JPS6124525A - Preparation of mixture of alcohol with hydrocarbon - Google Patents

Preparation of mixture of alcohol with hydrocarbon

Info

Publication number
JPS6124525A
JPS6124525A JP59144784A JP14478484A JPS6124525A JP S6124525 A JPS6124525 A JP S6124525A JP 59144784 A JP59144784 A JP 59144784A JP 14478484 A JP14478484 A JP 14478484A JP S6124525 A JPS6124525 A JP S6124525A
Authority
JP
Japan
Prior art keywords
catalyst
alcohol
molybdenum
cobalt
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59144784A
Other languages
Japanese (ja)
Other versions
JPH0410455B2 (en
Inventor
Hiroo Tominaga
冨永 博夫
Kaoru Fujimoto
薫 藤元
Toyoyasu Saida
宰田 豊安
Hideyuki Michiki
道木 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP59144784A priority Critical patent/JPS6124525A/en
Publication of JPS6124525A publication Critical patent/JPS6124525A/en
Publication of JPH0410455B2 publication Critical patent/JPH0410455B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a mixture of alcohol and hydrocarbon in good yield from a gas containing hydrogen and carbon monoxide using a relatively inexpsensive catalyst, i.e. a catalyst containing molybdenum and cobalt, as main active ingredients, in a specific ratio supported on a carrier. CONSTITUTION:A gas (a synthetic gas) containing hydrogen and carbon monoxide is contacted with a catalyst prepared by supporting both molybdenum and 0.1-0.5pts.wt. cobalt to 1pt.wt. molybdenum as main active ingredients on a carrier (preferably silica gel) preferably at 230-300 deg.C under of 20-100kg/cm<2>G pressure to obtain the aimed mixture of alcohol and hydrocarbon. Since the above-mentioned catalyst containing no noble metal is inexpensive and has a relatively long catalyst life, the mixture is obtained advantageously. The above- mentioned catalyst has a relatively low sensitivity of catalytic property to temperature change and the alcohol in the reactor is in the gas form, an inexpensive reactor can be used.

Description

【発明の詳細な説明】 [発明の目的と産業上の利用分野] この発明は、水素と一酸化炭素を含有するガス(以下単
に合成ガスという)からアルコールと炭化水素との混合
物を製造する方法に関する。換言すれば、この発明方法
は、合成ガスからアルコールと炭化水素の混合物(以下
単に製品という)を製造するに当り、モリブデンとコバ
ルトとを主要な有効金属成分とする触媒を使用する方法
に関し、比較的安価な触媒により収率良く製品を得るこ
とを目的とする。
[Detailed Description of the Invention] [Object of the Invention and Industrial Field of Application] This invention provides a method for producing a mixture of alcohol and hydrocarbons from a gas containing hydrogen and carbon monoxide (hereinafter simply referred to as synthesis gas). Regarding. In other words, the method of the present invention is a method for producing a mixture of alcohol and hydrocarbon (hereinafter simply referred to as "product") from synthesis gas using a catalyst containing molybdenum and cobalt as the main effective metal components. The aim is to obtain products in good yields using inexpensive catalysts.

[従来の技術] 合成ガスから炭化水素類、アルコール類あるいは両者の
混合物を製造する為の触媒に関しては多くの研究が為さ
れ発表されている。これらの従来触媒は次の如く集約す
ることが出来る。従来触媒の第1は銅、クロム、亜鉛等
を主要有効成分とする触媒であって、既にメタノール製
造の為の触媒として大規模に使用され、又炭素原子数2
〜5の脂肪族−価アルコール(以下中級アルコールとい
う)をもIllll造出様多くの改良が為されている。
[Prior Art] Many studies have been conducted and published regarding catalysts for producing hydrocarbons, alcohols, or a mixture of both from synthesis gas. These conventional catalysts can be summarized as follows. The first type of conventional catalyst is a catalyst containing copper, chromium, zinc, etc. as the main active ingredients, and has already been used on a large scale as a catalyst for methanol production.
Many improvements have been made to produce aliphatic-hydric alcohols (hereinafter referred to as intermediate alcohols) of ~5.

