JPS614532A - Manufacture of integral structure type catalyst for purifying waste gas - Google Patents

Manufacture of integral structure type catalyst for purifying waste gas

Info

Publication number
JPS614532A
JPS614532A JP59124401A JP12440184A JPS614532A JP S614532 A JPS614532 A JP S614532A JP 59124401 A JP59124401 A JP 59124401A JP 12440184 A JP12440184 A JP 12440184A JP S614532 A JPS614532 A JP S614532A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
rhodium
pore volume
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59124401A
Other languages
Japanese (ja)
Inventor
Junichi Mine
峰 純一
Akihide Okada
岡田 晃英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59124401A priority Critical patent/JPS614532A/en
Publication of JPS614532A publication Critical patent/JPS614532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To increase the gas purifying degree and durability of the titled catalyst by mixing activated alumina having specified narrow pore diameter with alumina sol, crushing the mixture to make slurry and forming an aluminum oxide coating on the surface of a catalyst. CONSTITUTION:Activated alumina contg. cerium preliminarily wherein >=80% all narrow pore volume is occupied by the narrow pore volume of 200-600Angstrom narrow pore diameter is mixed with cerium oxide and alumina sol and the mixture is crushed and the obtained slurry is impregnated into an integral structure type carrier, dried and calcined and thereafter the essential catalytic metals are deposited on the composite oxide coating formed on the carrier. Separately, after the slurry of mixed and crushed material of both alumina wherein >=80% all narrow pore volume is occupied by the narrow pore volume of 200-600Angstrom narrow pore diameter and alumina sol is coated on the carrier deposited with the above-mentioned essential catalytic metals, it is dried, calcined to manufacture the waste gas purifying catalyst for removing carbon monoxide, hydrocarbons and nitrogen oxides contained in the waste gas.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は排ガス、特に自動車などの排ガスの浄化に用
いられる一体構造型排ガス浄化用触媒の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing an exhaust gas purifying catalyst of an integrated structure used for purifying exhaust gas, particularly exhaust gas from automobiles and the like.

(従来の技術) 従来の一体構造型排ガス浄化用触媒の製造方法としては
、例えば一体構造型担体の表面に活性アルミナ層を設け
、次に触媒金属を担持させ触媒とするものがある。例え
ば特開昭52−27088号公報に記載されている方法
では、セリア(ceo2)10%を含む活性アルミナ4
0〜45重量%のスラリーに担体を浸演し、125°C
で乾燥した後、空気雰囲気中500°Cで焼成する。次
にこの担体を硝酸ニッケル溶液中に浸漬し、125°C
で乾燥した後、空気雰囲気中500℃で■焼し、次に塩
化白金酸と塩化ロジウムを含む溶液に浸漬し、その後硫
化水素中を通し、得られた担体を水洗し、次いで125
°Cで乾燥した後、500°Cの空気雰囲気中で焼成し
、触媒化する。なお硝酸ニッケル含浸工程において、他
の卑金属塩も使用される。
(Prior Art) As a conventional method for producing an exhaust gas purifying catalyst of a monolithic structure, there is a method in which, for example, an activated alumina layer is provided on the surface of a monolithic carrier, and then a catalytic metal is supported thereon to form a catalyst. For example, in the method described in JP-A-52-27088, activated alumina 4 containing 10% ceria (ceo2) is
Immerse the carrier in 0-45% by weight slurry and heat at 125°C.
After drying, it is fired at 500°C in an air atmosphere. Next, this carrier was immersed in a nickel nitrate solution and heated to 125°C.
After drying at
After drying at °C, it is calcined in an air atmosphere at 500 °C to become a catalyst. Note that other base metal salts are also used in the nickel nitrate impregnation step.

また他の方法としてセリアを用いず硝酸セリウムと活性
アルミナおよび硝酸とを混合してスラリーとし、一体構
造型担体にコーティングし、125°Cで乾燥した後、
500’Cの空気雰囲気中で焼成する方法もあり、この
焼成を行った時点で硝酸セリウムは化リア(ceo□)
に成る。
Another method is to mix cerium nitrate, activated alumina, and nitric acid to form a slurry without using ceria, coat it on a monolithic carrier, and dry it at 125°C.
There is also a method of firing in an air atmosphere at 500'C, and at the time of this firing, the cerium nitrate is
becomes.

(発明が解決しようとする問題点) 前述のような従来の一体構造型排ガス浄化用触媒の製造
方法にあっては、触媒金属が活性アルミナ層の表面付近
に存在する形態となっていたため、鉛(pb)を含む燃
料を用いて長距離走行を行なうと鉛の蓄積等による触媒
の活性点の被覆等によって触媒活性を失ってしまう問題
点があった。
(Problems to be Solved by the Invention) In the conventional manufacturing method of the monolithic exhaust gas purification catalyst as described above, the catalyst metal was present near the surface of the activated alumina layer, so lead When a fuel containing (pb) is used for long-distance driving, there is a problem in that the active points of the catalyst are coated with accumulation of lead and the like, resulting in a loss of catalyst activity.

この問題点を解決するため、不活性担体上に触媒および
アルミナを担持させ、この上をアルミナで被ざJする方
法が特開昭50−95188号公報に開示され、またマ
クロサイズの触媒表面Gこ触媒的に活性なアルミナの前
駆体であるアルミニウム成分、好ましくは硫酸アルミニ
ウムの水溶液を付着し、乾燥し、仮焼する方法が特開昭
53−85792号公報に開示されている。しかしなが
らこれ等の方法では触媒金属を被覆するアルミナの検討
が行われていず、通常市販の活性アルミナ(当社で測定
したところ市販のアルミナは細孔径600Å以上)を用
いるもので、鉛を含む燃料を用いた場合の触媒の耐久後
の劣化が大きいという問題点が残っている。
In order to solve this problem, a method is disclosed in JP-A-50-95188 in which a catalyst and alumina are supported on an inert carrier and then covered with alumina. JP-A-53-85792 discloses a method in which an aqueous solution of an aluminum component, preferably aluminum sulfate, which is a catalytically active alumina precursor is deposited, dried, and calcined. However, these methods do not consider the alumina that coats the catalyst metal, and usually use commercially available activated alumina (according to our measurements, commercially available alumina has a pore diameter of 600 Å or more), and do not use fuel containing lead. When used, the problem remains that the catalyst deteriorates significantly after durability.

