JPS6144847B2 - - Google Patents

Info

Publication number
JPS6144847B2
JPS6144847B2 JP59120498A JP12049884A JPS6144847B2 JP S6144847 B2 JPS6144847 B2 JP S6144847B2 JP 59120498 A JP59120498 A JP 59120498A JP 12049884 A JP12049884 A JP 12049884A JP S6144847 B2 JPS6144847 B2 JP S6144847B2
Authority
JP
Japan
Prior art keywords
catalyst
iridium
molybdenum
supported
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59120498A
Other languages
Japanese (ja)
Other versions
JPS611630A (en
Inventor
Katsuhiko Wakabayashi
Hideaki Hamada
Yasushi Kuwabara
Tatsuhiko Ito
Yoshiaki Kindaichi
Takehiko Matsuzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59120498A priority Critical patent/JPS611630A/en
Publication of JPS611630A publication Critical patent/JPS611630A/en
Publication of JPS6144847B2 publication Critical patent/JPS6144847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、合成ガス(一酸化炭素と水素の混合
物)から、触媒の存在下に、メタノール、エタノ
ール、プロパノール等の低級アルコール類を製造
する際、触媒としてイリジウム及びモリブデン、
又はイリジウム、モリブデン及びコバルトを含む
担持触媒を用いることを特徴とする方法に関する
ものである。 メタノール、エタノール、プロパノール等のア
ルコール類は価値ある工業製品であり、これらを
合成ガスから製造する方法は公知である。例え
ば、アンモニア合成用の鉄触媒を用い、8〜25気
圧、190〜225℃の温度において合成ガスを高い空
間速度で反応させてアルコール類を得るジノール
法や、多量のアルカリを添加した鉄触媒を用いた
反応とオキソ法を組み合せるオキシル法が古くか
ら知られている。また最近では、酸化亜鉛/酸化
銅系触媒を用いるメタノール合成法が工業的にも
実施されている。しかしながら、ジノール法やオ
キシル法では、得られるアルコールがC1〜C18
いう広範囲のアルコールの混合物であつて選択性
に乏しく、またメタノール合成法では生成物はメ
タノール単独に限定され、価値の高いエタノール
やプロパノールは生成しない。 一方、最近ロジウム系触媒を用い、エタノール
等のC2含酸素化合物を合成する方法が検討され
ている。例えば、ロジウム触媒を用いるC2含酸
素化合物の製造法(特開昭51−80806号公報)、ロ
ジウム−鉄触媒を用いるエタノールの製造法(特
開昭51−80807号公報)、ロジウム/酸化ジルコニ
ウム/シリカ触媒を用いるエタノールの製造法
(特開昭56−147730号公報)等が知られている
が、これらの方法で触媒として用いられるロジウ
ムは貫金属類の中でも非常に産出量が少なく、高
価であるため、工業用触媒としてはこれらに代る
比較的安価で高性能な触媒の開発が強く望まれて
いる。 一般に、金属を活性成分とする固体触媒に於
て、その活性や選択性を改善する方法の一つとし
て、二種以上の金属の組み合わせることが種々試
みられているが、組合わせる成分によつては活性
や選択性が逆に低下するものも数多く、また改善
されるものであつても反応初期にのみ活性である
もの等、好適な組み合わせを具体的に見出すこと
はきわめて困難である。 本発明者らは、一酸化炭素と水素を反応させて
メタノール、エタノール、プロパノール等の低級
アルコール類を製造する方法において、選択性の
改善された触媒を開発すべく鋭意研究を重ねた結
果、活性成分としてイリジウムとモリブデン、あ
るいはイリジウムとモリブデンとコバルトを含む
担持触媒が、メタノール、エタノール、プロパノ
ール等の低級アルコール類の生成に対し、高い選
択性を示すことを見出し、本発明を完成するに到
つた。 以下、本発明の方法について更に詳細に説明す
る。 本発明の触媒は前述の如く、イリジウムとモリ
ブデンあるいはイリジウムとモリブデンとコバル
トを組み合せた触媒であるが、反応条件下におけ
る真の触媒活性種は必ずしも明らかでないもの
の、その活性の中心となるものは本質的には互い
に共存する金属種であり、従つて触媒自体の形態
や触媒中の各成分の形には何ら制限はない。通常
上記触媒成分は担持して使用される。 本発明において用いられる触媒は、好ましく
は、触媒担体をイリジウム、モリブデン、及び必
要に応じてコバルトの塩の溶液に含浸させ、次い
で乾燥することにより製造される。その際、それ
らの金属塩は同時又は順次に担体に担持させるこ
とができる。前記金属塩としては、可溶性の塩、
例えば、硝酸塩、ハロゲン化物、有機酸塩、アン
モニウム塩、クラスター等が用いられ、その種類
は特に制限されない。これらの金属塩は適当な溶
媒に溶解される。溶媒としては、上記金属塩を溶
解するものであれば、任意のものが用いられる。 前記のようにして得られた触媒は乾燥後、適当
な還元剤、例えば水素により還元処理される。こ
の場合、還元温度は200〜600℃の範囲が適当であ
る。また触媒を還元処理する前に適当なガス、例
えば、空気などで焼成処理を行つてもよく、その
際の温度は200〜600℃の範囲が適当である。 本発明の触媒において、各触媒成分の使用量に
ついては、必ずしも厳密な制限はないが、担持触
媒中のイリジウムの含有量としては0.01〜15重量
%、好ましくは0.1〜10重量%、他の触媒成分で
あるモリブデン、コバルトとイリジウムの比率
(Mo/Ir、Co/Ir)はそれぞれ原子比0.001〜
5、好ましくは0.1〜2、0.001〜5、好ましくは
0.1〜2の範囲である。 本触媒に用いる担体としては、1〜1000m2/g
の比表面積をもつものが好ましく、シリカ、アル
ミナ、チタニア、トリア、活性炭、ゼオライト等
が用いられるが、特にシリカ系担体が好ましい。
これらの担体は粉末状、ペレツト状等の任意の形
状で用いることができる。 反応は通常気相で行なわれ、例えば、触媒を充
てんした固定床式反応器に一酸化炭素と水素を含
む原料ガスを導通させる。この場合、原料ガスに
は一酸化炭素と水素以外に、例えば二酸化炭素、
窒素、アルゴン、ヘリウム、水蒸気、メタン等の
他の成分を含んでいてもよい。また触媒反応器は
固定床式に限らず移動床式や流動床式等他の形式
であつても良い。また、場合によつては触媒を適
当な溶媒中にけん濁して原料ガスを導通して反応
させる液相反応でも実施することができる。 反応条件は広い範囲で変えることができるが、
一酸化炭素と水素のモル比は30:1〜1:10、好
ましくは10:1〜1:5、反応温度は100〜450
℃、好ましくは150〜350℃、圧力は1〜
300atm、好ましくは10〜200atm、SVは50〜
