JPS6146546B2 - - Google Patents

Info

Publication number
JPS6146546B2
JPS6146546B2 JP55111050A JP11105080A JPS6146546B2 JP S6146546 B2 JPS6146546 B2 JP S6146546B2 JP 55111050 A JP55111050 A JP 55111050A JP 11105080 A JP11105080 A JP 11105080A JP S6146546 B2 JPS6146546 B2 JP S6146546B2
Authority
JP
Japan
Prior art keywords
oxygen
treatment
ppm
melting
oxygen content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55111050A
Other languages
Japanese (ja)
Other versions
JPS5735664A (en
Inventor
Kyoshi Inoe
Makoto Onoe
Satooka Ishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP11105080A priority Critical patent/JPS5735664A/en
Publication of JPS5735664A publication Critical patent/JPS5735664A/en
Publication of JPS6146546B2 publication Critical patent/JPS6146546B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、Fe―Cr―Co系磁石合金、特にその
酸素含有量を50〜800ppmとしたFe―Cr―Co系
磁石合金及びその製造方法に関する。重量百分比
で、10〜40%のCr、3〜30%のCo及び残部が鉄
から成る合金が永久磁石材として優れた磁気特性
を有していることは広く知られており、更にこれ
に0.1〜5%程度のTi、Al、Mn、Zr、W、V、
Nb、MoまたはSi等を残存有効成分としてまたは
残存有効成分ではない脱酸剤として添加すること
によつて磁気特性を一層向上させ得ることも知ら
れている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fe-Cr-Co magnet alloy, particularly an Fe-Cr-Co magnet alloy having an oxygen content of 50 to 800 ppm, and a method for producing the same. It is widely known that an alloy consisting of 10 to 40% Cr, 3 to 30% Co, and the balance iron has excellent magnetic properties as a permanent magnet material. ~5% of Ti, Al, Mn, Zr, W, V,
It is also known that the magnetic properties can be further improved by adding Nb, Mo, Si, etc. as a residual active ingredient or as a deoxidizing agent that is not a residual active ingredient.

即ち、上記のような添加元素を微量に加えるこ
とにより、残留磁末密度Br、保磁力Hc、及び最
大エネルギー積(BH)maxの内の少くとも1つ
以上が、向上したり、磁気特性の角形性が改善さ
れたりするものであるが、その理論的根拠につい
ては必ずしも明らかにされておらず、従つて上記
添加元素の選択、添加量及び熱処理条件について
は、数多くの実験結果に基づき専ら経験的に定め
るしかなかつた。
That is, by adding a small amount of the above-mentioned additive elements, at least one of the residual magnetic powder density Br, coercive force Hc, and maximum energy product (BH) max can be improved, or the magnetic properties can be improved. Although the squareness may be improved, the theoretical basis for this is not necessarily clear, and therefore the selection of the above additive elements, the amount added, and the heat treatment conditions are based solely on experience based on the results of numerous experiments. I had no choice but to decide.

而して、従来、Fe、Cr、Co系スピノーダル分
解型磁石合金を溶製する場合、脱酸処理を行うこ
とが一般に行われている。脱酸処理のために用い
られる物質は、酸素とのアフイニテイ(親和力)
の高い元素であり、通常はM.M.(ミツシユメタ
ル)とかTi、Al、Mn、Be等が用いられている。
これらの脱酸用添加物の添加量は、素材原料
(Fe、Cr、Co)の酸素含有量、溶解温度、溶解
時間、溶解中の雰囲気(大気中、不活性ガス中
等)、或いは撹拌の有無等に応じて定められるも
のであるが、実験によれば、これらの脱酸用添加
物を用いて大気中で高周波溶解したものは、溶製
中の酸素溶け込み量が多く、かつ、それが時間に
比例しこのため一般的に1000ppm程度の酸素を
含有していることが確認されている。
Conventionally, when a spinodal decomposition type magnet alloy based on Fe, Cr, and Co is melted, deoxidation treatment is generally performed. The substances used for deoxidation treatment have affinity with oxygen.
It is an element with a high level of energy, and MM (Mitsuyu Metal), Ti, Al, Mn, Be, etc. are usually used.
The amount of these deoxidizing additives to be added depends on the oxygen content of the raw materials (Fe, Cr, Co), melting temperature, melting time, atmosphere during melting (air, inert gas, etc.), and whether stirring is used. However, experiments have shown that high-frequency melting in the atmosphere using these deoxidizing additives results in a large amount of dissolved oxygen during melting, and that Therefore, it has been confirmed that it generally contains about 1000 ppm of oxygen.