(問題点を解決するための手段) この発明は、前述のような従来の問題点に着目してなさ
れたもので、触媒の表面にさらに特定の細孔径を持つ活
性アルミナとアルミナゾルとを混合粉砕してスラリーと
してアルミニウム酸化物被膜を形成することにより、上
記問題点を解決したものである。
(Means for Solving the Problems) This invention was made by focusing on the conventional problems as described above, and includes mixing and pulverizing activated alumina and alumina sol having a specific pore size on the surface of the catalyst. The above problem is solved by forming an aluminum oxide film as a slurry.

即ちこの発明の一体構造型排ガス浄化用触媒の製造方法
においては、あらかじめセリウムを含有’gt)Th’
@”o′!daii”v@%7′v<−3−H−b+)
fy   。
That is, in the method for manufacturing an integrally structured exhaust gas purifying catalyst of the present invention, cerium-containing 'gt)Th'
@”o′!daii”v@%7′v<-3-H-b+)
fy.

ム酸化物とアルミナゾルとを混合粉砕し7てスラリ  
 □;−とし、このスラリーを一体構造型担体に含浸、
乾燥、焼成する。この結果担体上に複合酸化物あるいは
混合酸化物より成る酸化物被膜が形成される。次いでこ
の酸化物被膜に主触媒金属、例えば白金、ロジウム、パ
ラジウム等の貴金属成分の1種以上を担持させ、さらに
特定の細孔径を持つ活性アルミナとアルミナゾルとを混
合粉砕しスラリーとし、このスラリーを、主触媒金属を
担持した担体上Gこコーティングし、乾燥、焼成し、ア
ルミニウム酸化物被膜を形成する。このようにして形成
された触媒は白金、ロジウム、パラジウム等の貴金属の
如き主触媒金属の相持量を少なくしても、浄化性能が低
下せず、また自動車用として鉛を含む燃料を用いた場合
の耐久性も十分である。
Alumina oxide and alumina sol are mixed and crushed to form a slurry.
□;-, impregnate this slurry into a monolithic carrier,
Dry and bake. As a result, an oxide film made of a composite oxide or mixed oxide is formed on the carrier. Next, the main catalyst metal, such as one or more noble metal components such as platinum, rhodium, and palladium, is supported on this oxide film, and activated alumina and alumina sol having a specific pore size are mixed and ground to form a slurry. Then, the main catalyst metal is coated on the carrier, dried and fired to form an aluminum oxide film. The catalyst formed in this way does not deteriorate its purification performance even if the amount of the main catalyst metal such as precious metals such as platinum, rhodium, and palladium is reduced, and even when fuel containing lead is used for automobiles. The durability is also sufficient.

尚あらかじめセリウムを含有させた特定の細孔径を持つ
活性アルミナとセリウム酸化物とアルミナゾルとを混合
粉砕してスラリーをつくる際、活性アルミナにセリウム
を含有させる量は金属換算でアルミナに対して1〜5重
景重量好ましく、セリウム酸化物の量は5〜40重量%
が好ましい。
When preparing a slurry by mixing and pulverizing activated alumina with a specific pore size that contains cerium in advance, cerium oxide, and alumina sol, the amount of cerium contained in the activated alumina is 1 to 1 to alumina in terms of metal. Preferably, the amount of cerium oxide is 5 to 40% by weight.
is preferred.

活性アルミナにセリウムを含有させる量がセリウムとし
て5重量%(金属換算)を超え、配合するセリウム酸化
物粉末が40重量%を超えてもその増量効果は殆んどな
く、逆に活性アルミナにセリウムを含有させる量が1重
量%(金属換’a、 )未満、配合するセリウム酸化物
粉末が5重量%未渦の場合は、それらの添加効果が発明
者らの要求性能と比較して不十分である。
Even if the amount of cerium contained in activated alumina exceeds 5% by weight (metal equivalent) and the amount of cerium oxide powder added exceeds 40% by weight, there is almost no effect of increasing the amount of cerium; If the amount of cerium oxide contained is less than 1% by weight (metal conversion 'a, ), and if the blended cerium oxide powder is 5% by weight, the effect of their addition is insufficient compared to the performance required by the inventors. It is.

またこの発明で使用する活性アルミナの細孔径は200
人未満および600人を超える場合Gこは鉛を含む燃料
を用いた場合の触媒の耐久後の劣化が大きく好ましくな
く、細孔径分布として200人から600八までの細孔
の細孔容積が全細孔容積に占める割合は、高いほど好ま
しいが、そのV」合を高めるとコスト増大につながり、
技術的にもむずかしくなるので、その割合は80%以上
が好ましい。従ってこの発明においては細孔径が200
〜600人で細孔容積が全細孔容積の80%以上を占め
る活性アルミナを使用する。
Furthermore, the pore diameter of the activated alumina used in this invention is 200.
If the number of pores is less than 600 people or more than 600 people, it is undesirable that catalyst deterioration after durability is large when fuel containing lead is used, and the pore volume of pores from 200 to 6008 people is The higher the proportion in the pore volume, the better, but increasing the V' ratio leads to increased costs;
Since it is technically difficult, the ratio is preferably 80% or more. Therefore, in this invention, the pore diameter is 200
Use activated alumina in which the pore volume accounts for 80% or more of the total pore volume.

(実施例) 以下本発明を実施例、比較例および試験例で説明する。(Example) The present invention will be explained below with reference to Examples, Comparative Examples, and Test Examples.

実施例1 1、001の反応器に40〜60tの水を入れ100°
Cに加熱した。そこへアルミナ(A1208)として5
゜4重量%含む硝酸アルミニウム水溶液(ht (No
8)8) 、をPH2になるまで加えた。5分間そのま
ま保持したのち次にアルミナ(Al2O8)として20
重量%含むアルミン酸ナトリウム水溶液(NaAl1.
 )をPH10になるまで加えた。5分間そのまま保持
したのち硝酸アルミニウム水溶液を加え、PH2となる
ようにした。以下同様の操作を繰り返し、PHの変動回
数を13回となるようにし、ノυ後にアルミン酸ナトリ
ウム水溶液を加えPHIOとした。生成した擬ベーマイ
ト沈澱を、Al2O,に対してNa2Oが0.02重量
%以下になるまで水洗しNa2Oを除去した。沈澱を濾
過し、A720820〜30重量%含むケーキとした。
Example 1 40-60t of water was put into a 1,001 liter reactor and heated to 100°
It was heated to C. There as alumina (A1208) 5
゜Aluminum nitrate aqueous solution containing 4% by weight (ht (No.
8) 8) was added until the pH reached 2. After holding for 5 minutes, alumina (Al2O8) was added for 20 minutes.
A sodium aluminate aqueous solution containing 1% by weight (NaAl1.
) was added until the pH reached 10. After keeping it as it was for 5 minutes, an aqueous aluminum nitrate solution was added to adjust the pH to 2. Thereafter, the same operation was repeated so that the number of pH fluctuations was 13 times, and after the test, an aqueous sodium aluminate solution was added to obtain PHIO. The generated pseudo-boehmite precipitate was washed with water to remove Na2O until Na2O was 0.02% by weight or less based on Al2O. The precipitate was filtered to give a cake containing 20 to 30% by weight of A7208.