100000hr-1、好ましくは100〜10000hr-1程度が適
当である。 以下、本発明を実施例をもつて更に詳細に説明
するが、これらの実施例は本発明についての理解
を容易にするためのもので、本発明はこれらの実
施例に何ら制限されないものである。 なお、表中における用語の意味は下記の通りで
ある。 CO反応率(%)=A−B/A×100 A:供給した一酸化炭素のモル数 B:回収した一酸化炭素のモル数 選択率(%)=C×D/A−B×100 C:当該生成物のモル数 D:当該生成物の炭素数 A、B:前記と同じ意味を有する また、以下において示す各符号は次のことを意
味する。 MeOH……メタノール、EtOH……エタノー
ル、n−PrOH……n−プロパノール、CH4……
メタン、C2 +……C2以上の炭化水素、CO2………
二酸化炭素。 実施例 1 塩化イリジウム(IrCl4・H2O)1.92g、モリブ
デン酸アンモニウム〔(NH46Mo7O24・4H2O〕
0.5gを純水に溶解して9.6mlとし、この溶液をダ
ビリン#57シリカゲル(12〜20メツシユ)8.00g
に含浸させた。1時間放置後、エバポレーターを
用いて減圧下、80℃で1時間、110℃で1時間乾
燥させた。次に、これを水蒸気流中500℃で3時
間還元処理して、シリカ担持イリジウム−モリブ
デン触媒を調製した。担持量は、イリジウム13.1
重量%であり、モリブデンのイリジウムに対する
モル比は0.61である。このようにして調製した触
媒を1.68gとり、高圧流通式反応装置に充てん
し、合成ガス(一酸化炭素/水素=0.5)を6N
/hrの流速(空間速度1500hr-1)で流して反応さ
せた。その反応結果を表−1に実施例1として示
した。 比較例 1〜2 実施例1と同様にして、イリジウム単独、モリ
ブデン単独の担持触媒を調製し、この触媒を反応
させた結果を比較例1、2として表−1に併せて
示した。 イリジウム単独担持触媒では活性がきわめて低
く、またモリブデン単独担持触媒では活性が低い
うえ炭化水素が主生成物であつたが、実施例1で
示されるように、イリジウムとモリブデン両者を
含む触媒では活性が大幅に向上し、しかもエタノ
ール、プロパノール等のアルコール類が選択性良
く生成することがわかる。
The present invention uses iridium and molybdenum as a catalyst when producing lower alcohols such as methanol, ethanol, and propanol from synthesis gas (a mixture of carbon monoxide and hydrogen) in the presence of a catalyst.
Alternatively, the present invention relates to a method characterized in that a supported catalyst containing iridium, molybdenum and cobalt is used. Alcohols such as methanol, ethanol and propanol are valuable industrial products, and methods for producing them from synthesis gas are known. For example, the dino method uses an iron catalyst for ammonia synthesis to produce alcohols by reacting synthesis gas at a high space velocity at 8 to 25 atmospheres and a temperature of 190 to 225°C, and the dino method uses an iron catalyst to which a large amount of alkali is added. The oxyl method, which is a combination of the reaction used and the oxo method, has been known for a long time. Recently, a methanol synthesis method using a zinc oxide/copper oxide catalyst has also been implemented industrially. However, in the diol method and the oxyl method, the alcohol obtained is a mixture of a wide range of alcohols from C 1 to C 18 , and has poor selectivity.In addition, in the methanol synthesis method, the product is limited to methanol alone, and the product is a mixture of alcohols with a wide range of C 1 to C 18. and propanol are not produced. On the other hand, methods of synthesizing C 2 oxygen-containing compounds such as ethanol using rhodium-based catalysts have recently been studied. For example, a method for producing C2 oxygen - containing compounds using a rhodium catalyst (Japanese Unexamined Patent Publication No. 51-80806), a method for producing ethanol using a rhodium-iron catalyst (Japanese Unexamined Patent Publication No. 51-80807), rhodium/zirconium oxide / Methods for producing ethanol using a silica catalyst (Japanese Unexamined Patent Publication No. 147730/1983) are known, but rhodium, which is used as a catalyst in these methods, is produced in very small quantities among all metals and is expensive. Therefore, there is a strong desire to develop a relatively inexpensive and high-performance catalyst to replace these as an industrial catalyst. In general, various attempts have been made to combine two or more metals as a way to improve the activity and selectivity of