JPS6142178A - Semiconductor-coupled superconductive element and manufacture thereof - Google Patents
Semiconductor-coupled superconductive element and manufacture thereofInfo
- Publication number
- JPS6142178A JPS6142178A JP16411684A JP16411684A JPS6142178A JP S6142178 A JPS6142178 A JP S6142178A JP 16411684 A JP16411684 A JP 16411684A JP 16411684 A JP16411684 A JP 16411684A JP S6142178 A JPS6142178 A JP S6142178A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- superconductor
- superconducting
- coupled
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/10—Junction-based devices
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体を接合部にもつ超伝導素子、即ち超伝導
体一半導体一超伝導体結合素子に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting device having a semiconductor at a junction, that is, a superconductor-semiconductor-superconductor coupling device.
半導体をバリアとする超伝導素子は、電子C:対するエ
ネルギバリアが低いためバリア長が長くできること、ま
た半導体に対する電気的制御により超伝導三端子素子を
実現できる可能性を持つことから,多くの試みがなされ
ているが実用(=供するものは得られていない。Superconducting devices using semiconductors as a barrier have been the subject of many attempts because the barrier length can be made longer due to the low energy barrier to electron C, and there is the possibility of realizing superconducting three-terminal devices by electrically controlling the semiconductor. has been done, but it is not practical (= what is offered is not obtained.
例えば第1図に半導体結合超伝導素子の一例を示す。図
において、1は半導体基板、2は超伝導体(超伝導電極
)、3は半導体−超伝導体界面を示す。これまでに実現
されたものでは、半導体1として単結晶シリコンを用い
、拡散又はイオン打込みによりP形の高濃度化を行った
もので、超伝導電流が得られている。For example, FIG. 1 shows an example of a semiconductor-coupled superconducting element. In the figure, 1 is a semiconductor substrate, 2 is a superconductor (superconducting electrode), and 3 is a semiconductor-superconductor interface. In the devices realized so far, a superconducting current has been obtained by using single crystal silicon as the semiconductor 1 and increasing the concentration of P type by diffusion or ion implantation.
しかしこの場合、キャリア濃度は、 ×1020.、−
5以上であり、また超伝導電極間隔りも0.1μ展程度
のものしか実現されていない。キャリアが1001nで
はもはや半導体とはいいがたく金属的であり、トランジ
スタ又はFET素子のような半導体としての特徴を活か
すことはできない。少くともキャリア濃度は5x101
9cm−5以下にする必要がある。また超伝導間隔が0
.1μmでは、半導体上に第三端子を形成することは非
常に困難である。However, in this case, the carrier concentration is ×1020. ,−
5 or more, and superconducting electrode spacing of only about 0.1 μm has been realized. If the carrier is 1001n, it can no longer be called a semiconductor, but is metallic, and the characteristics of a semiconductor such as a transistor or FET element cannot be utilized. At least carrier concentration is 5x101
It must be less than 9cm-5. Also, the superconducting interval is 0
.. At 1 μm, it is very difficult to form a third terminal on a semiconductor.
ところで半導体結合超伝導素子の特性は、半導体中の超
伝導拡散長ξにと密接な関係がある。超伝導近接効果理
論によるとξIは半導体中のキャリア密度を3 (Cm
−5)その移動度をμ(cm’/V−8)とするとル1
/3μm/2に比例する。例えば高移動度化合物半導体
n−1nAzを例にとると4に付近の極低温(二おいて
n= 2x ’+018cm−’、 p=10,000
cm”/V−:S なら。By the way, the characteristics of semiconductor-coupled superconducting elements are closely related to the superconducting diffusion length ξ in the semiconductor. According to the superconducting proximity effect theory, ξI represents the carrier density in the semiconductor as 3 (Cm
-5) If its mobility is μ (cm'/V-8), then le 1
/3μm/2. For example, if we take the high mobility compound semiconductor n-1nAz as an example, the cryogenic temperature near 4 (n = 2x '+018cm-', p = 10,000
cm”/V-:S.