アルミナケl    −キを造粒機により直径2〜4朋
の粒状とした。
Alumina gel was made into granules with a diameter of 2 to 4 mm using a granulator.

120°Cで乾燥し、500°Cで8時間焼成し、活1
1アルミナとした。活性アルミナの中心細孔径は385
人であり、細孔径が200Å〜600人である細孔容積
は、全細孔容積の80%以上を占めていた。この刑11
孔径が200人から600八である細孔容積が全細孔容
積の80%以上を占めるガンマアルミナを主成分とする
粒状担体(粒径2〜4朋)を硝酸セリウム水溶液に含浸
後乾燥して600°C1時間空気中で焼成し、アルミナ
に対してセリウム酸化物を金属換算で3重量%含む担体
を得た。
Dry at 120°C, bake at 500°C for 8 hours,
1 alumina. The central pore diameter of activated alumina is 385
The pore volume with a pore diameter of 200 Å to 600 Å occupied more than 80% of the total pore volume. This punishment 11
A granular carrier (particle size 2 to 4 mm) whose main component is gamma alumina and whose pore size is 200 to 600 mm and whose pore volume accounts for 80% or more of the total pore volume is impregnated with a cerium nitrate aqueous solution and then dried. It was fired in air at 600° C. for 1 hour to obtain a carrier containing 3% by weight of cerium oxide based on alumina in terms of metal.

25639、上記セリアを含む活性アルミナ粒状担体9
469、セリア粉末491りをボールミルで混合し、s
 o rpmで6時間粉砕した。このアルミナを含む液
(コーテイング液)にモノリス型担体基材(1,7,1
!400セル/1n2)を浸漬し、エアブロ−後乾燥す
る作業を3回繰り返し、酸化物コート層を付着させ65
0°Cの空気雰囲気中で2     、?時間焼成を行
なった。この時のアルミナとセリウム酸化物の合計量の
付着量は340り/ケであった。
25639, activated alumina granular support 9 containing the above ceria
469 and ceria powder 491 were mixed in a ball mill, and s
Milled for 6 hours at o rpm. A monolithic carrier base material (1, 7, 1
! The process of immersing 400 cells/1n2), air blowing and drying was repeated three times to deposit the oxide coating layer.
2 in an air atmosphere at 0°C? Time baking was performed. At this time, the total amount of alumina and cerium oxide deposited was 340 l/kg.

さらにこのアルミナとセリウム酸化物の付着した担体を
塩化白金酸と塩化ロジウムの混合水溶液に浸漬し、白金
、ロジウムの付着量が白金0.779、ロジウム0゜1
89になるように担持した後、600°CX2時間空気
雰囲気中で焼成を行なった。
Furthermore, this carrier with alumina and cerium oxide attached was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium attached was 0.779 for platinum and 0.1 for rhodium.
After supporting the film to a particle size of 89%, it was fired at 600° C. for 2 hours in an air atmosphere.

さらに細孔径が20 OAから600Aである細孔容積
が全細孔容積の80%以上を占めるガンマアルミナを主
成分とする粒状担体(粒径2〜4關)を10002とア
ルミナゾル(ベーマイトアルミナ10重量%懸濁液に1
0重量%のHNO8を添加することによって得られるゾ
ル)aoooりをボールミルで混合しs o rpmで
6時間粉砕したのちこのアルミナを含む液しこ前記触媒
を浸漬しエアブロ−後乾燥し650°Cの空気雰囲気中
で2時間焼成を行ない触媒1を得た。この時の最表面層
のアルミナの付着量は1009/+であった。
Furthermore, a granular carrier (particle size 2 to 4) whose pore size is from 20 OA to 600 A and whose pore volume accounts for 80% or more of the total pore volume (particle size 2 to 4) is mixed with 10002 and alumina sol (boehmite alumina 10% by weight). % suspension to 1
A sol obtained by adding 0% by weight of HNO8 was mixed in a ball mill and pulverized at SO rpm for 6 hours, then the catalyst was immersed in the liquid containing alumina, air blown, and dried at 650°C. Catalyst 1 was obtained by calcination in an air atmosphere for 2 hours. At this time, the amount of alumina deposited on the outermost surface layer was 1009/+.

実施例2 実施例1においてセリウムを含む活性アルミナ粒状担体
1.878 f7、アルミナゾル24789、セリア粉
末1447を用いた以外は同じ方法で触媒を調製し、触
媒2を得た。
Example 2 A catalyst was prepared in the same manner as in Example 1 except that cerium-containing activated alumina granular carrier 1.878 f7, alumina sol 24789, and ceria powder 1447 were used to obtain catalyst 2.

実施例3 実施例1においてセリウムを含む活性アルミナ粒状担体
1103り、アルミナゾル256.89、セリア粉末3
34;りを用いた以外は同じ方法で触媒を調製し触媒3
を得た。
Example 3 In Example 1, activated alumina granular carrier containing cerium 1103, alumina sol 256.89, ceria powder 3
34; Catalyst 3 was prepared using the same method except that
I got it.

実施例4 実施例1においてセリウムを含む活性アルミナ粒状担体
847g、アルミナゾル2563g、セリア粉末590
ノを用いた以外は同じ方法で触媒を調製し、触媒4を得
た。
Example 4 In Example 1, 847 g of active alumina granular carrier containing cerium, 2563 g of alumina sol, and 590 g of ceria powder were added.
A catalyst was prepared in the same manner except that catalyst 4 was obtained.