本発明者は、この酸素溶解量に着目し、これを
所定の範囲内に限定することにより、磁気特性を
顕著に高め得ることを発見し、本発明を完成し
た。
The present inventor focused on the amount of dissolved oxygen and discovered that by limiting it within a predetermined range, the magnetic properties could be significantly improved, and thus completed the present invention.

即ち、この酸素量の最適範囲は、50〜800ppm
であり、より望ましくは100〜500ppmとして時
に最も高性能の磁石合金が得られることを確認し
た。
That is, the optimal range of this oxygen amount is 50 to 800 ppm.
It was confirmed that the highest performance magnetic alloy can sometimes be obtained by setting the concentration to more preferably 100 to 500 ppm.

従つて、本発明磁石合金は上記範囲内の酸素を
含有するものであり、またその製造に際しては、
酸素量が上記範囲内となるよう、添加物及び雰囲
気を制御しつゝ溶製鋳造するものであつて、これ
により、従来に比べて一層高性能のFe―Cr―Co
系磁石合金が得られるものである。また、従来、
単に経験的にTi、Zr、W、Mo、V等を微量添加
していた場合の物理的根拠の脆弱性に代わつて、
酸素含有量というより一般的な物理的背景を認識
し得たことによつて、添加物とその添加量の選定
に一般的指標を与えると共に、添加物を用いない
場合にも敷衍し得るFe―Cr―Co系磁石合金の新
規な製造方法が提供されるものである。
Therefore, the magnet alloy of the present invention contains oxygen within the above range, and in its production,
The additives and atmosphere are controlled so that the oxygen content is within the above range, and the process is carried out by melt casting.
A system magnet alloy is obtained. Also, conventionally,
Instead of the fragility of the physical basis when small amounts of Ti, Zr, W, Mo, V, etc. were simply added empirically,
By recognizing the general physical background rather than the oxygen content, we can provide a general guideline for selecting additives and their amounts, as well as Fe-- which can be extended even when no additives are used. A new method for manufacturing a Cr--Co magnetic alloy is provided.

以下、図面をも参照しつゝ本発明の詳細を説明
する。
Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は、重量百分比で27.5%のCr、8%の
Co、残部Feと避えざる不純物約0.5%前後または
それ以下の組成から成る磁石合金の酸素含有量に
対する磁気特性及び窒素含有量の関係を示すグラ
フであり、これから、残留磁束密度Br、保磁力
He、最大エネルギー積(BH)maxの関係を相互
に比較して、酸素含有量が50〜800ppm、特に
100〜500ppmにおいて優れた磁気特性が得られ
ることが判る。
Figure 1 shows 27.5% Cr and 8% Cr by weight percentage.
This is a graph showing the relationship between the magnetic properties and nitrogen content with respect to the oxygen content of a magnet alloy consisting of Co, the balance Fe, and unavoidable impurities of about 0.5% or less.
Comparing the relationship between He and maximum energy product (BH) max, the oxygen content is between 50 and 800 ppm, especially
It can be seen that excellent magnetic properties can be obtained at 100 to 500 ppm.

而して、酸素量がFe―Cr―Co系合金中におい
て果す役割の物理的背景は、磁壁の酸化物による
ピニング効果(pinning Effect)にあると解釈さ
れる。
Therefore, the physical background of the role played by the amount of oxygen in Fe-Cr-Co alloys is interpreted to be the pinning effect caused by oxides in the domain wall.

それは、酸素量と保磁力Hcとの相関性におい
て、酸素量が減少するに伴いHcが低下の傾向を
示すこと、並びに、酸素量の減少に伴い残留磁束
密度Brが増大し、且つヒステリシスループの角
形性即ちη=(BH)max/Br・Hcが酸素量の増
大と共に低下 して、(BH)maxの最大値が生ずることによつて
知られるものである。
This is because in the correlation between the amount of oxygen and the coercive force Hc, Hc tends to decrease as the amount of oxygen decreases, and the residual magnetic flux density Br increases as the amount of oxygen decreases, and the hysteresis loop. It is known that the squareness, ie, η=(BH)max/Br·Hc, decreases as the amount of oxygen increases, and a maximum value of (BH)max occurs.