しかしこの系統の触媒はJ中級アルコールの収率が悪く
、中級アルコール製造の目的の為の触媒として実用化に
到っていない。即ち、中級アルコールの収率を増大させ
ようとすると、メタン等の低級炭化水素および二酸化炭
素の生成が多くなり、−酸化炭素の有効利用率が低下す
る。近年この様な第1の従来触媒の欠点を排除する目的
で、ロジウム、ルテニウム、白金などの貴金属を主要有
効成分、とする第2の従来触媒が発表されている。この
第2の従来触媒には、その使用法として、触媒と合成ガ
スとの接触を、ガス相で実施する方法と触媒を分散させ
た適当な溶媒中において液相で実施する方法との三方法
があるが、何れも触媒が著しく高価であり、性能的にも
不充分である為実用化には到っていない。又コバルトと
モリブデンの二成分系触媒についても、フィッシャート
ロプシュ炭化水素合成法用触媒等として研究されたが、
この触媒はコバルトの含有量がモリブデンの含有量より
多い場合である。
However, this type of catalyst has a poor yield of J intermediate alcohols, and has not been put to practical use as a catalyst for the purpose of producing intermediate alcohols. That is, if an attempt is made to increase the yield of intermediate alcohols, lower hydrocarbons such as methane and carbon dioxide will be produced in an increased amount, and the effective utilization rate of -carbon oxide will decrease. In recent years, in order to eliminate the drawbacks of the first conventional catalyst, a second conventional catalyst containing noble metals such as rhodium, ruthenium, platinum, etc. as the main active ingredient has been announced. This second conventional catalyst can be used in three ways: one is to bring the catalyst into contact with synthesis gas in the gas phase, and the other is to bring the catalyst into contact with the synthesis gas in a liquid phase in a suitable solvent in which the catalyst is dispersed. However, all of these catalysts are extremely expensive and have insufficient performance, so they have not been put into practical use. In addition, two-component catalysts of cobalt and molybdenum have been studied as catalysts for Fischer-Tropsch hydrocarbon synthesis.
This catalyst has a cobalt content higher than a molybdenum content.

[発明の開示] この発明方法に使用するモリブデンとコバルトとを主要
有効成分とする触媒は、モリブデン含有量がコバルト含
有量より多い新規な触媒である。
[Disclosure of the Invention] The catalyst containing molybdenum and cobalt as main active ingredients used in the method of this invention is a novel catalyst in which the molybdenum content is greater than the cobalt content.

以下にこの発明方法に使用する触媒を中心として、この
発明方法につき詳しく説明する。この発明方法に使用す
る触媒は、各種のモリブデン酸アンモニウム好ましくは
モリブデン酸アンモニウム中のモリブデンと酸素の原子
比が7=24のものおよびコバルトの水溶性塩好ましく
は硝酸コバルトの濃厚水溶液を、モリブデン元素の重量
1部に対してコバルト元素の重量が0.1部以上0.5
部以下となる様に、乾燥した粒状担体に含浸せしめた後
、これら金属塩水溶液を保持する担体を乾燥し、次いで
焼成して製造する。担体に含浸せしめる上記水溶液の濃
度は、常温から100℃までの間における飽和溶液ある
いは飽和に近い濃厚水溶液が、一定量の担体に多量の有
効成分を担持せしめる観点から望ましい。これら含浸さ
れた溶液を保持する担体の乾燥は、常圧下100〜15
0℃好ましくは110〜130℃の温度で0.5〜12
時間空気中において実施するのが良い。この乾燥後に実
施される焼成は、350〜450℃好ましくは380〜
420℃の温度の空気中において実施するのが良く、焼
成は通常約2時間で終了する。担体としてはシリカゲル
、多孔性球状アルミナ、粒状活性炭、粒状炭素あるいは
粒状珪藻土等を使用することが出来るが、これらの使用
可能な担体のうち、シリカゲルは特に好ましい担体であ
る。
The method of this invention will be explained in detail below, focusing on the catalyst used in the method of this invention. The catalyst used in the process of this invention is a concentrated aqueous solution of various ammonium molybdates, preferably those having an atomic ratio of molybdenum and oxygen in ammonium molybdate of 7=24, and a water-soluble salt of cobalt, preferably cobalt nitrate. The weight of cobalt element is 0.1 part or more and 0.5 part by weight of
The metal salt aqueous solution is impregnated into a dried granular carrier so as to have an aqueous solution of the metal salt, and then the carrier holding the metal salt aqueous solution is dried and then fired. The concentration of the aqueous solution with which the carrier is impregnated is preferably a saturated solution or a concentrated aqueous solution close to saturation between room temperature and 100° C. from the viewpoint of allowing a certain amount of the carrier to carry a large amount of the active ingredient. The carrier holding these impregnated solutions is dried at 100 to 150 ml under normal pressure.
0°C, preferably 0.5-12 at a temperature of 110-130°C
It is best to carry out the test in air for an hour. The firing carried out after this drying is carried out at 350-450°C, preferably at 380-450°C.
It is preferable to carry out the firing in air at a temperature of 420° C., and the firing is usually completed in about 2 hours. As the carrier, silica gel, porous spherical alumina, granular activated carbon, granular carbon, granular diatomaceous earth, etc. can be used, and among these usable carriers, silica gel is a particularly preferred carrier.