実施例5 実施例1において白金、ロジウムの付着量をそれぞれ、
白金1.917、ロジウム0.19りになるように担持
した以外は同じ方法で触媒を調製し、触媒5を得た。
Example 5 In Example 1, the amount of deposited platinum and rhodium was changed to
A catalyst was prepared in the same manner except that platinum was supported in an amount of 1.917 mm and rhodium was supported in an amount of 0.19 mm to obtain a catalyst 5.

実施例6 実施例2において、白金、ロジウムの付着量をそれぞれ
、白金1.91g、ロジウム0.199Gこなるように
担持した以外は同じ方法で触媒をFf41jし、触媒6
を得た。
Example 6 A catalyst Ff41j was prepared in the same manner as in Example 2, except that the amount of platinum and rhodium deposited was 1.91 g of platinum and 0.199 g of rhodium, respectively.
I got it.

実施例7 実施例3において、白金、ロジウムの付着量をそれぞれ
、白金1゜91り、ロジウム0.199になるように担
持した以外は同じ方法で触媒を調製し、触媒7を得た。
Example 7 A catalyst was prepared in the same manner as in Example 3 except that platinum and rhodium were supported in an amount of 1.91° for platinum and 0.199° for rhodium, respectively, to obtain catalyst 7.

実施例8 実施例4において、白金、ロジウムの付着量をそれぞれ
白金1゜91り、ロジウム0゜199になるように担持
した以外は同じ方法で触媒を調製し一触媒8を得た。
Example 8 A catalyst was prepared in the same manner as in Example 4, except that platinum and rhodium were supported in an amount of 1°91 for platinum and 0°199 for rhodium, to obtain catalyst 8.

実施例9 実施例1において、アルミナゾル26489、セリウム
を含む活性アルミナ粒状担体(セリウム金属換算1爪量
%)12511’、セリア粉末94りを用いた以外は同
じ方法で触媒9を得た。
Example 9 Catalyst 9 was obtained in the same manner as in Example 1, except that alumina sol 26489, activated alumina granular carrier containing cerium (12511' in terms of cerium metal equivalent) 12511', and ceria powder 94 ml were used.

実施例10 実施例1において、アルミナゾル2478り、セリウム
を含む活性アルミナ粒状担体(セリウム金属換算1重量
%)6979、セリア粉末825りを用いた以外は同じ
方法で触媒1oを得た。
Example 10 Catalyst 1o was obtained in the same manner as in Example 1, except that alumina sol 2478, activated alumina granular carrier containing cerium (1% by weight as cerium metal) 6979, and ceria powder 825 were used.

実施例11 実施例1において、アルミナゾル2568!7、セリウ
ムを含む活性アルミナ粒状担体(セリウム金属換算5重
量%) 946 g、セリア粉末553りを用いた以外
は同じ方法で触媒11を得た。
Example 11 Catalyst 11 was obtained in the same manner as in Example 1, except that 2568!7 g of alumina sol, 946 g of active alumina granular carrier containing cerium (5% by weight in terms of cerium metal), and 553 g of ceria powder were used.

実施例12 実施例1において、アルミナゾル25639、セリウム
を含む活性アルミナ粒状担体(セリウム金属換算5重量
%)6519、セリア粉末786りを用いた以外は同じ
方法で触媒12を得た。
Example 12 Catalyst 12 was obtained in the same manner as in Example 1, except that alumina sol 25639, active alumina granular carrier containing cerium (5% by weight in terms of cerium metal) 6519, and ceria powder 786 were used.

実施例13 実施例1において、浸漬させる貴金属水溶液を、塩化パ
ラジウム、塩化ロジウムの混合水浴液を用いて、パラジ
ウム、ロジウムの伺着量をそれぞれパラジウム0.77
り、ロジウム0.18gになるように担持した以外は同
じ方法で触媒13を得た。
Example 13 In Example 1, the noble metal aqueous solution to be immersed was mixed with a mixed water bath solution of palladium chloride and rhodium chloride, and the amount of palladium and rhodium deposited was 0.77 palladium, respectively.
Catalyst 13 was obtained in the same manner except that rhodium was supported in an amount of 0.18 g.

実施例14                    
−督 実施例2において、浸漬させる貴金属水溶液を、塩化パ
ラジウム、塩化ロジウムの混合水浴液を用いて、パラジ
ウム、ロジウムの付着量をそれぞれパラジウム0゜77
9、ロジウム0゜189になるように担持した以外は同
じ方法で触媒14を得た。
Example 14
- In Example 2, a mixed bath solution of palladium chloride and rhodium chloride was used for the precious metal aqueous solution to be immersed, and the amount of deposited palladium and rhodium was adjusted to 0°77% of palladium, respectively.
9. Catalyst 14 was obtained in the same manner except that rhodium was supported at 0°189.

実施例15 実IJfi例8Gこおいて、浸漬させる値金属水浴液を
塩化パラジウム、塩化ロジウムの混合水溶液を用いて、
パラジウム、ロジウムの付着量をそれぞれパラジウム0
.7ツク、ロジウムOJ89になるように枦1hシた以
外は同じ方法で触媒15を得た。
Example 15 Practical IJfi Example 8G Here, the metal water bath solution to be immersed is a mixed aqueous solution of palladium chloride and rhodium chloride,
The adhesion amount of palladium and rhodium was reduced to palladium 0.
.. Catalyst 15 was obtained in the same manner except that rhodium was dried for 1 hour so that the rhodium OJ89 was obtained.

実施例16 実施例4Iにおいて、浸漬させる貞金閉水溶液を塩化パ
ラジウム、塩化ロジウムの混合水溶液を用いて、パラジ
ウム、ロジウムの付着量をそれぞれパラジウム0.77
9 、ロジウム0.189になるように担持した以外は
同じ方法で触媒16を得た。
Example 16 In Example 4I, the metal closed aqueous solution to be immersed was mixed with a mixed aqueous solution of palladium chloride and rhodium chloride, and the adhesion amount of palladium and rhodium was reduced to 0.77 palladium, respectively.
9, catalyst 16 was obtained in the same manner except that rhodium was supported at 0.189.

実施例17 実施例1において、浸漬させる貴金属水溶液を塩化パラ
ジウム、塩化ロジウムの混合水溶液を用イテ、パラジウ
ム、ロジウムの付着量をそれぞれパラジウム1.919
 、ロジウム0.199になるように担持した以外は同
じ方法で触媒17を得た。
Example 17 In Example 1, the noble metal aqueous solution to be immersed was a mixed aqueous solution of palladium chloride and rhodium chloride.
, Catalyst 17 was obtained in the same manner except that rhodium was supported at 0.199%.