solid catalysts containing metals as active components. It is extremely difficult to specifically find a suitable combination, as there are many cases in which the activity and selectivity of the reaction mixture decreases, and even in cases where the reaction is improved, the activity is only active at the initial stage of the reaction. The present inventors have conducted intensive research to develop a catalyst with improved selectivity in a method for producing lower alcohols such as methanol, ethanol, and propanol by reacting carbon monoxide and hydrogen. The present invention was completed based on the discovery that a supported catalyst containing iridium and molybdenum, or iridium, molybdenum, and cobalt as components exhibits high selectivity for the production of lower alcohols such as methanol, ethanol, and propanol. . The method of the present invention will be explained in more detail below. As mentioned above, the catalyst of the present invention is a catalyst that combines iridium and molybdenum or iridium, molybdenum, and cobalt, but although the true catalytic active species under the reaction conditions are not necessarily clear, the core of the activity is essentially Basically, they are metal species that coexist with each other, and therefore there are no restrictions on the form of the catalyst itself or the form of each component in the catalyst. Usually, the above catalyst components are used as supported. The catalyst used in the present invention is preferably prepared by impregnating a catalyst support with a solution of salts of iridium, molybdenum, and optionally cobalt, and then drying. At that time, these metal salts can be supported on the carrier simultaneously or sequentially. The metal salts include soluble salts,
For example, nitrates, halides, organic acid salts, ammonium salts, clusters, etc. are used, and the types thereof are not particularly limited. These metal salts are dissolved in a suitable solvent. Any solvent can be used as long as it dissolves the metal salt. After drying, the catalyst obtained as described above is subjected to a reduction treatment using a suitable reducing agent such as hydrogen. In this case, the reduction temperature is suitably in the range of 200 to 600°C. Furthermore, before the catalyst is subjected to the reduction treatment, it may be calcined with a suitable gas such as air, and the temperature at that time is suitably in the range of 200 to 600°C. In the catalyst of the present invention, the amount of each catalyst component used is not necessarily strictly limited, but the iridium content in the supported catalyst is 0.01 to 15% by weight, preferably 0.1 to 10% by weight, and the content of iridium in the supported catalyst is 0.01 to 15% by weight, preferably 0.1 to 10% by weight, The ratios of the components molybdenum, cobalt and iridium (Mo/Ir, Co/Ir) are each at an atomic ratio of 0.001~
5, preferably 0.1-2, 0.001-5, preferably
It is in the range of 0.1 to 2. The carrier used for this catalyst is 1 to 1000 m 2 /g.
A carrier having a specific surface area of 2 is preferred, and silica, alumina, titania, thoria, activated carbon, zeolite, etc. are used, and silica-based carriers are particularly preferred.