一方、上記合金の溶製中に脱酸用元素を投入し
て脱酸処理を行う場合、脱酸用元素(例えば
Ti)を多量(2%以上)に加えるとBrが低下
し、且つ(BH)maxが急激に低下することが判
つている。これは即ち、上記添加元素が合金中に
残留することによる悪影響を示すと共に、添加元
素の種類にもよるが、脱酸用元素その他の添加元
素それ自体が磁気特性の向上に寄与するものでは
なく、むしろその適度な脱酸作用に主要な役目が
あることを示している。
On the other hand, when performing deoxidation treatment by adding deoxidizing elements during melting of the above alloy, deoxidizing elements (e.g.
It is known that when a large amount (2% or more) of Ti) is added, Br decreases and (BH)max decreases rapidly. In other words, this indicates an adverse effect due to the above-mentioned additive elements remaining in the alloy, and although it depends on the type of additive elements, the deoxidizing elements and other additive elements themselves do not contribute to improving magnetic properties. Rather, it shows that its moderate deoxidizing effect plays a major role.

第2図は、本発明にかゝる下記組成磁石合金製
造時の推奨される一例の熱処理模式図である。素
材原料としては、秤量%で27%Cr、8%Co、残
部Feを混合したものを用い、これを高周波溶解
により900℃またはこれ以上で溶体化処理を約30
分乃至1時間前後する。その後一旦水冷却し、次
に620〜640℃前後に再加熱して第一段階の磁場処
理を約2000〜3000Oeまたはそれ以上の磁場内で
行ない、次いで炉冷により約600〜620℃前後の温
度で第二段階の磁場処理を行ない水冷却する。所
謂時効段階に入る訳で、先ず、前記第2段の磁場
処理の温度とほぼ同一の温度約600〜620℃に加熱
して数時間保持した定温時効後約520℃前後まで
冷却速度約2.5℃/hで連続的又は多段的に徐冷
することにより時効処理を行ない、次いで約20
℃/hで約500℃前後まで冷却した後水冷却する
ものである。なお、第一段階の磁場処理時間は約
1.5時間前後、第二段階のそれは約40分前後、定
温時効時間は約5時間後、徐冷時間は約40時間前
後であり、通算処理時間は約47時間前後となる。
FIG. 2 is a schematic diagram of an example of heat treatment recommended for manufacturing a magnetic alloy having the following composition according to the present invention. The raw material used was a mixture of 27% Cr, 8% Co, and the balance Fe, which was solution-treated by high-frequency melting at 900℃ or higher for about 30 minutes.
It takes about a minute to an hour. After that, it is once cooled with water, then reheated to around 620-640℃, the first stage of magnetic field treatment is performed in a magnetic field of about 2000-3000Oe or more, and then furnace-cooled to a temperature of around 600-620℃. The second step is magnetic field treatment and water cooling. In order to enter the so-called aging stage, first, the material is heated to approximately 600 to 620°C, which is almost the same temperature as the second stage magnetic field treatment, and then maintained at a constant temperature for several hours, followed by cooling at a rate of approximately 2.5°C to approximately 520°C. Aging treatment is performed by slow cooling continuously or in multiple stages at a temperature of about 20
It is cooled down to around 500°C at a rate of °C/h and then cooled with water. The magnetic field processing time for the first stage is approximately
The second stage takes about 40 minutes, the constant temperature aging time takes about 5 hours, and the slow cooling time takes about 40 hours, making the total processing time about 47 hours.

なお、上記の熱処理に於て、例えばα単相化の
溶体化処理の温度は、合金のCo含有量に特に大
きく依存するから安全度を見込んで少し高めに設
定する必要があり、また上記徐冷の正確な制御に
は高価な制御システムを必要とする場合もあるか
ら、性能的にほヾ同一の磁石が製造可能な、温度
差10℃、又は20℃等の適当な多段時効を採用して
もよい。
In addition, in the above heat treatment, for example, the temperature of the solution treatment for α single phase is particularly dependent on the Co content of the alloy, so it is necessary to set it a little higher in consideration of safety. Accurate control of cooling may require an expensive control system, so we adopted an appropriate multi-stage aging method with a temperature difference of 10°C or 20°C, etc., which allows production of magnets with virtually identical performance. It's okay.