ξ、v=0.22μm 、 nw2 x 10”cm−
’ 、 μ”20t000 Cm2/VeSでξ−0,
15μm程度となる(ここで電子の有効質量は0.02
8とした)。通常の超伝導体−金属−超伝導体素子の場
合でみるとL/ξNが1〜5程度においても超伝導電流
は流れるため、上記fnAz の場合りが0.2〜0.
5μm以上の素子においても超伝導電流は得られるはず
である。ところが、実際は超伝導電流は得られなかった
。これは極低温における半導体−超伝導昇動の電気特性
の重要性を示している。ξ, v=0.22μm, nw2 x 10”cm-
', μ''20t000 Cm2/VeS and ξ-0,
It is about 15 μm (here, the effective mass of the electron is 0.02
8). In the case of a normal superconductor-metal-superconductor element, superconducting current flows even when L/ξN is about 1 to 5, so in the case of fnAz mentioned above, the probability is 0.2 to 0.
A superconducting current should be obtained even in a device with a diameter of 5 μm or more. However, in reality, superconducting current could not be obtained. This shows the importance of the electrical properties of semiconductor-superconducting transitions at extremely low temperatures.
本発明は上述の従来の超伝導体−半導体−超伝導体結合
素子f二おける問題点、すなわち超伝導電流を得るため
1:、超伝導電極間隔をきわめて短かくしなければなら
ず、また半導体のキャリアm度をきわめて高くしなけれ
ばならないという問題を解決し、実用に供することがで
きる超伝導二端子あるいは三端子素子を実現しようとす
るものである。The present invention solves the problems in the conventional superconductor-semiconductor-superconductor coupling device f2 mentioned above, namely, in order to obtain a superconducting current, the distance between the superconducting electrodes must be extremely short; The aim is to solve the problem of having to make the carrier m degree extremely high and to realize a superconducting two-terminal or three-terminal device that can be put to practical use.
本発明は、上記問題点を、半導体と超伝導体の界面電気
特性をオーミック的にすることにより解決する。The present invention solves the above problems by making the electrical characteristics of the interface between a semiconductor and a superconductor ohmic.
ここで本発明の理解のための比較例として、従来知られ
ているスーパ・ショットキ素子を示す。Here, a conventionally known super Schottky element will be shown as a comparative example for understanding the present invention.
これは超伝導体と半導体とがショットキバリアを形成し
て接触しているものであり、そのI−V特性を第2図の
口で、又エネルギバンド図を第5図(α)に示す。この
場合電圧がO付近では、パリアノ1イトEkと、空乏槽
中w(wは半導体のキャリア濃度の平方根に反比例する
)で決まるトンネル電流が流れるが、スーパ・ショット
キ素子と呼ばれるものではI−V特性は直線的ではなく
またその量は非常に小さい。電圧が超伝導体のギャップ
エネルギ△(△はよく使われるNh、Pbで1.5〜1
.5rrhgVである)付近で電流が大きく流れる。ス
ーパ・ショットキ素子はこの付近のI−V特性の非線形
を利用したものである。以上が従来のスーツ(・ショッ
トキ素子の説明であるが、ル形1nAzのようにバリア
ハイトが負といわれているものについても、本発明によ
らず表面に形成された自然酸化膜等の「汚れ」を除去し
ないで金属と接合させた場合、そのポテンシャルバリア
のために、l−Tl特性は第2図(α)口のようになる
。そして、いずれの場合ともI−V特性が第2因(α)
口で示すものについては、その部分拡大図の第2図(b
)口で示すよう(二超伝導電流ICは得られないことが
わかった。In this case, a superconductor and a semiconductor are in contact by forming a Schottky barrier, and the IV characteristic thereof is shown at the beginning of FIG. 2, and the energy band diagram is shown in FIG. 5 (α). In this case, when the voltage is around O, a tunnel current flows that is determined by the palyanite Ek and w in the depletion tank (w is inversely proportional to the square root of the carrier concentration of the semiconductor), but in what is called a super Schottky element, I-V The characteristics are not linear and the quantities are very small. The voltage is the gap energy of the superconductor △ (△ is 1.5 to 1 for commonly used Nh and Pb
.. 5rrhgV), a large current flows. The super Schottky element utilizes the nonlinearity of the IV characteristic in this vicinity. The above is an explanation of the conventional suit (Schottky element), but even for devices with a negative barrier height such as the Le-type 1nAz, "dirt" such as a natural oxide film formed on the surface, regardless of the present invention. When bonded to metal without removing it, the l-Tl characteristic becomes as shown in Figure 2 (α) due to the potential barrier.In both cases, the I-V characteristic becomes the second factor (α). α)
For things to be shown by mouth, see Figure 2 (b), which is a partially enlarged view.