These carriers can be used in any form such as powder or pellet. The reaction is usually carried out in the gas phase, for example, a raw material gas containing carbon monoxide and hydrogen is passed through a fixed bed reactor filled with a catalyst. In this case, in addition to carbon monoxide and hydrogen, the raw material gas includes carbon dioxide,
It may also contain other components such as nitrogen, argon, helium, water vapor, and methane. Further, the catalytic reactor is not limited to a fixed bed type, but may be of other types such as a moving bed type or a fluidized bed type. In some cases, a liquid phase reaction may also be carried out in which the catalyst is suspended in a suitable solvent and the raw material gas is passed therethrough. Although reaction conditions can be varied within a wide range,
The molar ratio of carbon monoxide and hydrogen is 30:1 to 1:10, preferably 10:1 to 1:5, and the reaction temperature is 100 to 450.
℃, preferably 150~350℃, pressure 1~
300atm, preferably 10~200atm, SV is 50~
A suitable value is 100,000 hr -1 , preferably about 100 to 10,000 hr -1 . Hereinafter, the present invention will be explained in more detail with reference to Examples, but these Examples are intended to facilitate understanding of the present invention, and the present invention is not limited to these Examples in any way. . In addition, the meanings of the terms in the table are as follows. CO reaction rate (%) = A-B/A x 100 A: Number of moles of carbon monoxide supplied B: Number of moles of recovered carbon monoxide Selectivity (%) = C x D/A-B x 100 C : Number of moles of the product D: Number of carbon atoms of the product A, B: Same meaning as above In addition, each symbol shown below means the following. MeOH...methanol, EtOH...ethanol, n-PrOH...n-propanol, CH 4 ...
Methane, C 2 + ……C 2 or higher hydrocarbons, CO 2 ……
carbon dioxide. Example 1 Iridium chloride ( IrCl4.H2O ) 1.92g , ammonium molybdate [( NH4 ) 6Mo7O24.4H2O ]
Dissolve 0.5g in pure water to make 9.6ml, and add this solution to 8.00g of Dabilin #57 silica gel (12-20 mesh).
impregnated with. After standing for 1 hour, it was dried under reduced pressure using an evaporator at 80°C for 1 hour and at 110°C for 1 hour. Next, this was reduced at 500° C. for 3 hours in a stream of steam to prepare an iridium-molybdenum supported on silica catalyst. The supported amount is iridium 13.1
% by weight, and the mole ratio of molybdenum to iridium is 0.61. Take 1.68 g of the catalyst thus prepared, fill it in a high-pressure flow reactor, and add 6N of synthesis gas (carbon monoxide/hydrogen = 0.5).
The reaction was carried out by flowing at a flow rate of /hr (space velocity 1500hr -1 ). The reaction results are shown in Table 1 as Example 1. Comparative Examples 1 and 2 In the same manner as in Example 1, supported catalysts containing iridium alone and molybdenum alone were prepared, and the results of reacting these catalysts are also shown in Table 1 as Comparative Examples 1 and 2. A catalyst supported solely on iridium had a very low activity, and a catalyst supported solely on molybdenum had a low activity and the main product was hydrocarbons, but as shown in Example 1, a catalyst containing both iridium and molybdenum had no activity. It can be seen that there is a significant improvement and that alcohols such as ethanol and propanol are produced with good selectivity.