上記の如き本発明方法用触媒の製法において、モリブデ
ン元素含有四とコバルト元素含有量とが前記範囲内の所
望の値に調整されたモリブデン酸アンモニウムと]バル
ト塩との混合水溶液を担体に含浸せしめて一1上記の如
く乾燥と焼成とを実施しても良いが、先にモリブデン酸
アンモニウムの水溶液のみを担体に含浸せしめた上、一
旦乾燥、焼成と焼成品の冷却とを実施し、次いでコバル
ト塩の水溶液の必要量を含浸せしめて2回目の乾燥と焼
成を実施する方法によ?、上記の混合水溶液の同時含浸
法によるものに比し、性能の優れた触媒を得ることが出
来る。ヌ上記2種の含浸法の何れを使用した場合にあっ
ても、上記により金属成分の含浸および引き続く乾燥と
焼成の終了したものに、炭酸カリウムの濃厚水溶液を含
浸せしめて、更に乾燥を上記同様の条件下に実施するこ
とにより、更に性能の優れた触媒を製造することが出来
る。上記により製造された触媒は、乾燥担体の重量に対
して10〜60%のモリブデンおよびコバルトの合計量
を酸化物として含有する。当然のことであるが、モリブ
デンおよびコバルトの酸化物の含有量の合計が乾燥担体
に対し10重量%より少ない触媒は性能不充分である。
In the method for producing the catalyst for the method of the present invention as described above, a carrier is impregnated with a mixed aqueous solution of ammonium molybdate and a baltate whose molybdenum element content and cobalt element content are adjusted to desired values within the above ranges. Drying and firing may be carried out as described above, but the carrier is first impregnated with only an aqueous solution of ammonium molybdate, and then dried, fired, and the fired product is cooled. By impregnating it with the required amount of aqueous salt solution and then drying and firing it a second time? , it is possible to obtain a catalyst with superior performance compared to that obtained by the simultaneous impregnation method of the above-mentioned mixed aqueous solution. No matter which of the above two impregnation methods is used, the material that has been impregnated with the metal component and subsequently dried and fired is impregnated with a concentrated aqueous solution of potassium carbonate, and then dried in the same manner as above. By conducting the process under these conditions, a catalyst with even better performance can be produced. The catalyst prepared above contains a total amount of molybdenum and cobalt as oxides of 10 to 60%, based on the weight of the dry support. Naturally, catalysts with a total content of molybdenum and cobalt oxides of less than 10% by weight, based on the dry support, have insufficient performance.

又カリウムを含浸担持させた触媒にあっては、カリウム
の担持量をモリブデン元素の重量に対して融化カリウム
として10〜100重量%とするのが良い。
In the case of a catalyst impregnated with potassium, the amount of potassium supported is preferably 10 to 100% by weight as fused potassium based on the weight of the molybdenum element.

上記の本発明方法に使用する触媒においては、モリブデ
ンに対するコバルトの含有比が非常に重要である。即ち
、モリブデンに対する重量比でコバルト0.5以上のも
のでは、同一 の担体を使用し上記と同様の製法による
場合であっても、この比が前記範囲内である場合に比し
製品の生成量が小である。同様なコバルトの含有比0.
5以上の触媒において、製品の生成量が極大値を示すこ
とがあるが、この極大値における製品の生成量は、コバ
ルトの含有比0.2〜0.5の前記範囲の場合に比し、
小である。又コバルトの含有比0.1以下にあっては、
同様に製品の生成量が減少する。
In the catalyst used in the above method of the present invention, the content ratio of cobalt to molybdenum is very important. In other words, if the weight ratio of cobalt to molybdenum is 0.5 or more, even if the same carrier is used and the same manufacturing method as above is used, the amount of product produced will be lower than when this ratio is within the above range. is small. Similar cobalt content ratio 0.
5 or more, the product production amount may show a maximum value, but the product production amount at this maximum value is compared to the case where the cobalt content ratio is in the range of 0.2 to 0.5,
It is small. In addition, if the cobalt content ratio is 0.1 or less,
Similarly, the amount of product produced decreases.

上記のコバルト含有比0.5以上において、製品生成量
が極大値となる場合の該含有比は、従来から周知の、い
わゆるコバルト触媒に助触媒とじてモリブデンを加えた
場合の触媒組成であると考えられる。又カリウムの担持
量について言えば、カリウムの担持量が前記の下限より
小である場合にはメタンの生成量がある程度増加し、逆
にカリウムの担持量が前記の上限より多い場合には、触
媒の性能が最高であるとは言えないが使用可能である。
At the above cobalt content ratio of 0.5 or more, the content ratio at which the product production amount reaches its maximum value is a catalyst composition in which molybdenum is added as a co-catalyst to a so-called cobalt catalyst, which has been well known in the past. Conceivable. Regarding the amount of potassium supported, if the amount of supported potassium is less than the above lower limit, the amount of methane produced will increase to some extent, and conversely, if the amount of supported potassium is more than the above upper limit, the amount of methane produced will increase to some extent. It cannot be said that the performance is the best, but it is usable.