) As stated above, it was found that two superconducting currents IC cannot be obtained.
これ(二対して本発明による場合、例えば半導体として
ル形1nA、Pを用い、超伝導電瀘1例えば蒸着法で形
成する場合、その直前にアルゴンスパッタクリーニング
等(二より表面に残っている自然酸化膜等の汚れを除去
したものでは、第2図(α)イに示すようにI−V特性
が全く直線的(いわゆるオーミック性)になるものが得
られ、この場合にはじめて超伝導電流1cが得ら、れる
ことがわかった。(2) In contrast, in the case of the present invention, for example, when a Le-type 1nA, P is used as a semiconductor and the superconducting electrode 1 is formed by, for example, a vapor deposition method, immediately before that, argon sputter cleaning, etc. (2) When contaminants such as oxide films are removed, the I-V characteristics become completely linear (so-called ohmic characteristics) as shown in Figure 2 (α) A, and in this case, for the first time, the superconducting current 1c It turns out that it is possible to obtain
これは表面のクリーニングにより自然酸化膜等が除去さ
れ、第6図(A)に示すように理想的な界面が得られた
ことに関連する。この表面クリーニングは、化学エツチ
ングを施した表面(二対してでも必要であり、超伝導体
を形成する直前(二おいて同一真空槽内で行うのが最も
良い。クリーニングの方法には高周波スパッタクリーニ
ングの他、イオンビーム、オゾン、光照射゛、あるいは
反応性ガスなどを用いる方法があり、使用する半導体に
より最適な方法が選ばれる。This is related to the fact that natural oxide films and the like were removed by cleaning the surface and an ideal interface was obtained as shown in FIG. 6(A). This surface cleaning is necessary even if the surface has been chemically etched, and it is best to perform it in the same vacuum chamber immediately before forming the superconductor. In addition, there are methods using ion beams, ozone, light irradiation, reactive gases, etc., and the most suitable method is selected depending on the semiconductor used.
このようなI−V特性及び超伝導電流は、バリア八イト
が正の場合(二おいてもその大きさが小さく、かつ空乏
層中も小さいときには可能である。Such I-V characteristics and superconducting current are possible when the barrier 8ite is positive (in both cases, its size is small and the depletion layer is also small).
前者の負のバリア八イト?もつ半導体としては上記ル形
1nAzの他、P形Ga5h 、 p形Inch等が知
られている。又これらの半導体を含む三元又は四元混晶
、例えばIn、Ga1−acAs 、 In、Al 1
−xAl p (いずれもXは1に近い領域)等におい
ても負のバリアハイトをもたせることができる。良好な
オーミック特性を得るため、特に後者のバリア八イトが
正の場合(二は必要ならば半導体の超伝導iの界面側を
高濃度層にしたもの即ちルールール構造にしてもよい(
この場合エネルギバンド図でWが小さくなる)。第4図
にその例を示しており、4が高山
濃度層である。これは内部の半導体はキャリア制御のた
め(−ま低濃度の方がよく、かつオーミック特性が得ら
れるようにするためである。半導体としての特徴をいか
すためには、内部のキャリア濃度は5 xl 0” c
m=以下に押える必要がある。このキャリア濃度の範囲
でかつオーミック特性をもたせることが半導体結合超伝
導三端子素子には重要である。この場合、半導体へのキ
ャリア注入などによってオーミック特性を得、超伝導電
流を流すこともできる。The former negative barrier eight? In addition to the above-mentioned L-type 1nAz, P-type Ga5h, P-type Inch, and the like are known as semiconductors having a P-type. Also, ternary or quaternary mixed crystals containing these semiconductors, such as In, Ga1-acAs, In, Al1
-xAl p (in both cases, X is close to 1), etc., can also have a negative barrier height. In order to obtain good ohmic characteristics, especially when the latter barrier 8ite is positive (if necessary, the interface side of the superconducting i of the semiconductor may be made into a high concentration layer, that is, a rule-rule structure).