実施例18 実施例2において、浸漬させる貴会川水浴液を塩化パラ
ジウム、塩化ロジウムの混合水溶液を用いて、パラジウ
ム、ロジウムの付”4 FJkをそれぞれパラジウム1
,919、ロジウム0.199 Gこなるように担持し
た以外は同じ方法で触媒18を得た。
Example 18 In Example 2, using a mixed aqueous solution of palladium chloride and rhodium chloride to immerse the Takaai River bathing liquid, palladium and rhodium 4 FJk were each immersed in palladium 1.
, 919 and rhodium 0.199 G. Catalyst 18 was obtained in the same manner except that rhodium was supported in the same manner.

実施例19 実施例3において、浸漬させる狛金属水浴液を塩化パラ
ジウム、塩化ロジウムの混合水溶液を用いて、パラジウ
ム、ロジウムの付着量をそれぞれパラジウム1.91り
、ロジウム0.199になるように担持した以外は同じ
方法で触媒19を得た。
Example 19 In Example 3, a mixed aqueous solution of palladium chloride and rhodium chloride was used to support the Koma metal water bath solution to be immersed so that the amounts of palladium and rhodium deposited were 1.91 palladium and 0.199 rhodium, respectively. Catalyst 19 was obtained in the same manner except that.

実施例20 実施例4において、浸漬させる資金44水溶液を、JM
化パラジウム、塩化ロジウムの混合水溶液を用いて、パ
ラジウム、ロジウムの付着量をそれぞれパラジウム1゜
91り、ロジウム0.197 Gこなるように担持した
以外は同じ方法で触媒2()を得た。
Example 20 In Example 4, the aqueous solution of funds 44 to be immersed was
Catalyst 2 () was obtained in the same manner except that a mixed aqueous solution of palladium chloride and rhodium chloride was used to support palladium and rhodium in amounts of 1.91 g of palladium and 0.197 g of rhodium, respectively.

実施例21 実施例1において、浸漬させる貴金属水溶液を塩化白金
酸、塩化パラジウム、塩化ロジウムの混合水溶液を用い
て、白金、パラジウム、ロジウムの伺着凰をそれぞれ、
白金0.885g、パラジウム0.3’859 Nロジ
ウム0.139になるように担持した以外は同じ方法で
触媒21を得た。
Example 21 In Example 1, using a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride for the precious metal aqueous solution to be immersed, platinum, palladium, and rhodium ferrites were respectively immersed.
Catalyst 21 was obtained in the same manner except that platinum was supported in an amount of 0.885 g, palladium was 0.3'859 N, and rhodium was 0.139 g.

実施例22 実施例2において、浸漬させる貴金属水溶液を塩化白金
酸、塩化パラジウム、塩化ロジウムの混合水溶液を用い
て、白金、パラジウム、ロジウムの付N mをそれぞれ
、白金0.3859、パラジウム0.385り、ロジウ
ム0.137Gこなるように担持した以外は同じ方法で
触媒22を得た。
Example 22 In Example 2, using a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride as the noble metal aqueous solution to be immersed, the N m of platinum, palladium, and rhodium was 0.3859 for platinum and 0.385 for palladium, respectively. Catalyst 22 was obtained in the same manner except that 0.137G of rhodium was supported.

実施例23 実施例8において、浸漬させる貴金属水溶液を塩化白金
酸、塩化パラジウム、塩化ロジウムの混l    台木
浴液を用いて、白金、パラジウム、ロジウムの付λ−?
L′1をそれぞれ、白金0.3859 、パラジウム0
゜asts9、ロジウム0.187になるように担持し
た以外は同じ方法で触媒23を得た。
Example 23 In Example 8, the noble metal aqueous solution to be immersed was mixed with platinum, palladium, and rhodium using a mixed rootstock bath solution of chloroplatinic acid, palladium chloride, and rhodium chloride.
L'1 is platinum 0.3859 and palladium 0, respectively.
Catalyst 23 was obtained in the same manner except that it was supported so that the amount of asts was 9 and rhodium was 0.187.

実施例24・ 実施例4にお°pで、浸漬させる貴金属水溶液を塩化白
金酸、塩化パラジウム、塩化ロジウムの混合水溶液を用
いて、白金、パラジウム、ロジウムの付着量をそれぞれ
、白金0.885り、パラジウム0.3859 、ロジ
ウム0.139になるようQこ担持した以外は同じ方法
で触媒24.を得た。
Example 24 The noble metal aqueous solution to be immersed in Example 4 was immersed in a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride, and the adhesion amount of platinum, palladium, and rhodium was adjusted to 0.885% of platinum, respectively. A catalyst 24. I got it.

実施例25 実施例1において、浸漬させる貴金属水浴液を塩化白金
酸、塩化パラジウム、塩化ロジウムの混合水溶液を用い
て、白金、パラジウム、ロジウムの伺”A1量をそれぞ
れ、白金O0り559、パラジウム0,9559、ロジ
ウム0.1991・こなるようをこ担持した以外は同じ
方法で触媒25を得た。
Example 25 In Example 1, using a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride as the noble metal water bath solution to be immersed, the amounts of platinum, palladium, and rhodium were adjusted to 559% of platinum O0 and 0% of palladium, respectively. , 9559 and rhodium 0.1991.Catalyst 25 was obtained in the same manner except that rhodium 0.1991.

実施例26 実施例2において、浸漬させる責金1・」L水溶液を、
塩化白金酸、塩化パラジウム、塩化ロジウムの混1−含
水溶液を用いて、白金、パラジウム、ロジウムの付着量
をそれぞれ、白金0.9557、パラジウム0゜955
9 、ロジウム0.199になるように担持した以外は
同じ方法で触媒26を得た。
Example 26 In Example 2, the aqueous solution to be immersed was
Using a mixed 1-aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride, the adhesion amounts of platinum, palladium, and rhodium were determined to be 0.9557 for platinum and 0.955 for palladium, respectively.
9, catalyst 26 was obtained in the same manner except that rhodium was supported at 0.199%.