この発明方法においては、上記により製造された触媒を
、水素と一酸化炭素とを含有する合成ガスに接触せしめ
て製品を製造する。この接触の際における温度および圧
力などの条件としては、従来から周知の条件を使用する
ことが出来る。即ち温度として200〜350℃好まし
くは230〜300℃の範囲、圧力として常圧〜200
ka/cmG好ましくは20〜100kg/cdGの範
囲を使用することが出来る。上記の温度範囲より高い触
媒温度を使用するとメタンおよび二酸化炭素の生成量が
増加し、又上記の温度範囲より低い温度を使用すると触
媒の活性が不充分となって製品の生成量が減少し、何れ
の場合も不利となる。上記の条件下に触媒と合成ガスと
を接触せしめる為の反応器としては、周知の固定床反応
器、あるいは流動床反応器の何れをも使用出来るが、何
れの場合にあっても、非常に大きな反応熱の発生を伴な
う故、反応中のガスおよび触媒と直接に接触する冷却用
伝熱面を有する触媒床構造とすることが望ましい。
In the method of this invention, a product is produced by bringing the catalyst produced above into contact with synthesis gas containing hydrogen and carbon monoxide. As conditions such as temperature and pressure during this contact, conventionally well-known conditions can be used. That is, the temperature ranges from 200 to 350°C, preferably 230 to 300°C, and the pressure ranges from normal pressure to 200°C.
ka/cmG, preferably a range of 20 to 100 kg/cdG can be used. Using a catalyst temperature higher than the above temperature range will increase the production of methane and carbon dioxide, and using a temperature lower than the above temperature range will result in insufficient catalyst activity and a decrease in product production. Either case is disadvantageous. As a reactor for bringing the catalyst and synthesis gas into contact under the above conditions, either a well-known fixed bed reactor or a fluidized bed reactor can be used, but in either case, the Since a large amount of reaction heat is generated, it is desirable to have a catalyst bed structure having a cooling heat transfer surface that is in direct contact with the gas and catalyst during the reaction.

又この冷却用伝熱面の触媒およびガスが接触する面とは
反対側の面において、この冷却用伝熱面に接触する冷却
剤としては、水あるいは適当な沸点を有する有機液体を
、加圧下における沸騰状態にある気液湿相物として上向
流で使用するのが良い。
In addition, water or an organic liquid having an appropriate boiling point is used as a coolant in contact with the cooling heat transfer surface on the opposite side of the cooling heat transfer surface from the surface that contacts the catalyst and gas under pressure. It is preferable to use the vapor-liquid wet phase in an upward flow as it is in a boiling state.

尚流動床反応器を使用する場合にあっては、担体として
粒径0.1〜0.5開であって、且つ耐摩耗性のある例
えば球状アルミナあるいはシリカゲル等を使用するのが
良い。又上記の如く触媒と合成ガスとを接触せしめる際
における触媒とガスとの量的比は、反応に際して使用す
る圧力により大幅に異なるが、例えば常圧における場合
には、1゜Ogr程度の触媒量に対し、1時間当り1モ
ルの合成ガス流通量が好適であるが、反応圧力を増加さ
せるに伴って、2ar程度の触Is量に対し、1時間当
り1モルの合成ガス流通量まで、触媒使用量を減少させ
ることが出来る。
When a fluidized bed reactor is used, it is preferable to use, as a carrier, spherical alumina or silica gel, which has a particle size of 0.1 to 0.5 mm and is wear resistant. Furthermore, as mentioned above, the quantitative ratio of catalyst and gas when bringing the catalyst and synthesis gas into contact varies greatly depending on the pressure used during the reaction, but for example, in the case of normal pressure, the amount of catalyst is about 1° Ogr. In contrast, a flow rate of 1 mol of synthesis gas per hour is preferable, but as the reaction pressure is increased, the flow rate of catalytic gas is increased to 1 mol per hour for a catalyst Is amount of about 2 ar. The amount used can be reduced.

