JPS6143588B2 - - Google Patents

Info

Publication number
JPS6143588B2
JPS6143588B2 JP56090950A JP9095081A JPS6143588B2 JP S6143588 B2 JPS6143588 B2 JP S6143588B2 JP 56090950 A JP56090950 A JP 56090950A JP 9095081 A JP9095081 A JP 9095081A JP S6143588 B2 JPS6143588 B2 JP S6143588B2
Authority
JP
Japan
Prior art keywords
annular
magnetic
magnetic pole
pole piece
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56090950A
Other languages
Japanese (ja)
Other versions
JPS57208358A (en
Inventor
Masatoki Kitada
Kimio Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Original Assignee
Rigaku Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd filed Critical Rigaku Denki Co Ltd
Priority to JP56090950A priority Critical patent/JPS57208358A/en
Priority to DE19823222293 priority patent/DE3222293A1/en
Priority to FR8210391A priority patent/FR2507730B1/en
Priority to GB08217272A priority patent/GB2104165B/en
Publication of JPS57208358A publication Critical patent/JPS57208358A/en
Publication of JPS6143588B2 publication Critical patent/JPS6143588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Description

【発明の詳細な説明】 炭化水素、炭化弗素あるいは適宜の脂肪酸のよ
うな液体にフエライトその他の磁性体粉末を分散
した磁性流体を用いて、回転軸の軸封装置を得る
ことができる。このような軸封装置はウイルソン
シールあるいはメカニカルシールのように摺接に
よつて磨耗する部分を持たないから、長寿命であ
ると共に完全な密封性を得ることができるから、
特に回転対陰極X線管のような高真空装置の軸封
に有効である。しかしこのためには磁性流体で密
封した環状の磁極間隙を多段構成とし、かつその
間隙に強い磁界を発生させる必要がある。このた
め例えば英国特許第783881号の図5に示されてい
るように、軸方向に磁化された環状の永久磁石
を、その極性が交互に逆向きとなるように一直線
上に配列し、各磁石の間に介挿した円環状磁極片
の内周部と磁性体回転軸との間にそれぞれ1つの
環状磁極間隙を形成してこの間隙に磁性流体を保
持させた装置が用いられる。しかし磁極片が飽和
しないようにするためには、これを著しく薄くす
ることができないから、その内側面と回転軸との
間の磁束密度にも限度がある。このため前記磁極
間隙を極めて小さく、例えば20μ以下にする必要
があつて、装置の製作が困難であると共に高真空
を維持するためには多数の永久磁石を必要とし
て、装置が大型になる等の欠点があつた。本発明
はこのような欠点を除去しようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION A shaft sealing device for a rotating shaft can be obtained using a magnetic fluid in which ferrite or other magnetic powder is dispersed in a liquid such as a hydrocarbon, a hydrofluoric acid, or a suitable fatty acid. This type of shaft seal device does not have parts that wear out due to sliding contact like Wilson seals or mechanical seals, so it has a long life and can provide perfect sealing.
It is particularly effective for sealing the shaft of high vacuum devices such as rotating anode cathode X-ray tubes. However, for this purpose, it is necessary to have a multi-stage configuration of an annular magnetic pole gap sealed with a magnetic fluid and to generate a strong magnetic field in the gap. For this purpose, for example, as shown in Figure 5 of British Patent No. 783881, annular permanent magnets magnetized in the axial direction are arranged in a straight line so that their polarities are alternately opposite, and each magnet A device is used in which an annular magnetic pole gap is formed between the inner circumferential portion of an annular magnetic pole piece inserted between the magnets and the rotating shaft of the magnetic body, and a magnetic fluid is held in this gap. However, since the pole piece cannot be made extremely thin to avoid saturation, there is a limit to the magnetic flux density between its inner surface and the rotating shaft. For this reason, it is necessary to make the magnetic pole gap extremely small, for example, 20μ or less, making it difficult to manufacture the device and requiring a large number of permanent magnets to maintain a high vacuum, which increases the size of the device. There were flaws. The present invention seeks to eliminate these drawbacks.