実施例27 実施例3において、浸漬させる貴金属水溶液を、塩化白
金酸、塩化パラジウム、塩化ロジウムの混合水溶液を用
いて、白金、パラジウム、ロジウムの付着量をそれぞれ
、白金0.955g、パラジウム0.955り、ロジウ
ム0.199になるように担持した以外は同じ方法で触
媒27を得た。
Example 27 In Example 3, a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride was used as the noble metal aqueous solution to be immersed, and the adhesion amounts of platinum, palladium, and rhodium were adjusted to 0.955 g of platinum and 0.955 g of palladium, respectively. Catalyst 27 was obtained in the same manner except that rhodium was supported at 0.199%.

実施例28 実施例4において、浸漬させる貴金属水溶液を、塩化白
金酸、塩化パラジウム、塩化ロジウムの混合水溶液を用
いて、白金、パラジウム、ロジウムの付着量をそれぞれ
、白金0.9559 、パラジウム009559、ロジ
ウム0.199になるように担持した以外は同じ方法で
触媒28を得た。
Example 28 In Example 4, the noble metal aqueous solution to be immersed was mixed with a mixed aqueous solution of chloroplatinic acid, palladium chloride, and rhodium chloride. Catalyst 28 was obtained in the same manner except that it was supported at a concentration of 0.199.

比較例1 ガンマアルミナを主成分とする粒状担体(粒径2〜4間
)を硝酸セリウム水溶液に含浸後乾燥し、600°C1
時間空気中で焼成し、アルミナに対してセリウム酸化物
を金属換算で8重量%含む担体を得た。
Comparative Example 1 A granular carrier mainly composed of gamma alumina (particle size between 2 and 4) was impregnated with an aqueous cerium nitrate solution and dried at 600°C.
The product was fired in air for an hour to obtain a carrier containing 8% by weight of cerium oxide based on alumina in terms of metal.

次にアルミナゾル(ベーマイトアルミナ10重M%懸濁
液に10重M%のHNO3を添加することにより得られ
るゾル)2563g、上記セリアを含む活性アルミナ粒
状担体9469、セリア粉末491gをボールミルで混
合し、B o rpmで6時間粉砕した。このアルミナ
を含む液(コーテイング液)にモノリス型担体基材(1
゜71400セル/1n2)を浸漬し、エアブロ−後乾
燥する作業を3回繰り返し、酸化物コート層を付着させ
、650°Cの空気雰囲気中で2時間焼成を行なった。
Next, 2563 g of alumina sol (a sol obtained by adding 10 wt M% HNO3 to a 10 wt M% boehmite alumina suspension), 9469 g of the activated alumina granular carrier containing the above ceria, and 491 g of ceria powder were mixed in a ball mill, Milled at Bo rpm for 6 hours. This alumina-containing liquid (coating liquid) is added to the monolithic carrier base material (1
The process of immersing a cell (71,400 cells/1n2), air blowing, and drying was repeated three times to deposit an oxide coating layer, followed by baking in an air atmosphere at 650°C for 2 hours.

この時のアルミナとセリウム酸化物の合計の付着量は8
409/15T−であった。
The total amount of alumina and cerium oxide deposited at this time was 8
It was 409/15T-.

さらにこのアルミナとセリウム酸化物の付着した担体を
塩化白金酸と塩化ロジウムの混合水溶液に浸漬し、白金
、ロジウムの付着量が白金0.772、ロジウム0゜1
8gになるように担持した後、600°Cの空気雰囲気
中で2時間焼成を行ない触媒Aを得た。尚、セリウムを
含有させたアルミナは細孔径がほとんどが600人以上
であった。
Furthermore, this carrier with alumina and cerium oxide attached was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium attached was 0.772 for platinum and 0.1 for rhodium.
After supporting the catalyst in an amount of 8 g, it was calcined in an air atmosphere at 600° C. for 2 hours to obtain catalyst A. Note that most of the cerium-containing aluminas had pore diameters of 600 pores or more.

比較例2 比較例1において、セリウムを含む活性アルミナ粒状担
体13789、アルミナゾル24789、セリア粉末1
44qを用いた以外は同じ方法で触媒を調製し、触媒B
を得た。
Comparative Example 2 In Comparative Example 1, activated alumina granular carrier containing cerium 13789, alumina sol 24789, ceria powder 1
Catalyst B was prepared in the same manner except that 44q was used.
I got it.

比較例3 比較例1において、セリウムを含む活性アルミナ粒状担
体1103り、アルミナゾル2568り、七リア粉末3
34りを用いた以外は同じ方法で触媒をi!i製し、触
媒Cを得た。
Comparative Example 3 In Comparative Example 1, activated alumina granular carrier containing cerium 1103, alumina sol 2568, and Shichiria powder 3
The catalyst was prepared using the same method except that the i! A catalyst C was obtained.

比軸例4・ 比較例1において、セリウムを含む活性アルミナ粒状担
体847ノ、アルミナゾル25689、七リア粉末59
0りを用いた以外は同じ方法で触媒を調製し触媒りを得
た。
Ratio example 4/Comparative example 1, activated alumina granular carrier containing cerium 847, alumina sol 25689, and hexadia powder 59
A catalyst was prepared in the same manner except that 0 was used.

比較例5 1       ア″ミ“ゾ″′(″″−゛イトア″ミ
ナ1°重景%重量液に10重量%のHNO3を添加する
ことによって得られるゾル)26489、活性アルミナ
粒状・担体13529をボールミルで混合し、s o 
rpmで6時間粉砕した。このアルミナを含む液(コー
テイング液)にモノリス型担体基材(1゜7 l 40
0セル/ 1n2)を浸漬し、エアブロ−後乾燥する作
業を3回繰り返し、アルミナコート層を+1看させ、6
50°Cの空気雰囲気中で2時間焼成を行った。
Comparative Example 5 1 A'Mi'zo'' (a sol obtained by adding 10% by weight of HNO3 to a 1° heavy weight% liquid) 26489, activated alumina granules/carrier 13529 Mix in a ball mill, s o
Milled for 6 hours at rpm. A monolithic carrier base material (1°7 l 40
0 cell/1n2) was immersed, air-blown and then dried three times, and the alumina coat layer was heated by +1.
Firing was performed in an air atmosphere at 50°C for 2 hours.

この時のアルミナの付着■は840 !7/ケに設定し
た。
At this time, the alumina adhesion ■ was 840! It was set to 7/ke.

