JPS6142965A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6142965A
JPS6142965A JP16521984A JP16521984A JPS6142965A JP S6142965 A JPS6142965 A JP S6142965A JP 16521984 A JP16521984 A JP 16521984A JP 16521984 A JP16521984 A JP 16521984A JP S6142965 A JPS6142965 A JP S6142965A
Authority
JP
Japan
Prior art keywords
layer
electrode
drain
source
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16521984A
Other languages
Japanese (ja)
Inventor
Masumi Takeshima
竹島 眞澄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP16521984A priority Critical patent/JPS6142965A/en
Publication of JPS6142965A publication Critical patent/JPS6142965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • H01L29/8083Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce a gate length by sequentially laminating the desired conductive type high conductive layer, a low conductive layer and a high conductive layer in this order in the thicknesswise direction of a wafer, using the surfaces of the both high conductive layers as source and drain, and forming the opposite conductive type region on the sides of the high and low conductive type layers as a gate. CONSTITUTION:An ohmic electrode 15 is positively biased to an ohmic electrode 14, the electrode 15 as a drain and the electrode 14 as a source. When the electrode 13 is set to the same voltage as the electrode 14, a current flows from the drain to the source. Then, when the electrode 13 is negatively biased to the electrode 14, a depletion layer is extended from the boundary between the P type layer of the P<+> type GaAs layer 12 and a buffer layer 9, the layer 10 and the N type layer of N<+> type GaAs layer 11. The thickness of the depletion layer is mostly extended in the layer 10 of the minimum impurity density to shut off a current between the drain and the source. Thus, a short channel effect can be eliminated at a superhigh speed to obtain low wiring resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、スイッチング機能や電気4m号増幅機能を利
用する電界効果トランジスタ(以下rFET」と記す)
に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a field effect transistor (hereinafter referred to as "rFET") that utilizes a switching function and an electric 4m amplification function.
It is related to.

従来例の構成とその問題点 近年、トランジスタの高集積化の要求は益々高くなり、
その目的に最も適したFETの利用は著しい、実に、高
速動作性を求めて、現在の主流材料であるSiからG 
a A sへと開発分野は拡大しつつある。
Conventional configurations and their problems In recent years, the demand for higher integration of transistors has become higher and higher.
The use of FETs that are most suitable for this purpose is remarkable, indeed, in pursuit of high-speed operation, from Si, which is the current mainstream material, to G
The field of development is expanding to include A, A, and S.

第1図にFETの代表例としてn−Mo5−8iトラン
ジスタの従来例を示す、低不純物濃度の n−−5i基
板(1)に、高不純物濃度のn”−5iの部分拡散層(
2) (3)を形成し、この部分拡散層(2) (3)
にオーム性電極(4) (5)を設ける0部分拡散M(
2)と(3)との間隙上の表面にSin、薄膜(6)を
設け、その上に電極(7)を設ける。オーム性電極(4
) (5)間に電圧を印加し、正側をドレーン、負側を
ソースとなす。電極(7)がソースと同電位にあるとき
は、ドレーンとリースとの間に電流はほとんど流れない
、電極(7)をソースに対して正にバイアスすると、S
io、薄膜(6)直下のSiの表面附近にnチャネルが
生じ、オーム性電極(4) (5)間に電流が流れる。
Figure 1 shows a conventional example of an n-Mo5-8i transistor as a typical example of an FET.
2) (3) is formed, and this partial diffusion layer (2) (3)
0 partial diffusion M (with ohmic electrodes (4) (5)
A thin film (6) of Sin is provided on the surface of the gap between 2) and (3), and an electrode (7) is provided thereon. Ohmic electrode (4
) (5) Apply a voltage between them, making the positive side the drain and the negative side the source. When the electrode (7) is at the same potential as the source, almost no current flows between the drain and the lease; when the electrode (7) is positively biased with respect to the source, S
io, an n-channel is generated near the surface of Si directly under the thin film (6), and a current flows between the ohmic electrodes (4) and (5).