第1図は本発明実施例の縦断面図で、円筒状を
なした筐体1の中心に磁性体の回転軸2を配置し
てボールベアリング3,4で保持してある。また
図にN,Sで極性を示したように軸方向に磁化さ
れた複数個の環状永久磁石5,5………を同一極
性の磁極NとN,SとSがそれぞれ相対向するよ
うに前記回転軸2の軸線上へ同軸的に配列してあ
る。かつこれらの各永久磁石5,5………の中間
に円環状の磁極片6,6………を該磁石と同軸的
に介挿すると共に最外側の磁石の更に外側に同様
の磁極片7,7を設けてそれらをOリング8,8
に圧接させてある。更に前記磁極片6,6………
の内側面にはそれぞれ1つの環状凹溝9,9……
…を形成して、この凹溝の両側に形成された環状
の隆起部10,11の先端を回転軸2に例えば数
十μの間隙を介して対向させ、その各環状間隙に
磁性流体12,12………を環状に保持させたも
のである。
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, in which a rotating shaft 2 made of a magnetic material is arranged at the center of a cylindrical housing 1 and held by ball bearings 3 and 4. As shown in FIG. In addition, as shown in the figure with polarities N and S, a plurality of annular permanent magnets 5, 5 magnetized in the axial direction are arranged so that magnetic poles N and N and S and S of the same polarity face each other, respectively. They are arranged coaxially on the axis of the rotating shaft 2. Further, an annular magnetic pole piece 6, 6...... is inserted between each of these permanent magnets 5, 5... coaxially with the magnet, and a similar magnetic pole piece 7 is further outside of the outermost magnet. , 7 and connect them with O-rings 8, 8
It is pressed against. Furthermore, the magnetic pole pieces 6, 6...
There is one annular groove 9, 9... on the inner surface of each.
... is formed, and the tips of the annular protrusions 10 and 11 formed on both sides of the groove are opposed to the rotating shaft 2 with a gap of several tens of microns in between, and the magnetic fluid 12, 12... is held in a ring shape.

第2図は第1図の一部を拡大した図aおよび回
転軸2の表面における磁界強度曲線bである。す
なわち任意の1つの磁極片6には、その両側の磁
石5,5における同一極性の磁極例えばN,Nに
よつて同一方向の磁束が流通する。かつこの磁極
片の内側面には1つの環状凹溝9が形成されてい
るから、上記磁束はその両側の環状隆起部10,
11を通つて軸2に入射する。また隆起部10,
11から軸2に入射した磁束は更に左右に分けて
それぞれ隣接する磁極片の隆起部に入射するか
ら、軸2の表面における磁界強度曲線は第2図b
のように表わされる。このように本発明の装置は
各磁石の間に介挿した円環状磁極片6,6………
の内側面に環状の凹溝9を形成して、磁束を2つ
に分離してある。かつ分離された磁束は同一の極
性を有するから、互に反撥し合つて両側の環状隆
起部10,11に集束する。従つて第2図bのよ
うに軸2の表面に極めて尖鋭で、かつ強い磁界が
形成されてその磁界で磁性流体12,12………
が極めて強力に保持される。このため磁極間隙p
を大きくして装置を容易に製作し得ると共に永久
磁石5,5………の強度および数を同一とすれば
軸封装置の両側における圧力差を増大することが
できる。
FIG. 2 shows an enlarged view a of a part of FIG. 1 and a magnetic field intensity curve b on the surface of the rotating shaft 2. That is, magnetic flux in the same direction flows through any one magnetic pole piece 6 due to magnetic poles of the same polarity in the magnets 5, 5 on both sides thereof, for example, N and N. In addition, since one annular groove 9 is formed on the inner surface of this magnetic pole piece, the magnetic flux is transmitted to the annular protrusions 10 on both sides of the annular groove 9.
11 and enters the axis 2. Moreover, the raised portion 10,
The magnetic flux incident on shaft 2 from 11 is further divided into left and right sides and is incident on the protrusions of adjacent magnetic pole pieces, so the magnetic field strength curve on the surface of shaft 2 is as shown in Figure 2b.
It is expressed as In this way, the device of the present invention has annular magnetic pole pieces 6, 6 inserted between each magnet.
An annular groove 9 is formed on the inner surface of the magnet to separate the magnetic flux into two. Since the separated magnetic fluxes have the same polarity, they repel each other and are focused on the annular protrusions 10 and 11 on both sides. Therefore, as shown in FIG. 2b, an extremely sharp and strong magnetic field is formed on the surface of the shaft 2, and this magnetic field causes the magnetic fluids 12, 12...
is held extremely strongly. Therefore, the magnetic pole gap p
If the strength and number of the permanent magnets 5, 5, . . . are made the same, the pressure difference on both sides of the shaft sealing device can be increased.