而して、合金中の酸素含有量を50〜800ppm望
ましくは100〜500p.p.mに調整する処理は、上記
溶体化処理以前の溶製期間中に行う。
The process of adjusting the oxygen content in the alloy to 50 to 800 ppm, preferably 100 to 500 ppm, is performed during the melting period before the solution treatment.

即ち、合金の溶製鋳造以後は、合金は再び溶解
されることなく、上記溶体化処理以後の熱処理期
間中に於て、酸素が例えば溶け込む等含有状態が
大きく変ることは少く、また必要ならば不活性雰
囲気等の雰囲気制御をして熱処理をすることも可
能であり、他方合金の溶解中に酸素が溶け込み含
有量が大きく変つたり、逆に脱酸処理ができる等
変更可能だからである。
That is, after the alloy is melted and cast, the alloy is not melted again, and during the heat treatment period after the above-mentioned solution treatment, the content state is unlikely to change significantly, such as oxygen melting, and if necessary, This is because it is possible to carry out heat treatment by controlling the atmosphere such as an inert atmosphere, and on the other hand, it is possible to change the content by dissolving oxygen during the melting of the alloy, greatly changing the content, or conversely, by deoxidizing treatment.

而して、前記の調整処理は先ず素材原料Fe、
Cr、Coのそれぞれの含有酸素量を計量しそれら
を合金組成に応じて合計平均した上で、これが例
えば50ppm以下の場合には、溶製雰囲気中に酸
素を供給し最適酸素分圧下で、しかもその温度と
溶製時間を制御することによつて上記好ましき酸
素量100〜500ppmとなるまで酸素を溶解注入す
るものである。
Therefore, in the above adjustment process, first, the raw materials Fe,
After weighing the amount of oxygen contained in each of Cr and Co and averaging them according to the alloy composition, if this is less than 50 ppm, oxygen is supplied to the melting atmosphere under the optimum oxygen partial pressure. By controlling the temperature and melting time, oxygen is melted and injected until the above-mentioned preferred oxygen amount reaches 100 to 500 ppm.

また、素材含有酸素量が合計平均計量以下同様
によつて50〜300ppmの場合にも上記の場合と略
同様の処理により若干量の酸素を補充溶解注入す
る。
Further, even when the amount of oxygen contained in the material is less than the total average measured amount, i.e., 50 to 300 ppm, a small amount of oxygen is supplemented and dissolved and injected by substantially the same process as in the above case.

素材酸素含有量が300〜500ppmの場合不活性
ガス雰囲気中で酸素分圧を0にして溶製する。
When the raw material oxygen content is 300 to 500 ppm, it is melted in an inert gas atmosphere with the oxygen partial pressure set to 0.

素材含有酸素量が500〜800ppmの場合には、
H2,NH3等の還元ガス分圧雰囲気中において、溶
製温度及び時間を制御し、含有酸素の一部を除去
する。
When the amount of oxygen contained in the material is 500 to 800 ppm,
In an atmosphere of partial pressure of a reducing gas such as H 2 or NH 3 , the melting temperature and time are controlled to remove a portion of the oxygen contained.

或いはHを含む金属を微量混入させて溶製して
もよい。
Alternatively, a trace amount of a metal containing H may be mixed into the melt.

更にまた、素材含有酸素量が800ppm以上であ
る場合には、素材原料中に、例えばM・M、
Ti、TiH1、Al、Mn、Be等の酸素親和力の強
い金属を適量混入し、望ましくは酸素減圧下また
は還元ガス雰囲気下において撹拌溶解し、素材原
料中の酸素を酸素親和性金属に固定化して比重の
軽い酸化物スラグとして集め除去することによつ
て、磁石合金中の酸素量を100〜500ppmに抑制
するものである。上記酸素親和性金属の添加量
は、余りに少いと見るべき脱酸効果が得られずま
た多すぎると磁気特性に悪影響をもたらすため、
素材含有酸素量に応じて秤量百分比で0.1ないし
5%程度とするものである。
Furthermore, when the amount of oxygen contained in the material is 800 ppm or more, the material contains, for example, M.M.
Mix an appropriate amount of metals with strong oxygen affinity such as Ti, TiH 1 to 4 , Al, Mn, Be, etc., and preferably stir and dissolve under reduced pressure of oxygen or in a reducing gas atmosphere to convert the oxygen in the raw materials into metals with strong oxygen affinity. The amount of oxygen in the magnet alloy is suppressed to 100 to 500 ppm by fixing it and collecting it as oxide slag with a light specific gravity and removing it. If the amount of the oxygen-affinity metal added is too small, the desired deoxidizing effect will not be obtained, and if it is too large, it will have an adverse effect on the magnetic properties.
Depending on the amount of oxygen contained in the material, the weight percentage is about 0.1 to 5%.