この発明においては、上記の触媒および触媒と合成ガス
との接触条件を使用することにより、アルコールと炭化
水素との混合物を収率良く製造することが出来る。合成
ガス1モル当りの製品取得量は、反応条件、合成ガスの
組成特に合成ガス中の水素と一酸化炭素との含有量およ
び水素と一酸化炭素とのモル比により大幅に変化するが
、例えば合成ガスが水素と一酸化炭素以外の成分を含有
せず、且つ一酸化炭素に対する水素のモル比が1゜0の
場合に、原料ガスを1回触媒床を通過させることで2.
0〜3.0or程度の製品を取得することが出来る。こ
の発明方法によって得られる製品は前記の通りアルコー
ルと炭化水素との混合物であるが、この混合物中のアル
コールは、メタノールを若干含むが前記中級アルコール
を主体とし、炭化水素は、少量のメタン、エタンなどの
低級炭化水素を含み主として炭素数3〜6の脂肪族飽和
炭化水素からなる混合物である。又この発明方法による
製品中のアルコールと炭化水素との重量比は、触媒にお
ける使用担体の秒類、モリブデンとコバルトの比、カリ
ウムの担持量などの変化に伴って、アルコールの含有量
で30〜65%の間に変化する。従って合成ガス中にお
ける水素と一酸 ・化炭素のモル比の最適値は、この様
な触媒の組成変化に伴って変わる製品の成分構成により
異ってくるが、このモル比の好ましい値として2.5〜
3.5の範囲を挙げることが出来る。原料ガスにおける
この水素と一酸化炭素とのモル比が、上記の範囲内から
選択された最適値に近く、且つ水素と一酸化炭素以外の
不活性ガス成分の含有量が少ない場合には、合成ガスと
触媒との1回の接触によって製品に変化しなかった残ガ
スを、原料ガスに混入して合成ガスとし、残ガスを繰り
返し触媒と接触させ、原料ガス1モル当りの製品収率を
向上せしめることが出来る。又この発明方法において、
上記の反応条件により得られる製品は周知の手段、例え
ば通常の精留法あるいは水を添加しつつ精留を行なうい
わゆる抽出蒸留法等の方法を単独あるいは組み合せ使用
することにより、アルコール類の混合物と炭化水素類の
混合物との分離、更には分離されたアルコール類の混合
物および炭化水素類の混合物のそれぞれを所望の成分あ
るいは留分に分離することが出来る。
In this invention, a mixture of alcohol and hydrocarbon can be produced in good yield by using the above catalyst and the conditions for contacting the catalyst with synthesis gas. The amount of product obtained per mole of synthesis gas varies greatly depending on the reaction conditions, the composition of the synthesis gas, especially the content of hydrogen and carbon monoxide in the synthesis gas, and the molar ratio of hydrogen and carbon monoxide. When the synthesis gas does not contain components other than hydrogen and carbon monoxide, and the molar ratio of hydrogen to carbon monoxide is 1.0, by passing the raw material gas once through the catalyst bed, 2.
It is possible to obtain a product of about 0 to 3.0 or. As mentioned above, the product obtained by the method of this invention is a mixture of alcohol and hydrocarbon. The alcohol in this mixture contains a small amount of methanol, but is mainly composed of the above-mentioned intermediate alcohol, and the hydrocarbons include small amounts of methane and ethane. It is a mixture mainly consisting of aliphatic saturated hydrocarbons having 3 to 6 carbon atoms, including lower hydrocarbons such as. The weight ratio of alcohol to hydrocarbon in the product produced by the method of this invention varies depending on the type of carrier used in the catalyst, the ratio of molybdenum to cobalt, the amount of potassium supported, etc. It varies between 65%. Therefore, the optimal value of the molar ratio of hydrogen to carbon monoxide in the synthesis gas varies depending on the component composition of the product, which changes with changes in the composition of the catalyst, but the preferred value for this molar ratio is 2. .5~
A range of 3.5 can be mentioned. If the molar ratio of hydrogen and carbon monoxide in the raw material gas is close to the optimal value selected from the above range and the content of inert gas components other than hydrogen and carbon monoxide is small, synthesis The residual gas that has not been converted into a product after one contact between the gas and the catalyst is mixed into the raw material gas to produce synthesis gas, and the residual gas is brought into repeated contact with the catalyst to improve the product yield per mole of raw gas. I can force it. Also, in this invention method,
The product obtained under the above reaction conditions can be produced by using a mixture of alcohols using well-known means such as conventional rectification or extractive distillation in which rectification is carried out while adding water, either alone or in combination. It is possible to separate a mixture of hydrocarbons, and further to separate the separated alcohol mixture and hydrocarbon mixture into desired components or fractions.

[発明の効果] この発明の利点の第1は触媒が安価なことである。触媒
の安価なことは、前記した通り、触媒の製造に使用され
る原料に貴金属が使用されていないことから明らかであ
り、特に説明を要しない故省略する。
[Effects of the Invention] The first advantage of this invention is that the catalyst is inexpensive. The fact that the catalyst is inexpensive is obvious from the fact that no noble metals are used in the raw materials used to manufacture the catalyst, as described above, and since no particular explanation is required, the explanation will be omitted.

この発明の利点の第2は、触媒の性能の温度変化に対す
る敏感性が比較的に小であり、前記の如く比較的広い温
度範囲にhつで、大きな触媒性能の変化を伴なうことな
く製品を製造出来、従来のフィッシャートロプシュ触媒
の如く触媒床の温度を±3℃以内に保持する必要が無い
故、比較的簡単な構造の安価な反応器を使用することが
出来る。
The second advantage of this invention is that the sensitivity of the catalyst performance to temperature changes is relatively small, and as mentioned above, it can be applied over a relatively wide temperature range without causing a large change in catalyst performance. Since the product can be manufactured and there is no need to maintain the temperature of the catalyst bed within ±3° C. as in conventional Fischer-Tropsch catalysts, an inexpensive reactor with a relatively simple structure can be used.