さらにこのアルミナの付着した担体を塩化白金酸と塩化
ロジウムの混合水溶液に浸漬し、白金、ロジウムの付着
量が白金0.77g、ロジウム0.18りになるように
担持した後600°Cの空気雰囲気中で2時間焼成を行
った。
Furthermore, this carrier with alumina attached was immersed in a mixed aqueous solution of chloroplatinic acid and rhodium chloride, and the amount of platinum and rhodium deposited was 0.77 g for platinum and 0.18 g for rhodium, and then heated in air at 600°C. Firing was performed in an atmosphere for 2 hours.

さらに細孔径が200人から600人である細孔容積が
全細孔容積の80%以上を占めるガンマアルミナを主成
分とする粒状担体(粒径2〜4間)を1000りとアル
ミナゾル3000りをボールミルに混合し、80 rp
mで6時間粉砕したのち、    、このアルミナを含
む液に前記触媒を浸漬し、エアブロ−後乾燥し、650
°Cの空気雰囲気中で2時間焼成を行い触媒Eを得た。
In addition, 1000 gamma alumina-based granular carrier (particle size between 2 and 4) with a pore size of 200 to 600 pores and a pore volume accounting for 80% or more of the total pore volume and 3000 ml of alumina sol were added. Mix in ball mill, 80 rp.
After pulverizing for 6 hours at 650 m
Catalyst E was obtained by calcination for 2 hours in an air atmosphere at °C.

この時の最表面層のアルミナの付着量は1002/ケで
あった。
At this time, the amount of alumina deposited on the outermost surface layer was 1002/piece.

比軸例6 比軸例5において、アルミナゾル25689、活t−t
アルミナ粒吠担体946りの他に、セリア粉末491g
を加えて用いた以外は同じ方法で触媒を調製し、触媒F
を得た。
Ratio example 6 In ratio example 5, alumina sol 25689, active t-t
In addition to 946 pieces of alumina grain carrier, 491g of ceria powder
A catalyst was prepared in the same manner except that catalyst F
I got it.

比較例7 実施例1において、セリウムを含む活性アルミナ粒状担
体13529、アルミナゾル2648りを用い、セリア
粉末を用いない以外は同じ方法で触媒を調製し、触媒G
を得た。
Comparative Example 7 A catalyst was prepared in the same manner as in Example 1, except that cerium-containing activated alumina granular carrier 13529 and alumina sol 2648 were used, and ceria powder was not used.
I got it.

実施例29 実施例1において、セリウムを含む活性アルミナ粒状担
体59/)9、アルミナゾル2477i7、七リア粉末
9299を用いた以外は同じ方法で触媒を調製し、触媒
29を得た。
Example 29 A catalyst was prepared in the same manner as in Example 1 except that cerium-containing activated alumina granular carrier 59/) 9, alumina sol 2477i7, and Shichiria powder 9299 were used to obtain catalyst 29.

実施例80 実施例1において、セリウムを含む活性アルミナ粒状担
体94 e g、アルミナゾル2563Gl、セリア粉
末491gを用いた以外は同じ方法で触媒を調製し、触
媒80を得た。
Example 80 A catalyst was prepared in the same manner as in Example 1 except that 94 g of activated alumina granular carrier containing cerium, 2563 Gl of alumina sol, and 491 g of ceria powder were used to obtain catalyst 80.

実施例81 実施例1において、セリウムを含む活性アルミナ粒状担
体594g、アルミナゾル24779、セリア粉末92
9gを用いた以外は同じ方法で触媒を調製し、触媒81
を得た。
Example 81 In Example 1, 594 g of active alumina granular carrier containing cerium, alumina sol 24779, ceria powder 92
Catalyst 81 was prepared in the same manner except that 9 g was used.
I got it.

比較例8 実施例1において、細孔径が100λ〜200゛λであ
る細孔容積が全細孔容積の80%以上を占めるガンマア
ルミナを主成分とする粒状担体を用いた以外は同じ方法
で触媒を調製し、触媒Hを得た。
Comparative Example 8 A catalyst was produced in the same manner as in Example 1, except that a granular support containing gamma alumina as a main component and having a pore diameter of 100λ to 200゛λ and a pore volume accounting for 80% or more of the total pore volume was used. was prepared to obtain catalyst H.

比較例9 実施例1において、細孔径が600人〜1000人であ
る細孔容積が全細孔容積の80%以上を占めるガンマア
ルミナを主成分とする粒状担体を用いた以外は同じ方法
で触媒を調製し、触媒工を得た。
Comparative Example 9 A catalyst was produced in the same manner as in Example 1, except that a granular support mainly composed of gamma alumina with a pore diameter of 600 to 1000 pores and a pore volume of 80% or more of the total pore volume was used. was prepared and a catalyst was obtained.

試験例 実施例1〜81で得た触媒1〜81および比較例1〜9
で得た触媒Å〜工につき下記条件で実車耐久(エンジン
耐久)を行い、10モードエミツシヨンの浄化率を測定
し、浄化率をVηco×ηN。
Test Examples Catalysts 1 to 81 obtained in Examples 1 to 81 and Comparative Examples 1 to 9
The obtained catalyst was subjected to actual vehicle durability (engine durability) under the following conditions, and the purification rate of 10 mode emission was measured, and the purification rate was Vηco×ηN.

として第1表に示す。as shown in Table 1.

エンジン耐久条件 触 媒     一体型貴金属触媒 触媒出口温度  約750°C 空間速度    約7万1r−1 耐久時間    100時間 エンジン    排気量2200 CCガソリン   
 鉛量6〜/米国ガロン次に実施例1、比較例8および
比較例9で用いたアルミナにつき、夫々650’Cで2
時間熱処理J      1ヶ、*1□。ユよ、ワ□、
径、ヵアおヵ積ヮ□容積を測定し、得た結果を第1図に
示すっ尚第1図において曲線1は実施例1のアルミナ、
曲線2は比較例8のアルミナ、曲線3は比較例9のアル
ミナの結果を示す。
Engine durability conditions Catalyst Integrated noble metal catalyst Catalyst outlet temperature Approximately 750°C Space velocity Approximately 70,01r-1 Durability time 100 hours Engine Displacement 2200 CC gasoline
Amount of lead 6~/U.S. gallon Next, for the alumina used in Example 1, Comparative Example 8, and Comparative Example 9, the amount of lead was 2 at 650'C, respectively.
Time heat treatment J 1 piece, *1□. Yu, wa□,
The diameter, volume, and volume were measured and the obtained results are shown in Figure 1. In Figure 1, curve 1 indicates the alumina of Example 1,
Curve 2 shows the results for alumina of Comparative Example 8, and curve 3 shows the results for alumina of Comparative Example 9.