In this case, W becomes smaller in the energy band diagram). An example is shown in FIG. 4, where 4 is the alpine concentration layer. This is because the internal semiconductor is for carrier control (lower concentration is better, and ohmic characteristics can be obtained.In order to take advantage of the characteristics of a semiconductor, the internal carrier concentration must be 5xl. 0”c
It is necessary to keep m= or less. It is important for a semiconductor-coupled superconducting three-terminal device to have ohmic characteristics within this range of carrier concentration. In this case, it is also possible to obtain ohmic characteristics by injecting carriers into the semiconductor, and to flow a superconducting current.
ところで超伝導電流が得られるに必要な接触抵抗につい
て見積ってみる。半導体結合超伝導素子のIcに対する
理論はないが、トンネル接合における理論によるとIc
1の最大値は用いる超伝導体の超伝導エネルギギャップ
により決まっており、Nb 、 Phなどでは2rnV
のオーダである。Rは常伝導抵抗であり今の場合オーミ
ック部の抵抗である。By the way, let's estimate the contact resistance required to obtain superconducting current. There is no theory for Ic in semiconductor-coupled superconducting devices, but according to the theory of tunnel junctions, Ic
The maximum value of 1 is determined by the superconducting energy gap of the superconductor used, and for Nb, Ph, etc., it is 2rnV.
It is of the order of. R is a normal conduction resistance, which in this case is the resistance of the ohmic part.
簡単のため半導体自身の抵抗を無視し、素子抵抗は半導
体と超伝導体の接触抵抗だけとする。熱的ゆらぎを考慮
すると実際上必要な最大超伝導電流は、10μA以上で
あるので、素子抵抗は100Ω以下が要求される。もし
、有効に超伝導電流が得られる電極領域を超伝導電極の
端から0.5μm程度とし、又、素子中を100μmと
すると、接触抵抗は5X10−5Ω・C♂以下が必要と
なる。本発明(二よれば、この程度の低い接触抵抗を充
分得ることができる。そして、本発明によれば超伝導体
−半導体−超伝導体結合素子において、超伝導電流を得
るζ:要する超伝導電極間隔を比較的に長くすることが
でき、また半導体のキャリア濃度を比較的に低くするこ
とが可能となる。For simplicity, we ignore the resistance of the semiconductor itself and assume that the element resistance is only the contact resistance between the semiconductor and the superconductor. Considering thermal fluctuations, the maximum superconducting current actually required is 10 μA or more, so the element resistance is required to be 100 Ω or less. If the electrode region where a superconducting current can be effectively obtained is about 0.5 μm from the edge of the superconducting electrode, and if the inside of the device is 100 μm, then the contact resistance needs to be 5×10 −5 Ω·C♂ or less. According to the present invention (2), it is possible to sufficiently obtain a contact resistance as low as this level. According to the present invention, a superconducting current can be obtained in a superconductor-semiconductor-superconductor coupled device. The distance between the electrodes can be made relatively long, and the carrier concentration of the semiconductor can be made relatively low.
以上は半導体結合超伝導素子の二端子間(二超伝導電流
を得ることで説明したが、半導体結合超伝導三端子素子
に関しても応用できることはいうまでもない。Although the above explanation has been made by obtaining two superconducting currents between two terminals of a semiconductor-coupled superconducting element, it goes without saying that it can also be applied to a semiconductor-coupled superconducting three-terminal element.