【表】 実施例 2〜7 イリジウム担持量を6.5重量%に固定し、モリ
ブデン担持量を変化させた以外は実施例1と同様
にして触媒を調製し、反応を行つた。その反応結
果を実施例2〜7として表−2に示す。
[Table] Examples 2 to 7 Catalysts were prepared and reactions were carried out in the same manner as in Example 1, except that the amount of iridium supported was fixed at 6.5% by weight and the amount of molybdenum supported was varied. The reaction results are shown in Table 2 as Examples 2 to 7.

【表】【table】

【表】 実施例 8〜10 イリジウム担持量を6.5重量%に固定し、モリ
ブデン担持量を変化させた触媒を水素還元温度を
300℃としたほかは実施例1と同様の操作で調製
し、反応を行つた。その反応結果を実施例8〜10
として表−3に示した。 実施例 11〜13 イリジウム担持量を6.5重量%に固定し、モリ
ブデン担持量を変化させた触媒を水素還元前に
500℃で3時間空気焼成処理を行う以外は実施例
1と同様の操作で調製し、反応を行つた。その反
応結果を実施例11〜13として表−3に併せて示し
た。表−3より触媒調製の前処理条件を変化させ
ても低級アルコール類は収率良く生成することが
わかる。
[Table] Examples 8 to 10 The amount of iridium supported was fixed at 6.5% by weight, and the amount of molybdenum supported was varied, and the hydrogen reduction temperature was
The reaction was carried out in the same manner as in Example 1 except that the temperature was 300°C. The reaction results are shown in Examples 8 to 10.
It is shown in Table 3. Examples 11 to 13 Catalysts with fixed iridium loading of 6.5% by weight and varying molybdenum loading were tested before hydrogen reduction.
The reaction was carried out in the same manner as in Example 1 except that the air calcination treatment was carried out at 500° C. for 3 hours. The reaction results are also shown in Table 3 as Examples 11-13. Table 3 shows that lower alcohols can be produced in good yield even if the pretreatment conditions for catalyst preparation are changed.

【表】 実施例 14〜21 塩化イリジウム(IrCl4・H2O)1.79gを純水に
溶解し16.5mlとし、この溶液をダビソン#57シル
カゲル(12〜20メツシユ)15.00gに含浸させ
た。1時間放置後、エバポレーターを用いて減圧
下80℃で1時間、110℃で1時間乾燥させ、さら
にこれを水素気流中500℃で3時間還元処理し
て、担持量6.5重量%のシリカ担持イリジウム触
媒を調製した。次に、この触媒を5.17gとり、モ
リブデン酸アンモニウム〔(NH46Mo7O24
4H2O〕を純水に溶解し、5.5mlとしたものを含浸
させた。1時間放置後エバポレーターを用いて減
圧下80℃で1時間、110℃で1時間乾燥させ、さ
らに水素気流中500℃で3時間還元処理して、イ
リジウム−モリブデン2段担持触媒を調製した。
モリブデンのイリジウムに対するモル比は、
0.031〜1.4である。この触媒を用いて反応を行つ
た結果を実施例14〜21として表−4に示した。
[Table] Examples 14-21 1.79 g of iridium chloride (IrCl 4 .H 2 O) was dissolved in pure water to make 16.5 ml, and 15.00 g of Davison #57 silica gel (12-20 mesh) was impregnated with this solution. After being left for 1 hour, it was dried using an evaporator under reduced pressure at 80°C for 1 hour and at 110°C for 1 hour, and then reduced in a hydrogen stream at 500°C for 3 hours to obtain iridium supported on silica with a supported amount of 6.5% by weight. A catalyst was prepared. Next, 5.17 g of this catalyst was taken and ammonium molybdate [(NH 4 ) 6 Mo 7 O 24 .
4H 2 O] was dissolved in pure water to make 5.5 ml and impregnated. After being left for 1 hour, it was dried under reduced pressure using an evaporator at 80°C for 1 hour and 110°C for 1 hour, and further subjected to reduction treatment at 500°C for 3 hours in a hydrogen stream to prepare a two-stage iridium-molybdenum supported catalyst.
The mole ratio of molybdenum to iridium is
It is 0.031-1.4. The results of reactions conducted using this catalyst are shown in Table 4 as Examples 14 to 21.

