JPS6140900B2 - - Google Patents

Info

Publication number
JPS6140900B2
JPS6140900B2 JP851078A JP851078A JPS6140900B2 JP S6140900 B2 JPS6140900 B2 JP S6140900B2 JP 851078 A JP851078 A JP 851078A JP 851078 A JP851078 A JP 851078A JP S6140900 B2 JPS6140900 B2 JP S6140900B2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
defrosting
evaporator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP851078A
Other languages
Japanese (ja)
Other versions
JPS54101532A (en
Inventor
Noryuki Tsuda
Mizuyoshi Nukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP851078A priority Critical patent/JPS54101532A/en
Publication of JPS54101532A publication Critical patent/JPS54101532A/en
Publication of JPS6140900B2 publication Critical patent/JPS6140900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Landscapes

  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 本発明は夫々独立した冷媒回路を有する複数台
の冷媒圧縮機を備えた冷凍装置に関するもので、
各冷媒回路を順次所定間隔で除霜を行う場合に霜
取り時の排熱を利用して他系統の過冷却度を増し
冷凍効果を向上せしめることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration system equipped with a plurality of refrigerant compressors each having an independent refrigerant circuit.
The purpose of this invention is to increase the degree of subcooling of other systems by utilizing exhaust heat during defrosting when each refrigerant circuit is defrosted at predetermined intervals, thereby improving the refrigeration effect.

従来、独立の冷凍回路を有する複数台の冷媒圧
縮機を使用した冷凍装置においては、各冷媒回路
の除霜動作は独立して相互に関係なく行なわれて
いるために除霜時の排熱が無駄に捨てられ他の系
統の冷凍効果を向上するのに利用されていないの
が実情であつた。
Conventionally, in refrigeration equipment that uses multiple refrigerant compressors with independent refrigeration circuits, the defrosting operation of each refrigerant circuit is performed independently and without relation to each other, so the waste heat during defrosting is The reality was that it was wasted and not used to improve the freezing effect of other systems.

本発明は上記の点に鑑みてなされたもので、除
霜動作を等間隔で順次動作することにより排熱利
用を試り常に他系統の過冷却度を増すようにした
ものである。
The present invention has been made in view of the above points, and attempts to utilize exhaust heat by sequentially performing defrosting operations at equal intervals, thereby constantly increasing the degree of subcooling of other systems.

以下本発明を図に示す実施例について説明する
と、1,2は冷媒圧縮器、3,4は凝縮器、5,
6は減圧弁、7,8は蒸発器、9,10はアキユ
ムレータ、11,12は吸入圧力調整弁でこれら
は夫々配管接続されて独立した冷凍サイクルを形
成するA系統とB系統の冷媒回路13,14を
夫々構成している。
Below, the present invention will be explained with reference to the embodiment shown in the drawings. Reference numerals 1 and 2 are refrigerant compressors, 3 and 4 are condensers, 5,
6 is a pressure reducing valve, 7 and 8 are evaporators, 9 and 10 are accumulators, and 11 and 12 are suction pressure regulating valves, which are connected by piping to form an independent refrigeration cycle, refrigerant circuits 13 of A system and B system. , 14 respectively.

前記各冷媒回路13,14には冷媒圧縮機1,
2と凝縮器3,4の間に三方弁15,16を設
け、該三方弁と、減圧弁5,6と蒸発器7,8と
の間に除霜用側路管17,18を接続している。
Each refrigerant circuit 13, 14 includes a refrigerant compressor 1,
Three-way valves 15, 16 are provided between the 2 and the condensers 3, 4, and defrosting side pipes 17, 18 are connected between the three-way valves, the pressure reducing valves 5, 6, and the evaporators 7, 8. ing.

而して19は共通の中間熱交換器で該熱交換器
は各冷媒回路13,14の高圧側冷媒管20,2
1と除霜時に共通の低圧側冷媒管22を熱交換す
ると共に前記低圧側冷媒管22は夫々電磁弁2
3,24及び電磁弁25,26を介して冷却時の
低圧側冷媒管27,28に設けた電磁弁29,3
0に並列になるように接続されている。31は減
圧弁である。
Reference numeral 19 denotes a common intermediate heat exchanger, which is connected to the high pressure side refrigerant pipes 20 and 2 of each refrigerant circuit 13 and 14.
1 and a common low pressure side refrigerant pipe 22 during defrosting, and the low pressure side refrigerant pipe 22 is connected to a solenoid valve 2, respectively.
3, 24 and solenoid valves 25, 26 provided in the low pressure side refrigerant pipes 27, 28 during cooling.
It is connected in parallel with 0. 31 is a pressure reducing valve.

次に上記の回路構成において冷媒圧縮器1を含
むA系統の冷媒回路13が除霜運転を行い、冷媒
圧縮器2を含むB系透の冷媒回路14が冷却運転
を行う場合の動作について説明する。
Next, in the above circuit configuration, the operation will be explained when the A-system refrigerant circuit 13 including the refrigerant compressor 1 performs the defrosting operation, and the B-system transparent refrigerant circuit 14 including the refrigerant compressor 2 performs the cooling operation. .