電極(7)をゲートと称し、ゲート電圧によって、ソー
スとドレーンとの間の電流制御をなすのが、FET動作
の基本原理である。
The basic principle of FET operation is that the electrode (7) is called a gate, and the gate voltage controls the current between the source and drain.

FET動作の高速性は、ソースとドレーンとの間の距離
即ちゲート長りによってほぼ決まり、Lが小さい程よい
。到達できるLの最小値は、マスクによってソースとド
レーンとの間を分離するフォトリソグラフィー技術によ
って決まる。比較的容易に得られる現状の最小値は1μ
mである。そして、未来像とされているシンクロトロン
放射(SOR)技術という最高の手段を用いても、到達
できるLは0.2μma度が限界である。このことが、
従来のFET構造の全てに共通した第1の欠点である。
The high speed of FET operation is almost determined by the distance between the source and drain, that is, the gate length, and the smaller L is, the better. The minimum value of L that can be reached is determined by the photolithography technique that separates the source and drain by a mask. The current minimum value that can be obtained relatively easily is 1μ.
It is m. Even if we use the best means, synchrotron radiation (SOR) technology, which is considered to be a vision of the future, the limit of L that can be achieved is 0.2 μm degrees. This means that
This is the first drawback common to all conventional FET structures.

更に、Lの減少はゲートへの配線の線幅を狭くし、その
結果、配線、抵゛抗を増加させてFETの高速性を低下
させるし、又、断線不良を起りやすくする。これが第2
の欠点である。
Furthermore, a decrease in L narrows the line width of the wiring to the gate, and as a result, the wiring and resistance increase, reducing the high speed performance of the FET and making disconnection more likely to occur. This is the second
This is a drawback.

第3の欠点は、ショートチャネル効果と呼ばれるもので
ある。即ち、Lが小さくなっても、ソースとドレーンと
の間に印加される電圧は一定であるために、チャネル内
に高電界が加わり、通過するキャリヤは高エネルギーを
持つに至る。このホットキャリヤはすぐ近(にあるSi
n、薄膜(6)からなるゲート酸化膜に捕えられる。こ
の電子の捕獲は、酸化膜を帯電させ、FET特性の経時
変化を起こさせる。
The third drawback is what is called the short channel effect. That is, even if L becomes small, the voltage applied between the source and drain remains constant, so a high electric field is applied within the channel, and passing carriers have high energy. This hot carrier is in the immediate vicinity (Si
n, captured by the gate oxide film consisting of a thin film (6). This capture of electrons charges the oxide film, causing changes in FET characteristics over time.

発明の目的 本発明は上記従来の欠点を解消するもので、著しく小さ
いゲート長りを得ることを容易にし、Lを小さくするこ
とに伴う配線抵抗の増加を回避し、かつショートチャネ
ル効果の欠点を除去した。超高速動作を行う三次元構造
の新しい電界効果トランジスタを提供することを目的と
する。
OBJECTS OF THE INVENTION The present invention eliminates the above-mentioned drawbacks of the prior art, making it easier to obtain a significantly smaller gate length, avoiding an increase in interconnect resistance due to a reduction in L, and eliminating the drawbacks of short channel effects. Removed. The objective is to provide a new field effect transistor with a three-dimensional structure that operates at ultra-high speed.

発明の構成 上記目的を達成するため、本発明の電界効果トランジス
タは、ウェーハの厚さ方向に所望の導電型の高導電層と
低伝導層と高導電層とをこの順に積層し、前記両高導′
R暦の面にそれぞれオーム性電極を設けてソース及びド
レーンとなし、前記高導電層のうちいずれか一方及び低
導電層の側面にこれら高導電層及び低導電層とは反対の
導電型の領域を形成し、この領域にオーム性電極を設け
てゲートとなしたものである。
Structure of the Invention In order to achieve the above object, the field effect transistor of the present invention is provided by laminating a high conductivity layer, a low conductivity layer, and a high conductivity layer of a desired conductivity type in this order in the thickness direction of a wafer, and Guidance
Ohmic electrodes are provided on each surface of the R calendar to serve as a source and a drain, and a region of a conductivity type opposite to that of the high conductivity layer and the low conductivity layer is provided on the side surface of one of the high conductivity layers and the low conductivity layer. , and an ohmic electrode is provided in this region to serve as a gate.