なお第3図aは前記英国特許明細書に記された
装置における第2図に相当する断面図で、環状の
永久磁石20,20………の間に介挿した円環状
の磁極片21,21………にそれぞれ1つの環状
隆起部22,22………を形成して、その先端と
軸23との間に磁性流体24,24………を保持
してある。従つて各磁極片21にその両側の磁石
から発生した磁束が流通し、かつその磁束は単一
の隆起部22を通つて回転軸23に入射する。こ
のため磁束が相互反撥により拡散して、軸23の
表面には第3図bのように幅が広くかつ弱い磁界
が発生するだけで、この磁界により磁性流体24
が保持されるから、その保持力を増大するために
は磁極間隙qを小さくしなければならない。この
ため製作が困難であると共に磁石の数Nの変化に
対して保持し得る圧力差Kは第4図に直線Aで示
したように低い値である。これに対して第1図第
2図に示したような本発明の装置は直線Bで示し
たように高い値を有する。
Note that FIG. 3a is a sectional view corresponding to FIG. 2 of the device described in the British patent specification, and shows an annular magnetic pole piece 21 inserted between annular permanent magnets 20, 20... An annular protuberance 22, 22... is formed on each of the protrusions 21, 21, . . . , and magnetic fluids 24, 24, . Therefore, the magnetic flux generated from the magnets on both sides of each magnetic pole piece 21 flows, and the magnetic flux is incident on the rotating shaft 23 through the single protuberance 22. Therefore, the magnetic flux is diffused due to mutual repulsion, and only a wide and weak magnetic field is generated on the surface of the shaft 23 as shown in FIG.
is held, so in order to increase the holding force, the magnetic pole gap q must be made small. For this reason, it is difficult to manufacture, and the pressure difference K that can be maintained against changes in the number N of magnets is a low value as shown by the straight line A in FIG. On the other hand, the device of the present invention as shown in FIG. 1 and FIG. 2 has a high value as shown by straight line B.

以上説明したように本発明は2つの磁石の間に
介挿した1つの磁極片に環状の凹溝を形成して、
磁束を2分することにより、その2分された磁束
相互間の反撥力を利用して回転軸の表面に局部的
に強い磁界を発生させるものである。従つて磁性
流体の保持力が増大して、高い圧力差に耐えるこ
とができると共に磁極間隙を増大し得るから、軸
封装置の製作が容易であり、また磁石数を減少し
て装置を小形に形成することができる。
As explained above, the present invention forms an annular groove in one magnetic pole piece inserted between two magnets,
By dividing the magnetic flux into two, a strong magnetic field is generated locally on the surface of the rotating shaft by utilizing the repulsive force between the two divided magnetic fluxes. Therefore, the holding force of the magnetic fluid is increased, making it possible to withstand high pressure differences and increasing the magnetic pole gap, making it easy to manufacture the shaft sealing device, and reducing the number of magnets to make the device more compact. can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の縦断面図、第2図は第
1図の一部を拡大した図、第3図は従来の軸封装
置における第2図に相当する断面図、第4図は本
発明並びに従来の装置の特性を示した線図であ
る。なお図において、2は回転軸、3,4はボー
ルベアリング、5は永久磁石、6は磁極片、9は
凹溝、10,11は環状隆起部、12は磁性流体
である。
Fig. 1 is a longitudinal sectional view of an embodiment of the present invention, Fig. 2 is an enlarged view of a part of Fig. 1, Fig. 3 is a sectional view corresponding to Fig. 2 of a conventional shaft sealing device, and Fig. 4. 1 is a diagram showing the characteristics of the present invention and a conventional device. In the figure, 2 is a rotating shaft, 3 and 4 are ball bearings, 5 is a permanent magnet, 6 is a magnetic pole piece, 9 is a groove, 10 and 11 are annular protrusions, and 12 is a magnetic fluid.