本発明によれば、上述から明らかなごとく、超伝導体−
半導体−超伝導体結合素子において、超伝導電流を得る
に要する超伝導電極間隔を比較的(二長くすることが、
また半導体のキャリア濃度を比較的:二低くすることが
可能となるから、半導体結合の超伝導二端子素子あるい
は三端子素子の実用化に太い(=貢献するものである。According to the present invention, as is clear from the above, superconductors -
In a semiconductor-superconductor coupled device, increasing the superconducting electrode spacing required to obtain a superconducting current by relatively (2)
Furthermore, since it is possible to reduce the carrier concentration of the semiconductor by a relatively low level, it will greatly contribute to the practical application of semiconductor-coupled superconducting two-terminal devices or three-terminal devices.
第1図は半導体結合超伝導素子の断面図、第2図(α)
は半導体結合超伝導素子のI−V特性図、(b)は(α
)の原点付近の拡大図、第3図は半導体結合超伝導素子
のそれぞれ(α)はバリアが有限(AI’h>0)。
(Alはバリアが負(Eb<o)の場合のエネルギバン
ド図(いずれもル形半導体の場合)、第4図は本発明の
半導体結合超伝導素子の高濃度層を形成した例の断面図
。
1・・・半導体基板
2・・・超伝導電極
5・・・半導体−超伝導体界面
4・・・高濃度層
第1図
1s6図
(cL)
第2図
μV
第4図Figure 1 is a cross-sectional view of a semiconductor coupled superconducting device, Figure 2 (α)
is an IV characteristic diagram of a semiconductor-coupled superconducting device, and (b) is an (α
), and Figure 3 shows an enlarged view of the vicinity of the origin of the semiconductor-coupled superconducting element (α), which has a finite barrier (AI'h>0). (Energy band diagram for Al when the barrier is negative (Eb<o) (all for square semiconductors). Figure 4 is a cross-sectional view of an example of forming a high concentration layer of the semiconductor coupled superconducting element of the present invention. 1...Semiconductor substrate 2...Superconducting electrode 5...Semiconductor-superconductor interface 4...High concentration layer Fig. 1s6 (cL) Fig. 2 μV Fig. 4
Claims (5)
半導体と超伝導体がオーミック的に接触していることを
特徴とする半導体結合超伝導素子。(1) In a superconductor-semiconductor-superconductor coupled device,
A semiconductor-coupled superconducting element characterized by ohmic contact between a semiconductor and a superconductor.
ける電子のバリアハイトが負である半導体、または化合
物半導体、またはそれらの混晶で構成することを特徴と
する前記特許請求の範囲第1項記載の半導体結合超伝導
素子。(2) The semiconductor is comprised of a semiconductor having a negative barrier height for electrons at a contact portion with the superconductor, a compound semiconductor, or a mixed crystal thereof. The semiconductor-coupled superconducting device described above.
m^−^3以下とすることを特徴とする前記特許請求の
範囲第1項記載の半導体結合超伝導素子。(3) The carrier concentration of the semiconductor is 5×10^1^9c
The semiconductor-coupled superconducting device according to claim 1, characterized in that m^-^3 or less.
し、n^+層に前記超伝導体が接触していることを特徴
とする前記特許請求の範囲第1項記載の半導体結合超伝
導素子。(4) The internal structure of the semiconductor is n^+-n-n^+, and the superconductor is in contact with the n^+ layer. Semiconductor-coupled superconducting device.