かかる構成によれば、ゲート層の厚さ、即ちゲート長は
エピタキシアル成長技術によって100人まで薄くでき
るので、超高速のFET動作を達成できると同時に、ゲ
ート配線の線幅はゲート長によって制約を受けず適当な
値に設定でき、その上、ゲート酸化膜や結晶界面が動作
層近傍に存在しないためホットキャリヤ捕獲の起きない
電界効果1〜ランジスタが得られる。
According to this configuration, the thickness of the gate layer, that is, the gate length, can be made as thin as 100 nm using epitaxial growth technology, so that ultra-high-speed FET operation can be achieved, and at the same time, the line width of the gate wiring is not limited by the gate length. In addition, a field effect transistor can be obtained in which hot carrier trapping does not occur because there is no gate oxide film or crystal interface in the vicinity of the active layer.

実施例の説明 以下、本発明の一実施例について、図面に栽づいて説明
する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明の一゛実施例における電界効果トランジ
スタの断面図で、(8)は10”am−’の不純物濃度
のn”−GaAs基板、(9)は10”cn+−’の不
純物濃度で厚さ2μmのn”  GaAsのバッファ層
FIG. 2 is a cross-sectional view of a field effect transistor according to an embodiment of the present invention, in which (8) is an n''-GaAs substrate with an impurity concentration of 10''am-', and (9) is an n''-GaAs substrate with an impurity concentration of 10''cn+-'. A buffer layer of n” GaAs with a thickness of 2 μm.

(10)は不純物濃度10110l4”で厚さ0.lμ
rnのnII−G a A sの動作層、(11)は不
純物濃度10110l7’で厚さ2μmのn”−GaA
sff、(12)は不純物濃度10”cm−’で厚さ3
.6層mのp ” −G a A s層、 (13) 
(14)はAu/Znアロイのオーム性電極、 (15
)はA u / G e/Niアロイのオーム性電極、
(16)は厚さ3000人のS i O、膜であり、ソ
ースとドレーンとの領域端の距離は2μmである。
(10) has an impurity concentration of 10110l4'' and a thickness of 0.lμ.
nII-GaAs active layer of rn, (11) is n''-GaA with an impurity concentration of 10110l7' and a thickness of 2 μm.
sff, (12) has an impurity concentration of 10"cm-' and a thickness of 3
.. 6 layers m of p''-GaAs layers, (13)
(14) is an ohmic electrode of Au/Zn alloy, (15
) are Au/Ge/Ni alloy ohmic electrodes,
(16) is a SiO film with a thickness of 3000 nm, and the distance between the edges of the source and drain regions is 2 μm.