Claims (1)

【特許請求の範囲】[Claims] 1 軸方向に磁化された複数個の環状永久磁石を
同一極性の磁極が相対向するように同軸的に配列
すると共に内側面にそれぞれ1つの環状凹溝を形
成した円環状の磁極片を上記各永久磁石の中間に
該磁石と同軸的に介挿して、上記環状永久磁石お
よび円環状磁極片の軸線上にこれらに対して相対
的に回転する磁性体の軸を配置し、前記円環状磁
極片の内側面における凹溝の両側に形成された環
状の隆起条と上記軸との間にそれぞれ磁性流体を
円環状に附着させた磁性流体軸封装置。
1 A plurality of annular permanent magnets magnetized in the axial direction are coaxially arranged so that the magnetic poles of the same polarity face each other, and an annular groove is formed on each of the inner surfaces of each annular magnetic pole piece. A magnetic body is inserted between the permanent magnets and coaxially with the magnet, and an axis of a magnetic body that rotates relative to the annular permanent magnet and the annular magnetic pole piece is arranged on the axis of the annular permanent magnet and the annular magnetic pole piece. A magnetic fluid shaft sealing device in which magnetic fluid is attached in an annular shape between the shaft and annular ridges formed on both sides of a groove on the inner surface of the shaft.
JP56090950A 1981-06-15 1981-06-15 Shaft sealing device using magnetic fluid Granted JPS57208358A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56090950A JPS57208358A (en) 1981-06-15 1981-06-15 Shaft sealing device using magnetic fluid
DE19823222293 DE3222293A1 (en) 1981-06-15 1982-06-14 MAGNETIC LIQUID SEALING DEVICE
FR8210391A FR2507730B1 (en) 1981-06-15 1982-06-15 MAGNETIC FLUID SEALING DEVICE
GB08217272A GB2104165B (en) 1981-06-15 1982-06-15 Magnetic fluid sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56090950A JPS57208358A (en) 1981-06-15 1981-06-15 Shaft sealing device using magnetic fluid

Publications (2)

Publication Number Publication Date
JPS57208358A JPS57208358A (en) 1982-12-21
JPS6143588B2 true JPS6143588B2 (en) 1986-09-29

Family

ID=14012748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56090950A Granted JPS57208358A (en) 1981-06-15 1981-06-15 Shaft sealing device using magnetic fluid

Country Status (4)

Country Link
JP (1) JPS57208358A (en)
DE (1) DE3222293A1 (en)
FR (1) FR2507730B1 (en)
GB (1) GB2104165B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513067B2 (en) * 1984-12-12 1993-02-19 Nippon Electric Co