(発明の効果) 以上説明してきたように、この発明によれば、セリウム
を担持した特定の細孔径をもつ活性アルミナと、セリウ
ム酸化物とアルミナゾルを混合粉砕し、スラリーとした
ものを一体型担体にコーティングし、乾燥焼成し、さら
に主触媒金属成分を相持させ、乾燥焼成し、さらに特定
の細孔径を持つ活性アルミナとアルミナゾルとを混合粉
砕し、スラリーとしたものをコーティングし、アルミナ
被膜を形成させる構成としたため、得られた触媒は排ガ
ス浄化率が著しく向上し、耐久性が改善され、このこと
により低主触媒金属量であっても高い浄化率を示すこと
ができるという効果が得られるっ
(Effects of the Invention) As explained above, according to the present invention, activated alumina supporting cerium and having a specific pore size, cerium oxide, and alumina sol are mixed and ground to form a slurry, and a slurry is formed into an integrated carrier. Coated with a slurry, dried and fired, combined with the main catalyst metal component, dried and fired, mixed and ground activated alumina with a specific pore size and alumina sol, and coated with a slurry to form an alumina film. Because of this structure, the resulting catalyst has a significantly improved exhaust gas purification rate and improved durability, which has the effect of being able to show a high purification rate even with a low amount of main catalyst metal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1、比較例8および比較例9で使用した
アルミナの細孔径と細孔容積の関係を示す曲線図である
FIG. 1 is a curve diagram showing the relationship between the pore diameter and pore volume of alumina used in Example 1, Comparative Example 8, and Comparative Example 9.

Claims (1)

【特許請求の範囲】[Claims] 1、あらかじめセリウムを含有させた、細孔径が200
Å〜600Åで細孔容積が全細孔容積の80%以上を占
める活性アルミナとセリウム酸化物とアルミナゾルとを
混合粉砕してスラリーとし、このスラリーを一体構造型
担体に含浸、乾燥、焼成し、担体上に形成された複合酸
化物あるいは混合酸化物の被膜に主触媒金属を担持させ
、更に細孔径が200Å〜600Åで細孔容積が全細孔
容積の80%以上を占める活性アルミナとアルミナゾル
とを混合、粉砕してスラリーとし、このスラリーを、前
記主触媒金属を担持した担体上にコーティングし、乾燥
、焼成することを特徴とする排ガス中の一酸化炭素、炭
化水素および窒素酸化物を除去するための一体構造型排
ガス浄化用触媒の製造方法。
1. Pre-contained cerium with a pore diameter of 200
Activated alumina with a pore size of Å to 600 Å and a pore volume of 80% or more of the total pore volume, cerium oxide, and alumina sol are mixed and pulverized to form a slurry, and this slurry is impregnated into an integral structure carrier, dried, and fired, A main catalyst metal is supported on a film of a composite oxide or mixed oxide formed on a carrier, and activated alumina and alumina sol have a pore diameter of 200 Å to 600 Å and a pore volume of 80% or more of the total pore volume. to remove carbon monoxide, hydrocarbons and nitrogen oxides from exhaust gas. A method for manufacturing an integrated structure exhaust gas purification catalyst.
JP59124401A 1984-06-19 1984-06-19 Manufacture of integral structure type catalyst for purifying waste gas Pending JPS614532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124401A JPS614532A (en) 1984-06-19 1984-06-19 Manufacture of integral structure type catalyst for purifying waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124401A JPS614532A (en) 1984-06-19 1984-06-19 Manufacture of integral structure type catalyst for purifying waste gas

Publications (1)

Publication Number Publication Date
JPS614532A true JPS614532A (en) 1986-01-10

Family

ID=14884530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124401A Pending JPS614532A (en) 1984-06-19 1984-06-19 Manufacture of integral structure type catalyst for purifying waste gas

Country Status (1)

Country Link
JP (1) JPS614532A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933259B2 (en) 2000-11-15 2005-08-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide powder, a method for producing the same and a catalyst using the same
WO2010023919A1 (en) 2008-08-27 2010-03-04 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method using same
JP2011104485A (en) * 2009-11-13 2011-06-02 Toyota Motor Corp Catalyst for purifying exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6933259B2 (en) 2000-11-15 2005-08-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide powder, a method for producing the same and a catalyst using the same
WO2010023919A1 (en) 2008-08-27 2010-03-04 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method using same
US8465711B2 (en) 2008-08-27 2013-06-18 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and method for purifying exhaust gas by using same
JP2011104485A (en) * 2009-11-13 2011-06-02 Toyota Motor Corp Catalyst for purifying exhaust gas

Similar Documents

Publication Publication Date Title
EP0142858B1 (en) Method of producing monolithic catalyst for purification of exhaust gas
KR960012558B1 (en) Catalyst having excellent heat resistance for use in purifying exhaust gases
CA1154740A (en) Method for forming high surface area catalyst carrier and catalyst using same
JPH04244232A (en) Improved alumina-ceria catalyst coating film
JPH03501355A (en) Improved catalyst for treating exhaust gas from internal combustion engines
JPH08281107A (en) Catalyst for purifying exhaust gas
EP1722889A1 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JPH01210032A (en) Exhaust gas purifying catalyst and its preparation
JP3831093B2 (en) Composite oxide, method for producing the same, and exhaust gas purification catalyst using the same
JPS63205141A (en) Catalyst for purifying exhaust gas
JP4316586B2 (en) Exhaust gas purification catalyst
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPS614532A (en) Manufacture of integral structure type catalyst for purifying waste gas
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH0582258B2 (en)
JPS61293550A (en) Catalyst for purifying exhaust gas
JPS6054730A (en) Catalyst for purifying exhaust gas
JPS61209045A (en) Catalyst for purifying exhaust gas
JPS6362548A (en) Production of catalyst for purifying exhaust gas
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPH08323205A (en) Exhaust gas purifying catalyst and its production
JPH0424099B2 (en)
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS60206447A (en) Catalyst for purifying exhaust gas
JP3330154B2 (en) Exhaust gas purification catalyst