次に動作を説明する。いま、オーム性電極(15)をオ
ーム性電tii (14)に対して正にバイアスし、オ
ーム性電極(15)をドレーン、オーム性電極(16)
をソースとする。オーム性電極(13)をオーム性電極
(14)と同電位にすると、ドレーンからソースへ電流
が流れる0次にオーム性電極(13)をオーム性電極(
14)に対して負にバイアスすると、p”−GaAs層
(12)の2層とバッファ層(9)及び動作層(10)
ならびにn ” −GaAs)fl (11)の8層と
の境界がら空乏1が広がる。空乏層の厚さは、不純物濃
度が最小である動作層(io)の中′C最も広く広がり
、ドレーンとソースとの間の電流の通過を遮断しようと
する。即ち、オーム性電極(13)はゲートとして機能
し、そのゲート電圧によって、ドレーンとソースとの間
の電流が制御され、ノーマリイ・オン型の電界効果トラ
ンジスタが得られる。ゲート電圧を一定にして、ドレー
ン電圧を増加してゆ°くと、p ” −G a A s
l (12)の2層とバッファ層(9)及び動作層(1
0)ならびにn”−GaAs層(11)の0層との間は
、同じく、逆方向電圧が印加されて空乏層が広がり、電
流通過を遮断しようとする。従って、ドレーン電流はド
レーン電圧の増加と共に飽和してゆく。即ち、この電界
効果トランジスタの電圧−電流特性は5極管特性を示す
、この飽和の速さは、n!!Jの不純物濃度を小さくす
れば大きくなる。
Next, the operation will be explained. Now, the ohmic electrode (15) is positively biased with respect to the ohmic charge (14), the ohmic electrode (15) is drained, and the ohmic electrode (16) is
as the source. When the ohmic electrode (13) is set to the same potential as the ohmic electrode (14), a current flows from the drain to the source.
14), two layers of p”-GaAs layer (12), buffer layer (9) and active layer (10)
The depletion layer 1 spreads from the boundary with the 8th layer of n''-GaAs) fl (11). In other words, the ohmic electrode (13) functions as a gate, and the gate voltage controls the current between the drain and the source. A field effect transistor is obtained. If the gate voltage is kept constant and the drain voltage is increased, p ” -Ga A s
l (12), a buffer layer (9) and an operation layer (1)
Similarly, a reverse voltage is applied between the n''-GaAs layer (11) and the 0 layer, and the depletion layer expands, trying to block the passage of current. Therefore, the drain current increases as the drain voltage increases. In other words, the voltage-current characteristics of this field effect transistor exhibit pentode characteristics, and the speed of saturation increases as the impurity concentration of n!!J is decreased.

この電界効果トランジスタの最大周波数は100 G七
である。
The maximum frequency of this field effect transistor is 100 G7.

次に上記電界効果トランジスタの製造方法について第3
図を用いて説明する。第3図(A)に示すように、n”
−GaAs基板(8)の上に、厚さ24mのn”−Ga
Asのバッファ層(9)を形成し、次にその上に厚さ0
.1μmのn’  GaAsの動作層(10)を形成し
、最後にその上に厚さ2μmのn”−GaA s l 
(11)をMOC,VD法で形成する。このウェーハを
、第3図(B)に示すように、バッファ層(9)を0.
5μm残す程度にプラズマエツチングして。
Next, we will discuss the manufacturing method of the above field effect transistor in the third section.
This will be explained using figures. As shown in FIG. 3(A), n”
- On top of the GaAs substrate (8), a 24 m thick n''-Ga
A buffer layer (9) of As is formed, and then a layer with a thickness of 0 is formed on it.
.. A 1 μm thick n′-GaAs active layer (10) is formed, and finally a 2 μm thick n”-GaAs layer (10) is formed on top of the active layer (10).
(11) is formed by MOC and VD methods. As shown in FIG. 3(B), this wafer was coated with a buffer layer (9) of 0.0.
Perform plasma etching to leave 5 μm.

ストライプ状のメサを作る。このウェーハ上に、第3図
(C)に示すように、MOCVD法でp”−G a A
 s層(12)を形成すると、斜線で示すように平坦で
ない面が形成される。エツチングによって、この不要な
斜線部分を除去し、かつ1面が平坦になるようにする。
Create a striped mesa. On this wafer, as shown in FIG. 3(C), p''-G a A
When the s-layer (12) is formed, an uneven surface is formed as shown by diagonal lines. By etching, this unnecessary diagonal line portion is removed and one surface is made flat.

最後に、SiO□マスクによって。Finally, by SiO□ mask.

Au/Znをp”−GaAs層(12)の面上に蒸着し
、同様にして、Au/Ge/Niをn”−GaAs層(
11)の面上に蒸着し、更にAu/Ge/Niをn”−
GaAs基板(8)の面にも蒸着した後、これらをアロ
イをして、上記電界効果トランジスタが完成される。
Au/Zn is deposited on the surface of the p''-GaAs layer (12), and in the same way, Au/Ge/Ni is deposited on the surface of the n''-GaAs layer (12).
11), and further Au/Ge/Ni is deposited on the n”-
After being deposited on the surface of the GaAs substrate (8), these are alloyed to complete the field effect transistor.