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236363B (en) * 1986-06-24 1991-07-31 Papst Motoren Gmbh & Co Kg Magnetic fluid seal apparatus
CH676740A5 (en) * 1986-06-24 1991-02-28 Papst Motoren Gmbh & Co Kg
DE3622306A1 (en) * 1986-07-03 1988-01-07 Hommelwerke Gmbh Length measurement sensor, especially for sensing the surface of a workpiece
NL8902086A (en) * 1989-08-17 1991-03-18 Skf Ind Trading & Dev SEALING AND SLIDING BEARING ASSEMBLY WITH A MAGNETIC LIQUID.
JP3252090B2 (en) * 1996-07-10 2002-01-28 キヤノン株式会社 Developing device
CN103115152B (en) * 2013-01-30 2015-05-06 北京交通大学 Magnetic fluid and maze alternated type combined sealing
CN103234049B (en) * 2013-04-12 2015-10-28 北京交通大学 Improve the sealing reliability of Split magnetic liquid sealing device and the method in life-span
CN108980361A (en) * 2018-08-13 2018-12-11 广西科技大学 A kind of strong magnetic-assemblying type magnetic fluid sealing structure
CN112648381B (en) * 2020-12-30 2021-12-07 清华大学 Magnetic liquid sealing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US783881A (en) * 1904-12-09 1905-02-28 Samuel Mayper Hose-supporter.
GB783881A (en) * 1954-03-05 1957-10-02 Vickers Electrical Co Ltd Improvements relating to shaft and like seals
US3620584A (en) * 1970-05-25 1971-11-16 Ferrofluidics Corp Magnetic fluid seals
JPS519853A (en) * 1974-07-03 1976-01-26 Suwa Seikosha Kk EKISHOHAIKOYOSUMAKUNIOKERU BUNSHIHOKONO KET SUTEIHOHO
JPS5530562A (en) * 1978-08-25 1980-03-04 Nippon Telegr & Teleph Corp <Ntt> Magnetic fluid feeder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU742657A1 (en) * 1978-03-28 1980-06-25 Предприятие П/Я Г-4213 Magnetic-liquid seal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US783881A (en) * 1904-12-09 1905-02-28 Samuel Mayper Hose-supporter.
GB783881A (en) * 1954-03-05 1957-10-02 Vickers Electrical Co Ltd Improvements relating to shaft and like seals
US3620584A (en) * 1970-05-25 1971-11-16 Ferrofluidics Corp Magnetic fluid seals
JPS519853A (en) * 1974-07-03 1976-01-26 Suwa Seikosha Kk EKISHOHAIKOYOSUMAKUNIOKERU BUNSHIHOKONO KET SUTEIHOHO
JPS5530562A (en) * 1978-08-25 1980-03-04 Nippon Telegr & Teleph Corp <Ntt> Magnetic fluid feeder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513067B2 (en) * 1984-12-12 1993-02-19 Nippon Electric Co

Also Published As

Publication number Publication date
DE3222293A1 (en) 1982-12-30
FR2507730B1 (en) 1985-12-13
DE3222293C2 (en) 1987-12-10
JPS57208358A (en) 1982-12-21
FR2507730A1 (en) 1982-12-17
GB2104165B (en) 1985-08-21
GB2104165A (en) 1983-03-02

Similar Documents

Publication Publication Date Title
GB2130662A (en) Magnetic fluid sealing device
EP0012556A1 (en) Magnetic liquid shaft seal
JP4885490B2 (en) Magnetic fluid seal device
US4526382A (en) Radially polarized multiple-stage ferrofluid seal apparatus
US4527805A (en) High-pressure ferrofluid seal apparatus
JPS6143588B2 (en)
JP2007010030A5 (en)
US5165701A (en) Magnetic fluid seal apparatus
GB1454754A (en) Permanent magnet structure
EP0105616A2 (en) Magnetic rotary seal
JPS6249509B2 (en)
JPS5814949B2 (en) Magnetic fluid shaft sealing device
JPH0245047B2 (en)
SU742657A1 (en) Magnetic-liquid seal
JPS5843633B2 (en) Sealing device
CN110762224A (en) Divergent split-tooth stepped magnetic fluid rotary sealing device
JPS60155066A (en) Seal structure using magnetic fluid
JPS6040871A (en) Sealing mechanism employing magnetic fluid
JPS599369A (en) Magnetic fluid sealing mechanism
JPH0518495Y2 (en)
JPH0721971Y2 (en) Magnetic fluid sealing device
JP4140309B2 (en) Sealing device using magnetic fluid
JP2597618Y2 (en) Magnetic fluid sealing device
SU690220A1 (en) Magnetic-liquid sealing
SU1283476A1 (en) Magnetic fluid sealing