【表】 実施例 22〜25 実施例14〜21とは逆にモリブデン担持量を3.2
%に固定して先付けし、イリジウムを後付けした
2段担持触媒を調製した。イリジウムのモリブデ
ンに対するモル比は0.12〜0.98である。この触媒
を用いて反応を行つた結果を実施例22〜25として
表−5に示した。
[Table] Examples 22-25 Contrary to Examples 14-21, the amount of molybdenum supported was 3.2
A two-stage supported catalyst was prepared in which iridium was added at a fixed % in advance and iridium was added later. The molar ratio of iridium to molybdenum is between 0.12 and 0.98. The results of reactions conducted using this catalyst are shown in Table 5 as Examples 22 to 25.

【表】 実施例 26 塩化イリジウム(IrCl4・H2O)0.60g、モリブ
デン酸アンモニウム〔(NH46Mo7O24・4H2O)
0.030g、硝酸コバルト〔Co(NO32・6H2O〕
0.049gを純水に溶解して6.0mlとし、この溶液を
ダビソン#57シリカゲル(12〜20メツシユ)5.00
gに含浸させた。1時間放置後、エバポレータを
用いて減圧下、80℃で1時間、110℃で1時間乾
燥させた。次に、これを水素気流中500℃で3時
間還元処理してシリカ担持イリジウム−モリブデ
ン−コバルト触媒を調製した。担持量はイリジウ
ム6.5重量%であり、モリブデンのイリジウムに
対するモル比は0.1、コバルトのイリジウムに対
するモル比は0.1である。この触媒を用いて行つ
た結果を実施例26として表−6に示した。 実施例 27〜28 実施例26と同様にして、モリブデン及びコバル
ト担持量を変化させたイリジウム−モリブデン−
コバルト担持触媒を調製し、反応を行つた結果を
実施例27、28として表−6に併せて示した。 比較例 3 実施例26と同様にして、コバルトを含まないイ
リジウム−モリブデン担持触媒を調製し、反応を
行つた結果を比較例3として表−6に併せて示し
た。 表−6からイリジウム−モリブデンにさらにコ
バルトを担持するとアルコール類の収率、選択率
がさらに向上することが明らかである。
[Table] Example 26 Iridium chloride (IrCl 4・H 2 O) 0.60 g, ammonium molybdate [(NH 4 ) 6 Mo 7 O 24・4H 2 O)
0.030g, cobalt nitrate [Co(NO 3 ) 2・6H 2 O]
Dissolve 0.049 g in pure water to make 6.0 ml, and add this solution to Davison #57 silica gel (12 to 20 mesh) 5.00 g.
It was impregnated with g. After standing for 1 hour, it was dried under reduced pressure using an evaporator at 80°C for 1 hour and at 110°C for 1 hour. Next, this was reduced at 500° C. for 3 hours in a hydrogen stream to prepare a silica-supported iridium-molybdenum-cobalt catalyst. The supported amount is 6.5% by weight of iridium, the molar ratio of molybdenum to iridium is 0.1, and the molar ratio of cobalt to iridium is 0.1. The results obtained using this catalyst are shown in Table 6 as Example 26. Examples 27 to 28 Iridium-molybdenum with different amounts of molybdenum and cobalt supported in the same manner as in Example 26
A cobalt-supported catalyst was prepared and the reaction was carried out. The results are also shown in Table 6 as Examples 27 and 28. Comparative Example 3 In the same manner as in Example 26, an iridium-molybdenum supported catalyst containing no cobalt was prepared and a reaction was carried out. The results are also shown in Table 6 as Comparative Example 3. From Table 6, it is clear that when cobalt is further supported on iridium-molybdenum, the yield and selectivity of alcohols are further improved.