において、該半導体上に超伝導電極を形成する直前にお
いて、高周波スパッタクリーニング、イオンビームクリ
ーニング、光照射クリーニング、あるいはオゾン、反応
性ガス等を用いるクリーニング等の表面クリーニングを
行い、そのまま真空槽から取出すことなく超伝導電極を
形成することを特徴とする半導体結合超伝導素子の製法
。(5) In the method for manufacturing a superconductor-semiconductor-superconductor coupled device, immediately before forming a superconducting electrode on the semiconductor, high-frequency sputter cleaning, ion beam cleaning, light irradiation cleaning, or ozone, reactive gas 1. A method for manufacturing a semiconductor-coupled superconducting element, which comprises performing surface cleaning such as cleaning using a solvent, etc., and forming a superconducting electrode without removing it from a vacuum chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59164116A JPH069261B2 (en) | 1984-08-03 | 1984-08-03 | Semiconductor coupled superconducting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59164116A JPH069261B2 (en) | 1984-08-03 | 1984-08-03 | Semiconductor coupled superconducting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6142178A true JPS6142178A (en) | 1986-02-28 |
JPH069261B2 JPH069261B2 (en) | 1994-02-02 |
Family
ID=15787053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59164116A Expired - Lifetime JPH069261B2 (en) | 1984-08-03 | 1984-08-03 | Semiconductor coupled superconducting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH069261B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345873A (en) * | 1986-08-13 | 1988-02-26 | Hitachi Ltd | Superconducting transistor |
US5126315A (en) * | 1987-02-27 | 1992-06-30 | Hitachi, Ltd. | High tc superconducting device with weak link between two superconducting electrodes |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5979585A (en) * | 1982-10-29 | 1984-05-08 | Hitachi Ltd | Manufacture of josephson junction element |
JPS59103389A (en) * | 1982-12-04 | 1984-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Superconductive element and manufacture thereof |
-
1984
- 1984-08-03 JP JP59164116A patent/JPH069261B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5979585A (en) * | 1982-10-29 | 1984-05-08 | Hitachi Ltd | Manufacture of josephson junction element |
JPS59103389A (en) * | 1982-12-04 | 1984-06-14 | Nippon Telegr & Teleph Corp <Ntt> | Superconductive element and manufacture thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6345873A (en) * | 1986-08-13 | 1988-02-26 | Hitachi Ltd | Superconducting transistor |
US5126315A (en) * | 1987-02-27 | 1992-06-30 | Hitachi, Ltd. | High tc superconducting device with weak link between two superconducting electrodes |
US5552375A (en) * | 1987-02-27 | 1996-09-03 | Hitachi, Ltd. | Method for forming high Tc superconducting devices |
US6069369A (en) * | 1987-02-27 | 2000-05-30 | Hitachi, Ltd. | Superconducting device |
Also Published As
Publication number | Publication date |
---|---|
JPH069261B2 (en) | 1994-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3930561B2 (en) | Ohmic contact and method for manufacturing a semiconductor device comprising such an ohmic contact | |
KR20000006005A (en) | ARTICLE COMPRISING AN OXIDE LAYER ON A GaAs-BASED SEMICONDUCTOR BODY, AND METHDO OF MAKING THE ARTICLE | |
WO2024050865A1 (en) | Vertical gallium oxide transistor and preparation method therefor | |
JP2689057B2 (en) | Static induction semiconductor device | |
Hwang et al. | A vertical submicron SiC thin film transistor | |
JPS60231375A (en) | Superconductive transistor | |
JPH0578949B2 (en) | ||
JPS6142178A (en) | Semiconductor-coupled superconductive element and manufacture thereof | |
JPS6359272B2 (en) | ||
Buchanan | Polarity dependence of hot‐electron‐induced trap creation in metal‐oxide‐semiconductor capacitors | |
KR910003836B1 (en) | Super conductive device | |
US5214003A (en) | Process for producing a uniform oxide layer on a compound semiconductor substrate | |
JPS60117680A (en) | High-speed field effect transistor | |
JPS6357949B2 (en) | ||
JPS63250879A (en) | Superconducting element | |
JP3256643B2 (en) | Semiconductor device | |
JPS6129555B2 (en) | ||
JPS63313877A (en) | Superconducting transistor | |
JPS63281482A (en) | Superconducting transistor | |
WO1989006863A1 (en) | Method of producing semiconductor devices | |
JPS58124276A (en) | Schottky gate field effect transistor and manufacture thereof | |
JPH0258326A (en) | Formation of ohmic electrode | |
JPS59208878A (en) | Field effect transistor operated in deep depletion mode | |
JPS6032370A (en) | Phosphorated indium schottky barrier type semiconductor device | |
JPH0198268A (en) | Semiconductor radioactive detector |