又従来から周知となっている高温の液状アルコールによ
る炭素鋼および鉄゛以外の′合金成分含有量が5重量%
以下の低合金鋼の腐食も、反応器内におけるアルコール
がガス状である為極めて少なく、反応器の構成材料とし
て安価な上記材料を使用することが出来る。
In addition, the content of alloy components other than carbon steel and iron is reduced to 5% by weight by using high-temperature liquid alcohol, which has been well known in the past.
Since the alcohol in the reactor is in a gaseous state, the corrosion of the low alloy steel described below is extremely low, and the above-mentioned inexpensive materials can be used as constituent materials of the reactor.

この発明の利点の第3は、触媒の寿命が比較的に長いこ
とである。即ち、この発明方法に使用する触媒は、従来
の触媒と比較して高温においても使用することが出来る
が、このことは、いわゆるシンターリング現象による触
媒の性能劣化が小であり、この触媒の耐久性が良いこと
を示している。
A third advantage of this invention is that the catalyst has a relatively long life. In other words, the catalyst used in the method of this invention can be used at higher temperatures than conventional catalysts, but this means that the deterioration of catalyst performance due to the so-called sintering phenomenon is small, and the durability of this catalyst is It shows that the sex is good.

又高温で使用可能であるといってもこの高温は高々35
0℃の程度である故、担持させたカリウムの蒸発による
損失も極めて少なく、長時間に亙り触媒の性能を良好に
保持することが出来る。
Also, although it can be used at high temperatures, this high temperature is at most 35
Since the temperature is about 0°C, the loss of supported potassium due to evaporation is extremely small, and the performance of the catalyst can be maintained well for a long period of time.

実施例1 モリブデン酸アンモニウム((NH4)e MO702
4・4H20)65.7Orを400xl(D水に溶解
した溶液と、硝酸コバルト(CO(NO3)2 ・6H
20)35.3Orを200猷の水に溶解した溶液とを
混合し、この混合液に富士ダごソ、ン社製IDシリカゲ
ル100grを添加し、ウォーターバス上で約95℃に
加熱しながら、水分がなくなるまで、蒸発乾固を行ない
、モリブデン酸アンモニウムと硝酸コバルトとをシリカ
ゲルに含浸させた。この操作により得られた固形分を湿
度120℃の空気中で12時間乾燥させ、続いて温度を
400℃に上昇させて約2時間焼成して、モリブデンお
よびコバルトをそれぞれ酸化物の状態でシリカゲルに担
持させた。次に炭酸カリウム7.6grを溶解した水溶
液に、上記焼成品を添加し、ウォーターバス上で前記と
同様に蒸発乾固して炭酸カリウムを更に含浸させ、続い
て120℃の温度の空気中において約12時間乾燥して
触媒を得た。
Example 1 Ammonium molybdate ((NH4)e MO702
4.4H20) 65.7Or dissolved in 400xl (D water and cobalt nitrate (CO(NO3)2 ・6H
20) Mix a solution of 35.3 Or dissolved in 200 g of water, add 100 g of ID silica gel manufactured by Fuji Dagoson Co., Ltd. to this mixed solution, and heat it to about 95 ° C. on a water bath. The silica gel was impregnated with ammonium molybdate and cobalt nitrate by evaporation to dryness until the moisture disappeared. The solid content obtained by this operation was dried in air at a humidity of 120°C for 12 hours, and then the temperature was raised to 400°C and calcined for about 2 hours to convert molybdenum and cobalt into silica gel in the form of oxides. carried it. Next, the above baked product was added to an aqueous solution in which 7.6g of potassium carbonate was dissolved, and evaporated to dryness on a water bath in the same manner as above to further impregnate potassium carbonate. A catalyst was obtained by drying for about 12 hours.

この触媒中のモリブデンおよびコバルトの含有量は、そ
れぞれモリブデンおよびコバルトとして25.0および
5.0重量%である。この触媒をタイラー篩により分級
し、20メツシユを通過し、40メツシユを通過しない
もの5.’Oarを取り、ステンレス鋼製竪形流通式反
応管(内径8n長さ500+nm)の所定場所に充填し
、4oo℃に加熱しつつ水素ガスを15時間流通させて
還元した後、反応管上部から実質的に一酸化炭素と水素
以外のガスを含有せず且つ一酸化炭素と水素のモル比が
1である圧力50ka/CI?Gの合成ガスを、温度2
50℃において触媒1 ar当り1時間に0.1モル流
通させ、反応管から流出する生成ガスを分析して、下記
の結果を得た。
The content of molybdenum and cobalt in this catalyst is 25.0 and 5.0% by weight as molybdenum and cobalt, respectively. This catalyst is classified using a Tyler sieve, and those that pass through 20 meshes and do not pass through 40 meshes5. 'Oar is taken and filled in a designated place in a stainless steel vertical flow reaction tube (inner diameter 8n length 500+nm), heated to 400°C and passed hydrogen gas for 15 hours to reduce it, and then from the top of the reaction tube. A pressure of 50 ka/CI that does not substantially contain gases other than carbon monoxide and hydrogen and has a molar ratio of carbon monoxide and hydrogen of 1? G synthesis gas at a temperature of 2
0.1 mol of catalyst was passed per hour per ar of catalyst at 50°C, and the generated gas flowing out from the reaction tube was analyzed, and the following results were obtained.