なお、上記脱酸または酸素注入処理は、溶製処
理中に一部を押出してその酸素含有量を例えば分
光測光等の手段で検出、チエツクしつゝ、望まし
くは自動的に雰囲気中の酸素量、加熱速度、加熱
時間、撹拌等を制御して行うものである。
The deoxidation or oxygen injection treatment described above preferably involves extruding a portion during the melting process and detecting and checking the oxygen content using a means such as spectrophotometry, preferably automatically determining the amount of oxygen in the atmosphere. This is done by controlling the heating rate, heating time, stirring, etc.

而して、Cr、Ti、Zr等は窒素とも親和性を有
しているため、大気中または窒素分圧化において
上記溶製処理を行つた場合には、第1図に示され
る如く、含有酸素量が最適な範囲において含有窒
素量も最大値を示すことが判明している。従つ
て、窒素を含む雰囲気下において上記溶製処理を
行う際は、溶融金属中の含有窒素量を検出する代
りに含有窒素量を検出し、この窒素量に応じて脱
酸または酸素注入処理を制御することも推奨され
る。
Since Cr, Ti, Zr, etc. have an affinity for nitrogen, when the above melting treatment is performed in the atmosphere or under nitrogen partial pressure, the content is reduced as shown in Figure 1. It has been found that the nitrogen content also reaches its maximum value in the range where the oxygen content is optimal. Therefore, when performing the above melting treatment in an atmosphere containing nitrogen, the amount of nitrogen contained in the molten metal is detected instead of being detected, and deoxidation or oxygen injection treatment is performed depending on the amount of nitrogen. Control is also recommended.

上記の如くして、含有酸素量が100〜500ppm
となるようにして作成された本発明磁石合金は、
素材原料の配合比、熱処理条件等を適切に選定す
ることにより、その性能は上記8%Co、27%
Cr、残部Fe合金の上述熱処理法による場合に残
留磁束密度Brが14.5KG、保磁力Hcが600Oe、最
大エネルギー積(BH)maxが6.5MGOeであるよ
うな極めて高性能なものも得られることが確認さ
れた。
As mentioned above, the amount of oxygen contained is 100 to 500 ppm
The magnetic alloy of the present invention created as follows:
By appropriately selecting the blending ratio of raw materials, heat treatment conditions, etc., the performance can be improved to the above 8% Co, 27%
When using the above-mentioned heat treatment method for Cr and balance Fe alloys, extremely high performance products with residual magnetic flux density Br of 14.5 KG, coercive force Hc of 600 Oe, and maximum energy product (BH) max of 6.5 MGOe can be obtained. confirmed.

本発明は、叙上の如く構成されるから、本発明
によるときはMo、Ti、Zr、W、Si、V、Ni等の
添加元素を例えば約0.5%前後以上有効成分とし
て含有する程度には必要とせず、或いは必要とす
る場合にもその添加量が容易に判定でき、且つ素
材原料の如何にかゝわらず常に同等に磁気特性の
優れたFe―Cr―Co系磁石合金が提供されるもの
である。
Since the present invention is configured as described above, according to the present invention, it is necessary to contain additive elements such as Mo, Ti, Zr, W, Si, V, Ni, etc. as active ingredients in an amount of about 0.5% or more. To provide an Fe--Cr--Co based magnet alloy in which the amount of addition is easily determined even when it is not required or is required, and which always has equally excellent magnetic properties regardless of the raw material. It is something.