このように本実施例によれば、ゲート長は動作ffi 
(10)の厚さであり、この厚さはエピタキシアル成長
技術で決まり、従来のFETの場合のようにフォトリソ
ブラフィ技術の制約を受けない、現在のエピタキシアル
技術は層の厚さを100人程度にまで薄くすることがで
き、この値はフォトリジグラフィ技術が許す最小のゲー
ト長よりも1桁以上小さい。層の厚さを薄くすれば、そ
の比抵抗を大きくする必要があり、これは良好な結晶を
得るのに好ましい方向である。一方、ゲートによる制御
は、MoS  FETやMES  FET(7)場合ノ
ヨウに異種材料との不自然な界面接触を通してなされる
のでないため、動作層(10)の中で高エネルギー化し
た電子がこのFETの経時変化をきたすような原因を全
く持たない。また、オーム性電極(13)からなるゲー
ト電極の幅は、グー1−長と全く無関係に適当な幅に選
べるので、通常のFETの場合のように、ゲート長の縮
小に必然的に伴う配線抵抗の増加がなく、これはFET
の集積の際に有利となる。
In this way, according to this embodiment, the gate length is determined by the operation ffi.
(10), and this thickness is determined by epitaxial growth technology and is not limited by photolithography technology as in the case of conventional FETs.Current epitaxial technology allows layer thicknesses of 100 It can be made as thin as a human being, which is more than an order of magnitude smaller than the minimum gate length allowed by photolithography technology. If the thickness of the layer is reduced, its resistivity must be increased, which is the preferred direction to obtain good crystals. On the other hand, in the case of MoS FETs and MES FETs (7), gate control is not performed through unnatural interface contact with dissimilar materials, so electrons that have become highly energized in the active layer (10) There is no cause for any change over time. In addition, since the width of the gate electrode consisting of the ohmic electrode (13) can be selected to be an appropriate width completely independent of the length, it is possible to select the width of the gate electrode made of the ohmic electrode (13) to an appropriate width, so that the wiring that inevitably accompanies the reduction of the gate length, as in the case of a normal FET, can be selected. There is no increase in resistance, this is a FET
This is advantageous when accumulating.

なお上記実施例においては、材料をGaAsとしたが、
材料はこれに限られることなく、SiやGeのような単
体半導体、工nPやGarbのような化合物半導体等の
全ての材料を用いることができる。
In the above embodiment, the material was GaAs, but
The material is not limited to these, and all materials such as single semiconductors such as Si and Ge, and compound semiconductors such as nP and Garb can be used.

又、上記実施例におけるn側とn側とをそれぞれP側と
n側とに置き換えた相補的な構造も可能である。
Further, a complementary structure is also possible in which the n-side and n-side in the above embodiment are replaced with a P-side and an n-side, respectively.

更に、上記実施例における製作で用いたMOCVD法は
、液相エピタキシアル法、MnE法、不純物拡散法、イ
オンインプランテーション法等で。
Furthermore, the MOCVD method used in the fabrication in the above embodiments is a liquid phase epitaxial method, an MnE method, an impurity diffusion method, an ion implantation method, or the like.

部分的にあるいは全体的に置き換えてもよい、特に、上
記実施例におけるエツチングとそれに続く90層のMO
CVD形成は、P0部分外表面をSio2でマスクして
p型不純物拡散を行うか、p型不純物をイオンインプラ
ンテーションすることで置きかえるのも、優れた方法で
ある。この方法は。
In particular, the etching in the above embodiment followed by 90 layers of MO may be partially or totally replaced.
For CVD formation, it is also an excellent method to mask the outer surface of the P0 portion with Sio2 and perform p-type impurity diffusion, or to replace the p-type impurity by ion implantation. This method is.

特に、Siを用いる場合に有利となる。This is particularly advantageous when using Si.