供給−酸化炭素の反応率モル% 20.1反応した一酸
化炭素の転化光モル% アルコール類に計     38.0 炭化水素類に計      25.に 酸化炭素に       37.9 生成アルコール類の、組成(重量%) メタノール        23.6 エタノール        48.3 n−プロピルアルコール  17.2 n−ブチルアルコール    7.0 二級アミールアルコール   5.0 実施例2 実施例1にお゛いて使用したものと同様同量のモリブデ
ン酸アンモニウム溶液と硝酸コバルト溶液とを、それぞ
れ別々に調整し、先づモリブデン酸アンモニウム溶液中
に実施例1同様のシリカゲル100g「を添加し、ウォ
ーターバス上において95℃で蒸発乾固し、続いて12
0℃の空気中において12時間乾燥後、引き続き400
℃の温度で2時間焼成し、この焼成品を冷却後、硝酸コ
バルト溶液中に添加して同様に蒸発乾固、乾燥および焼
成を実施し、次にこのモリブデンおよびコバルトの担持
された固形物を、実施例1において使用されたものと同
様な炭酸カリウム溶液の同一ω中に添加して、実施例1
の場合と同様に乾燥して触媒を得た。この触媒のモリブ
デン、コバルトおよびカリウムの含有量は実施例1にお
いて得られたものと同様である。この触媒を実施例1の
場合と同様に分級して、20〜40メツシユのもの5o
rを採取し、実施例1と同様に試験を実施し、生成ガス
を分析して下記の結果を得た。
Feed - Reaction rate of carbon oxide mol% 20.1 Mol% of converted light of reacted carbon monoxide Total for alcohols 38.0 Total for hydrocarbons 25. to carbon oxide 37.9 Composition of alcohols produced (wt%) Methanol 23.6 Ethanol 48.3 n-propyl alcohol 17.2 n-butyl alcohol 7.0 Secondary amyl alcohol 5.0 Example 2 Implementation Same amounts of ammonium molybdate solution and cobalt nitrate solution as used in Example 1 were prepared separately, and 100 g of the same silica gel as in Example 1 was first added to the ammonium molybdate solution. , evaporated to dryness at 95°C on a water bath, followed by 12
After drying in air at 0°C for 12 hours,
℃ for 2 hours, and after cooling the fired product, it was added to a cobalt nitrate solution and similarly evaporated to dryness, dried and fired, and then the solid material supported with molybdenum and cobalt was , into the same ω of potassium carbonate solution similar to that used in Example 1.
A catalyst was obtained by drying in the same manner as in the case of . The molybdenum, cobalt and potassium contents of this catalyst are similar to those obtained in Example 1. This catalyst was classified in the same manner as in Example 1, and 5o
r was collected, a test was conducted in the same manner as in Example 1, and the generated gas was analyzed to obtain the following results.

供給−酸化炭素の反応率モル% 30.9反応した一酸
化炭素の転化光モル% アルコール類に計      41.1炭化水素類に計
       20.6二酸化炭素に        
38.3生成アルコ・−ル類の組成(重量%) メタノ・−ル         15.5エタノール 
        50.90−プロピルアルコール  
 21.1n−ブチルアルコール     8.4アミ
ールアルコール      4.1出願人  東洋エン
ジニアリング株式会社冨  永   博  夫
Feed - Reaction rate of carbon oxide mol % 30.9 mol % of converted light of reacted carbon monoxide Total to alcohols 41.1 Total to hydrocarbons 20.6 to carbon dioxide
38.3 Composition of alcohols produced (wt%) Methanol 15.5 Ethanol
50.90-propyl alcohol
21.1 N-Butyl Alcohol 8.4 Amyl Alcohol 4.1 Applicant Toyo Engineering Co., Ltd. Hiroshi Tominaga

Claims (1)