なお、本発明製造方法は上記実施例に限定され
るものではなく、特に脱酸及び酸素注入処理手段
に関しては、本発明の目的の範囲内において、広
く公知の手段を利用し得るものであり、本発明は
それらの総てを包摂するものである。
It should be noted that the manufacturing method of the present invention is not limited to the above-mentioned examples, and in particular regarding deoxidation and oxygen injection treatment means, widely known means can be used within the scope of the purpose of the present invention. The present invention encompasses all of them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、重量百分比で27.5%のCr、8%の
Co及び残部鉄から成る磁石合金の酸素含有量に
対する磁気特性及び窒素含有量の関係を示すグラ
フであり、第2図は、本発明にかゝる磁石合金製
造時の熱処理の一例を示す模式図である。
Figure 1 shows 27.5% Cr and 8% Cr by weight percentage.
2 is a graph showing the relationship between magnetic properties and nitrogen content with respect to oxygen content of a magnet alloy consisting of Co and the balance iron; FIG. 2 is a schematic diagram showing an example of heat treatment during production of the magnet alloy according to the present invention. It is.

Claims (1)

【特許請求の範囲】 1 秤量百分比で10ないし40%のCrと、3ない
し30%のCoと、残部鉄とを溶製して成るFe―Cr
―Co系磁石合金において、その酸素含有量が50
ないし800ppmであることを特徴とするFe―Cr―
Co系磁石合金。 2 上記酸素含有量が100ないし500ppmである
ことを特徴する特許請求の範囲第1項記載のFe
―Cr―Co系磁石合金。 3 秤量百分比で、10ないし40%のCrと3ない
し30%のCoと、残部鉄とを加熱溶解し、その酸
素含有量が50なしい800ppmとなるよう、上記溶
解溶製処理期間中に脱酸処理または酸素注入処理
を行なうことを特徴とするFe―Cr―Co系磁石合
金の製造方法。 4 上記酸素含有量を100ないし500ppmとする
ことを特徴とする特許請求の範囲第3項記載の
Fe―Cr―Co系磁石合金の製造方法。 5 上記酸素含有量が300ppm以下の場合、上記
溶製処理を酸素分圧雰囲気下で行うことを特徴と
する特許請求の範囲第3項または第4項記載の
Fe―Cr―Co系磁石合金の製造方法。 6 上記酸素含有量が300ないし500ppmの場
合、上記溶製処理を酸素分圧が0の不活性ガス雰
囲気化で行うことを特徴とする特許請求の範囲第
3項または第4項記載のFe―Cr―Co系磁石合金
の製造方法。 7 上記酸素含有量が500ppm以上の場合上記溶
製処理を還元ガス雰囲気下で行うと共に、必要に
応じて合金素材中に酸素に対して親和性を有する
金属を秤量百分比で0.1ないし5%添加すること
を特徴とする特許請求の範囲第3項または第4項
記載のFe―Cr―Co系磁石合金の製造方法。 8 上記溶製処理期間中、上記酸素含有量を検出
しつゝ、その検出値に応じて上記脱酸処理または
酸素注入処理を行うことを特徴とする特許請求の
範囲第3項、第4項、第5項、第6項または第7
項記載のFe―Cr―Co系磁石合金の製造方法。 9 上記溶製処理期間中、その窒素含有量を検出
しつゝ、その検出値に応じて上記脱酸処理または
酸素注入処理を行うことを特徴とする特許請求の
範囲第3項、第4項、第5項、第6項または第7
項記載のFe―Cr―Co系磁石合金の製造方法。
[Scope of Claims] 1 Fe-Cr made by melting 10 to 40% Cr, 3 to 30% Co, and the balance iron by weight percentage
-In Co-based magnetic alloy, its oxygen content is 50
Fe―Cr― characterized by having a content of 800ppm to 800ppm
Co-based magnetic alloy. 2. Fe according to claim 1, wherein the oxygen content is 100 to 500 ppm.
-Cr-Co magnetic alloy. 3 Heat and melt 10 to 40% Cr, 3 to 30% Co, and the balance iron in terms of weighed percentage, and desorb during the melting process mentioned above so that the oxygen content becomes 50 to 800 ppm. A method for producing a Fe-Cr-Co magnetic alloy, which comprises performing acid treatment or oxygen injection treatment. 4. Claim 3, characterized in that the oxygen content is 100 to 500 ppm.
Manufacturing method of Fe-Cr-Co magnet alloy. 5. Claim 3 or 4, characterized in that when the oxygen content is 300 ppm or less, the melting treatment is performed in an oxygen partial pressure atmosphere.
Manufacturing method of Fe-Cr-Co magnet alloy. 6. Fe- as defined in claim 3 or 4, characterized in that when the oxygen content is 300 to 500 ppm, the melting treatment is performed in an inert gas atmosphere with an oxygen partial pressure of 0. Manufacturing method of Cr-Co magnetic alloy. 7 When the oxygen content is 500 ppm or more, the above melting treatment is performed in a reducing gas atmosphere, and if necessary, a metal having an affinity for oxygen is added in an amount of 0.1 to 5% by weight percentage into the alloy material. A method for producing a Fe--Cr--Co based magnetic alloy according to claim 3 or 4, characterized in that: 8. Claims 3 and 4, characterized in that during the melting treatment period, the oxygen content is detected and the deoxidation treatment or oxygen injection treatment is performed according to the detected value. , Section 5, Section 6 or Section 7
A method for producing the Fe-Cr-Co magnetic alloy described in . 9. Claims 3 and 4, characterized in that during the melting treatment period, the nitrogen content is detected and the deoxidation treatment or oxygen injection treatment is performed according to the detected value. , Section 5, Section 6 or Section 7
A method for producing the Fe-Cr-Co magnetic alloy described in .
JP11105080A 1980-08-14 1980-08-14 Fe-cr-co magnet alloy and its manufacture Granted JPS5735664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11105080A JPS5735664A (en) 1980-08-14 1980-08-14 Fe-cr-co magnet alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11105080A JPS5735664A (en) 1980-08-14 1980-08-14 Fe-cr-co magnet alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS5735664A JPS5735664A (en) 1982-02-26
JPS6146546B2 true JPS6146546B2 (en) 1986-10-15