発明の詳細 な説明したように1本発明によれば、超高速である上に
、ショートチャネル効果がなく、しかも配線抵抗を充分
に低下させ得る電界効果トランジスタを得ることができ
る。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, it is possible to obtain a field effect transistor that is extremely fast, has no short channel effect, and can sufficiently reduce wiring resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のn−MoS−8i−FETの断面図、第
2図は本発明の一実施例におけるFETの断面図、第3
図は同FETの製造工程を説明する断面図である。 (8)・・・n”−GaAs基板、(9)・・・バッフ
ァ層。 (10)−・・動作層、(11)−n” −’GaAs
層、 (12) °= p ”−GaAsFIJ、(1
3) 〜(15)−・・オーム性電極、(16)・・・
SiO,l漠 代理人   森  本  義  私 記1図 第2図
FIG. 1 is a cross-sectional view of a conventional n-MoS-8i-FET, FIG. 2 is a cross-sectional view of an FET according to an embodiment of the present invention, and FIG.
The figure is a cross-sectional view illustrating the manufacturing process of the same FET. (8)...n"-GaAs substrate, (9)...buffer layer. (10)--active layer, (11)-n"-'GaAs
layer, (12) °=p”−GaAsFIJ, (1
3) ~(15)--ohmic electrode, (16)...
SiO, l Agent Yoshi Morimoto Personal Note 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、ウェーハの厚さ方向に所望の導電型の高導電層と低
伝導層と高導電層とをこの順に積層し、前記両高導電層
の面にそれぞれオーム性電極を設けてソース及びドレー
ンとなし、前記高導電層のうちいずれか一方及び低導電
層の側面にこれら高導電層及び低導電層とは反対の導電
型の領域を形成し、この領域にオーム性電極を設けてゲ
ートとなした電界効果トランジスタ。
1. A high conductivity layer, a low conductivity layer, and a high conductivity layer of the desired conductivity type are laminated in this order in the thickness direction of the wafer, and ohmic electrodes are provided on the surfaces of both the high conductivity layers to form source and drain connections. None, a region of a conductivity type opposite to that of the high conductivity layer and the low conductivity layer is formed on one of the high conductivity layers and the side surface of the low conductivity layer, and an ohmic electrode is provided in this region to serve as a gate. field effect transistor.
JP16521984A 1984-08-07 1984-08-07 Field effect transistor Pending JPS6142965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16521984A JPS6142965A (en) 1984-08-07 1984-08-07 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16521984A JPS6142965A (en) 1984-08-07 1984-08-07 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6142965A true JPS6142965A (en) 1986-03-01

Family

ID=15808110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16521984A Pending JPS6142965A (en) 1984-08-07 1984-08-07 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6142965A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132484A (en) * 1986-11-22 1988-06-04 Sony Corp Junction field-effect transistor
JPS63144581A (en) * 1986-12-08 1988-06-16 Nec Corp Manufacture of vertical type field-effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63132484A (en) * 1986-11-22 1988-06-04 Sony Corp Junction field-effect transistor
JPS63144581A (en) * 1986-12-08 1988-06-16 Nec Corp Manufacture of vertical type field-effect transistor

Similar Documents

Publication Publication Date Title
JP2002076358A (en) Short channel switching element and its manufacturing method
JPS6142965A (en) Field effect transistor
JPS6359272B2 (en)
JPS6012775A (en) Field effect transistor
JPH025302B2 (en)
JPS6123364A (en) Field effect transistor
JPH09246536A (en) Semiconductor element
JPS61161766A (en) Longitudinal mosfet
JPS61242082A (en) Semiconductor element
JPS61160978A (en) Semiconductor device
JP2592161B2 (en) Quantum interference transistor
JP2655594B2 (en) Integrated semiconductor device
JPS609174A (en) Semiconductor device
JPS59210672A (en) Semiconductor device
JPS59149063A (en) Semiconductor device
JPH04370978A (en) Quantum-effect type field-effect transistor
JPH10107274A (en) Tunnel transistor and fabrication thereof
JPS5848468A (en) Semiconductor device
JPH01264269A (en) Field-effect transistor
JPS5898980A (en) Semiconductor device and manufacture thereof
JPS60176275A (en) Integrated type semiconductor device
JPS5910591B2 (en) Method of manufacturing field effect transistor
JPH01227455A (en) Semiconductor device
JPH01122174A (en) Compound semiconductor device and manufacture thereof
JPS59228768A (en) Semiconductor integrated circuit