【表】 実施例 29〜31 コバルト原料として酢酸コバルト〔Co
(CH3CO22・4H2O〕を用いたほかは実施例26と
同様にしてイリジウム−モリブデン−コバルト担
持触媒を調製し、反応温度を変えて反応を行つた
結果を実施例29〜31として表−7に示した。担持
量はイリジウム6.5重量%、モリブデンのイリジ
ウムに対するモル比は0.5、コバルトのイリジウ
ムに対するモル比は0.5である。
[Table] Examples 29 to 31 Cobalt acetate [Co
An iridium-molybdenum-cobalt supported catalyst was prepared in the same manner as in Example 26 except that (CH 3 CO 2 ) 2.4H 2 O] was used, and the reaction was carried out by changing the reaction temperature. The results are shown in Examples 29 to 29. It is shown in Table 7 as 31. The supported amount is 6.5% by weight of iridium, the molar ratio of molybdenum to iridium is 0.5, and the molar ratio of cobalt to iridium is 0.5.

【表】【table】

Claims (1)

【特許請求の範囲】 1 一酸化炭素と水素から低級アルコール類を製
造するにあたり、触媒としてイリジウム及びモリ
ブデンを含む担持触媒を用いることを特徴とする
方法。 2 一酸化炭素と水素から低級アルコール類を製
造するにあたり、触媒としてイリジウム、モリブ
デン及びコバルトを含む担持触媒を用いることを
特徴とする方法。
[Claims] 1. A method for producing lower alcohols from carbon monoxide and hydrogen, which comprises using a supported catalyst containing iridium and molybdenum as a catalyst. 2. A method for producing lower alcohols from carbon monoxide and hydrogen, which comprises using a supported catalyst containing iridium, molybdenum, and cobalt as a catalyst.
JP59120498A 1984-06-12 1984-06-12 Production of lower alcohol Granted JPS611630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59120498A JPS611630A (en) 1984-06-12 1984-06-12 Production of lower alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120498A JPS611630A (en) 1984-06-12 1984-06-12 Production of lower alcohol

Publications (2)

Publication Number Publication Date
JPS611630A JPS611630A (en) 1986-01-07
JPS6144847B2 true JPS6144847B2 (en) 1986-10-04

Family

ID=14787686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120498A Granted JPS611630A (en) 1984-06-12 1984-06-12 Production of lower alcohol

Country Status (1)

Country Link
JP (1) JPS611630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220093140A (en) 2019-11-15 2022-07-05 가부시키가이샤 기츠 Eccentric Butterfly Valve

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124525A (en) * 1984-07-11 1986-02-03 Toyo Eng Corp Preparation of mixture of alcohol with hydrocarbon
JPH0721440B2 (en) * 1986-09-11 1995-03-08 日本電装株式会社 Knocking detection device for internal combustion engine
JP5825027B2 (en) * 2010-10-06 2015-12-02 宇部興産株式会社 Method for producing diol compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220093140A (en) 2019-11-15 2022-07-05 가부시키가이샤 기츠 Eccentric Butterfly Valve

Also Published As

Publication number Publication date
JPS611630A (en) 1986-01-07

Similar Documents

Publication Publication Date Title
WO1992006066A1 (en) Process for producing diester of carbonic acid
JPH0336571B2 (en)
CA1321604C (en) Catalytic process for the production of alcohols from carbon monoxide, hydrogen and olefins
EP0101645A1 (en) Catalytic process for the production of methanol
JPS6144847B2 (en)
US3758417A (en) Copper zinc didymium oxide containing catelysts
US5864051A (en) Selective oxidation catalyst process for preparing the catalyst and process using the catalyst
JP3773293B2 (en) Method for producing ammonia synthesis catalyst
JPS6113689B2 (en)
JPS6362525B2 (en)
KR870000522B1 (en) Contisuous process preparing indole
JPH01313313A (en) Method for reducing carbon dioxide
JPS59170023A (en) Preparation of oxygen-containing lower organic compound
JPH06293695A (en) Production of acetic acid
US4619947A (en) Chemical process
JPS6341893B2 (en)
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
KR100588948B1 (en) Catalyst for making dimethylether, method of preparing the same and method of preparing dimethylether using the same
JPS6234737B2 (en)
JPH04297445A (en) Production of carbonic acid diester
US6075170A (en) Process for preparing cyclohexanol and cyclohexanone
US4022840A (en) Process and catalyst for the preparation of linear mono-olefines by catalytic dehydrogenation of linear paraffins
JPS60199841A (en) Production of oxygen-containing c2 compound
JPH0514694B2 (en)
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term