Family

ID=14551130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11105080A Granted JPS5735664A (en) 1980-08-14 1980-08-14 Fe-cr-co magnet alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS5735664A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118884A (en) * 1974-06-25 1976-02-14 Amp Inc Denkisetsutenno kairyo
JPS5210764A (en) * 1975-09-30 1977-01-27 Matsushita Electric Works Ltd Watch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118884A (en) * 1974-06-25 1976-02-14 Amp Inc Denkisetsutenno kairyo
JPS5210764A (en) * 1975-09-30 1977-01-27 Matsushita Electric Works Ltd Watch

Also Published As

Publication number Publication date
JPS5735664A (en) 1982-02-26

Similar Documents

Publication Publication Date Title
JPH04242902A (en) Permanent magnet having improved corrosion resistance and manufacture thereof
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
JP2655835B2 (en) Permanent magnet alloy and manufacturing method thereof
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
JPS6146546B2 (en)
JPH06184700A (en) Alloy with high strength, non-magnetism, and low thermal expansion
CA1130703A (en) Processing for cube-on-edge oriented silicon steel
US4465526A (en) High-coercive-force permanent magnet with a large maximum energy product and a method of producing the same
JP3105525B2 (en) Melting method of silicon steel material
JP4256617B2 (en) High purity ferroboron, master alloy for iron-based amorphous alloy, and method for producing iron-based amorphous alloy
JP4139913B2 (en) Method for heat treatment of permanent magnet alloy
JPS62122106A (en) Sintered permanent magnet
JPS6218619B2 (en)
RU2196187C1 (en) Method of producing alloy with free and fixed carbon
KR860001237B1 (en) Permanent magnet
JPH06264195A (en) Fe-co series magnetic alloy
JPH11204318A (en) Manufacture of fe-cr-co hard magnetic material
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0123923B2 (en)
JPS5819406A (en) Manufacture of sintered fe-cr-co magnet alloy
JPH03140439A (en) Vibration absorbing alloy having low specific gravity, high hardness and high damping capacity
JPS58217667A (en) Preparation of ni-fe-nb type abrasion resistant high permeability alloy
JPH0261526B2 (en)
JPH02310316A (en) Production of nonoriented silicon steel sheet having developed (100)<uvw> aggregate structure
JP2003027190A (en) Electromagnetic material for relay