【特許請求の範囲】[Claims] 担体上に、モリブデンとモリブデン1重量部に対して0
.1以上0.5重量部以下のコバルトとを主要有効成分
として担持せしめた触媒を、水素と一酸化炭素とを含有
するガスに接触せしめることを特徴とするアルコールと
炭化水素の混合物の製法。
On the carrier, molybdenum and 0 parts by weight of molybdenum are added.
.. 1. A method for producing a mixture of alcohol and hydrocarbon, characterized in that a catalyst carrying 1 or more and 0.5 parts by weight or less of cobalt as a main active ingredient is brought into contact with a gas containing hydrogen and carbon monoxide.
JP59144784A 1984-07-11 1984-07-11 Preparation of mixture of alcohol with hydrocarbon Granted JPS6124525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59144784A JPS6124525A (en) 1984-07-11 1984-07-11 Preparation of mixture of alcohol with hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59144784A JPS6124525A (en) 1984-07-11 1984-07-11 Preparation of mixture of alcohol with hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6124525A true JPS6124525A (en) 1986-02-03
JPH0410455B2 JPH0410455B2 (en) 1992-02-25

Family

ID=15370361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59144784A Granted JPS6124525A (en) 1984-07-11 1984-07-11 Preparation of mixture of alcohol with hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6124525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147429A (en) * 1984-07-30 1986-03-07 ザ ダウ ケミカル カンパニー Manufacture of alcohol from synthetic gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665636A (en) * 1979-10-31 1981-06-03 Chiyoda Chem Eng & Constr Co Ltd Metal-carrying fine particles catalyst and preparation thereof
JPS57122027A (en) * 1980-11-25 1982-07-29 Inst Francais Du Petrole Improvement of reaction for producing hydrocarbon or alcohol from carbon monoxide andhydrogen
JPS5939837A (en) * 1982-08-30 1984-03-05 Toyo Eng Corp Preparation of aliphatic monohydric alcohol
JPS6032724A (en) * 1983-08-03 1985-02-19 Agency Of Ind Science & Technol Production of oxygen-containing compound
JPS611630A (en) * 1984-06-12 1986-01-07 Agency Of Ind Science & Technol Production of lower alcohol

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665636A (en) * 1979-10-31 1981-06-03 Chiyoda Chem Eng & Constr Co Ltd Metal-carrying fine particles catalyst and preparation thereof
JPS57122027A (en) * 1980-11-25 1982-07-29 Inst Francais Du Petrole Improvement of reaction for producing hydrocarbon or alcohol from carbon monoxide andhydrogen
JPS5939837A (en) * 1982-08-30 1984-03-05 Toyo Eng Corp Preparation of aliphatic monohydric alcohol
JPS6032724A (en) * 1983-08-03 1985-02-19 Agency Of Ind Science & Technol Production of oxygen-containing compound
JPS611630A (en) * 1984-06-12 1986-01-07 Agency Of Ind Science & Technol Production of lower alcohol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147429A (en) * 1984-07-30 1986-03-07 ザ ダウ ケミカル カンパニー Manufacture of alcohol from synthetic gas

Also Published As

Publication number Publication date
JPH0410455B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
US4399234A (en) Process for preparing gasoline range hydrocarbons from synthesis gas and catalyst used therefor
JP3329839B2 (en) Catalyst for steam reforming of hydrocarbons
US4289709A (en) Preparation of methanol from synthesis gas with promoted palladium catalysts
Church et al. Acetaldehyde by dehydrogenation of ethyl alcohol
US4065468A (en) Manufacture of maleic anhydride from butane
US4774261A (en) Process of methane production by means of a thioresistant catalyst and catalyst for carrying out this process
IE53599B1 (en) Catalyst and its use for producing methanol/higher alcohol mixtures
US5989457A (en) Process for the production of synthesis gas
US4452854A (en) Catalyst and process for carbon monoxide conversion in sour gas
Card et al. Gas-phase synthesis of nitriles
US4389335A (en) Catalyst for carbon monoxide conversion in sour gas
CN109433252B (en) CO (carbon monoxide)2Oxide C2H6Dehydrogenation to C2H4And a process for preparing the same
EP0217855A4 (en) Process and low sodium catalyst for the production of formaldehyde from methane.
JPS6124525A (en) Preparation of mixture of alcohol with hydrocarbon
US4705771A (en) Process and catalyst for the production of formaldehyde from methane
US6093677A (en) Catalyst for dehydrogenating 1,4-butanediol to γ-butyrolactone
CA1106393A (en) Process for the production of methyl acrylate
US4565831A (en) Process for producing aromatic hydrocarbons from carbon monoxide and water
US5089532A (en) Catalyst, method of producing and using same for production of methanol and higher alcohols
JPS6012905B2 (en) Methanation method
JPS59115746A (en) Catalyst for making morpholine and its manufacture
EP0170973A2 (en) Process for adjusting methanol to higher alcohol ratios
CN112547049A (en) Supported catalyst, preparation method thereof and method for preparing ethylene by oxidative coupling of methane
EP0190307A1 (en) Fischer-tropsch catalyst
US4727198A (en) Process for the production of formaldehyde from methane