
JPH0463544A (en) * 1990-07-02 1992-02-28 Ezaki Glico Co Ltd Method for preparing starchy food
US6197352B1 (en) * 1989-09-27 2001-03-06 Novo Nordisk A/S Antistaling process and agent
JP2002509720A (en) * 1998-04-01 2002-04-02 ダニスコ アクティーゼルスカブ Non-maltogenic exoamylases and their use in delaying starch degradation
USRE38507E1 (en) 1989-09-27 2004-04-27 Novozymes A/S Antistaling process and agent
WO2009151042A1 (en) * 2008-06-10 2009-12-17 オリエンタル酵母工業株式会社 Heat-stabilization of food antioxidant
KR20190111429A (en) * 2018-03-22 2019-10-02 단국대학교 천안캠퍼스 산학협력단 Composition for fermenting a potato powder, method for manufacturing fermented potato powder, feremented potato powder using thereof and fermented potato food comprising the same
JP2020099210A (en) * 2018-12-20 2020-07-02 フルタフーズ株式会社 Corn dog mix and method of producing corn dog

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116247A (en) * 1973-03-09 1974-11-06
JPS5492641A (en) * 1977-12-28 1979-07-23 Takeda Chemical Industries Ltd Antiiageing agent for starch food and production of said food

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116247A (en) * 1973-03-09 1974-11-06
JPS5492641A (en) * 1977-12-28 1979-07-23 Takeda Chemical Industries Ltd Antiiageing agent for starch food and production of said food

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023094A (en) * 1989-08-10 1991-06-11 Gist-Brocades N.V. Retarding the firming of bread crumb during storage
US6197352B1 (en) * 1989-09-27 2001-03-06 Novo Nordisk A/S Antistaling process and agent
USRE38507E1 (en) 1989-09-27 2004-04-27 Novozymes A/S Antistaling process and agent
JPH0463544A (en) * 1990-07-02 1992-02-28 Ezaki Glico Co Ltd Method for preparing starchy food
JP2002509720A (en) * 1998-04-01 2002-04-02 ダニスコ アクティーゼルスカブ Non-maltogenic exoamylases and their use in delaying starch degradation
JP2011015688A (en) * 1998-04-01 2011-01-27 Danisco As Non-maltogenic exoamylase and use thereof in retarding retrogradation of starch
WO2009151042A1 (en) * 2008-06-10 2009-12-17 オリエンタル酵母工業株式会社 Heat-stabilization of food antioxidant
KR20110033123A (en) * 2008-06-10 2011-03-30 오리엔탈고우보고오교가부시끼가이샤 Heat-stabilization of food antioxidant
JP5570982B2 (en) * 2008-06-10 2014-08-13 オリエンタル酵母工業株式会社 Heat-resistant anti-aging agent for food
TWI491361B (en) * 2008-06-10 2015-07-11 Oriental Yeast Co Ltd Process for enhancing thermostabilization of retrogradation preventing agent for food
KR20190111429A (en) * 2018-03-22 2019-10-02 단국대학교 천안캠퍼스 산학협력단 Composition for fermenting a potato powder, method for manufacturing fermented potato powder, feremented potato powder using thereof and fermented potato food comprising the same
JP2020099210A (en) * 2018-12-20 2020-07-02 フルタフーズ株式会社 Corn dog mix and method of producing corn dog

Similar Documents

Publication Publication Date Title
Park et al. Properties and applications of starch modifying enzymes for use in the baking industry
JP4475276B2 (en) Method and property improver for improving physical properties of starch-containing foods
CN102428982B (en) The bakery product that taste is excellent and manufacture method thereof
US5362502A (en) Reducing checking in crackers with pentosanase
US20150272174A1 (en) Method of producing starch-containing food and enzyme preparation for modifying starch-containing food
EP0686348B1 (en) Bread quality-improving composition and bread producing process using the same
JPH05500612A (en) anti-aging processes and drugs
Farias et al. Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus
US5059430A (en) Enzyme composition for retarding staling of baked goods
Kulp Enzymes as dough improvers
Okafor et al. Enzymes as additives in starch processing: A short overview
JPS6279746A (en) Prevention of retrogradation of starchy food
JP2003199482A (en) Bread and method for producing the same
JP7286959B2 (en) Method for producing starch-containing food using enzyme
WO2017205337A1 (en) Baking process and a method thereof
JPH01312959A (en) Low moisture edible product treated with oxygen
JP2000509285A (en) Use of dextrin glycosyltransferase in baking
JP2007082435A (en) Method for improving quality of bread, method for producing frozen dough and carbohydrate and use of the same
JPS6279745A (en) Prevention of retrogradation of starchy food
Doğan Effect of α‐amylases on dough properties during Turkish hearth bread production
JP7275545B2 (en) Method for producing starch-containing food using enzyme
WO2020145371A1 (en) Method for manufacturing starch-containing food
JP7023087B2 (en) Bread material, its manufacturing method, and bread manufacturing method using this
AU2021220297A1 (en) A process for the production of a baked product without addition of sugar
JP2021122209A (en) Production method of enzymatically decomposed starch-containing plant raw material