まずA系統の冷媒回路13においては冷媒圧縮
機1を吐出した高温冷媒ガスは矢印の如く三方弁
15より除霜用側路管17を通り蒸発器7に流入
し、ここで凝縮熱により付着している霜を融解す
る。その後中間熱交換器19の低圧側冷媒管22
を通過する際に気化しアキユムレータ9、吸入圧
力調整弁11を経由して冷媒圧縮機1に戻どる。
First, in the A-system refrigerant circuit 13, the high-temperature refrigerant gas discharged from the refrigerant compressor 1 flows from the three-way valve 15 through the defrosting side pipe 17 as shown by the arrow into the evaporator 7, where it adheres due to the heat of condensation. Thaw any frost that may be present. After that, the low pressure side refrigerant pipe 22 of the intermediate heat exchanger 19
The refrigerant gas is vaporized when passing through the refrigerant compressor 1 via the accumulator 9 and the suction pressure regulating valve 11.

一方B系統の冷媒回路14においては冷媒圧縮
機2を吐出した高温冷媒ガスは三方弁16、中間
熱交換器19を通り凝縮器4で液化した後減圧弁
6から蒸発器8に流入してここで気化する。その
後電磁弁30、アキユムレータ10及び吸入圧力
調整弁12を経て冷媒圧縮機2に戻る。
On the other hand, in the B-system refrigerant circuit 14, the high-temperature refrigerant gas discharged from the refrigerant compressor 2 passes through the three-way valve 16 and the intermediate heat exchanger 19, is liquefied in the condenser 4, and then flows into the evaporator 8 from the pressure reducing valve 6, where it flows into the evaporator 8. It vaporizes. Thereafter, it returns to the refrigerant compressor 2 via the electromagnetic valve 30, the accumulator 10, and the suction pressure regulating valve 12.

而して前記中間熱交換器19においてはA系統
の冷媒回路13の低圧側冷媒管22はB系統の冷
媒回路14の高圧側冷媒管21を冷やし過冷却度
を増大させる。さらにこれにより液バツクは全く
生じない。尚、除霜時には三方弁15の動作に連
動して電磁弁29は閉、電磁弁23,25は開と
する。
In the intermediate heat exchanger 19, the low-pressure refrigerant pipe 22 of the A-system refrigerant circuit 13 cools the high-pressure refrigerant pipe 21 of the B-system refrigerant circuit 14, thereby increasing the degree of subcooling. Furthermore, no liquid back-up occurs as a result. During defrosting, the solenoid valve 29 is closed and the solenoid valves 23 and 25 are opened in conjunction with the operation of the three-way valve 15.

また実施例は2台の冷媒圧縮機を使用した2系
透の冷凍回路について説明したが3系統以上の場
合も同様であり、この場合には除霜は等間隔で順
次動作する。
Furthermore, although the embodiment describes a two-system refrigeration circuit using two refrigerant compressors, the same applies to a case of three or more systems, and in this case, defrosting is performed sequentially at equal intervals.

本発明による冷凍装置は上述の如く、圧縮機、
凝縮器、膨張装置、蒸発器を順次配管接続すると
共に圧縮機の出口側と蒸発器の入口側を除霜用側
路管で接続している冷媒回路を複数組合せて構成
している冷凍装置において、夫々の冷媒回路の圧
縮機の出口側に各回路で共用される1個の中間熱
交換器を設ける一方、夫々の冷媒回路の蒸発器の
出口側に前記中間熱交換器を通る側路管を設けて
なり、前記夫々の冷媒回路は、冷却運転時には冷
媒が圧縮機、中間熱交換器、凝縮器、膨張装置、
蒸発器を順次流れる冷凍サイクルを構成する一
方、除霜運転時には冷媒が圧縮機、除霜用側路
管、蒸発器、側路管、中間熱交換器を順次流れる
除霜サイクルを構成したもであるから、前記複数
の冷媒回路において、除霜運転と冷却運転が並行
して行なわれる場合に、前記中間熱交換器によつ
て、冷却運転中の冷媒回路の高圧側冷媒管を、そ
の管路中に除霜後の低温な液冷媒が流れている除
霜運転中の冷媒回路の側路管で冷却することがで
き、同時に、冷却運転中の冷媒回路の高圧側冷媒
管によつて、除霜運転中の冷媒回路の側路管を加
熱することができ、冷却運転中の冷媒回路の過冷
却度を増大して冷凍装置の冷凍効果を向上できる
と共に、除霜後の液バツクも低減できる。
As mentioned above, the refrigeration system according to the present invention includes a compressor,
In a refrigeration system configured by combining multiple refrigerant circuits in which a condenser, an expansion device, and an evaporator are sequentially connected via piping, and the outlet side of the compressor and the inlet side of the evaporator are connected by a defrosting side pipe. , one intermediate heat exchanger shared by each circuit is provided on the outlet side of the compressor of each refrigerant circuit, and a side pipe passing through the intermediate heat exchanger is provided on the outlet side of the evaporator of each refrigerant circuit. Each of the refrigerant circuits is configured such that during cooling operation, the refrigerant passes through a compressor, an intermediate heat exchanger, a condenser, an expansion device,
The refrigeration cycle consists of a refrigeration cycle in which the refrigerant flows sequentially through the evaporator, while during defrosting operation, the refrigerant flows in sequence through the compressor, the defrosting side pipe, the evaporator, the side pipe, and the intermediate heat exchanger. Therefore, when defrosting operation and cooling operation are performed in parallel in the plurality of refrigerant circuits, the intermediate heat exchanger connects the high pressure side refrigerant pipe of the refrigerant circuit during cooling operation to that pipe line. Cooling can be carried out in the side pipe of the refrigerant circuit during defrosting operation, through which low-temperature liquid refrigerant flows after defrosting. It is possible to heat the side pipe of the refrigerant circuit during frost operation, increase the degree of subcooling of the refrigerant circuit during cooling operation, improve the freezing effect of the refrigeration system, and reduce liquid backflow after defrosting. .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明による冷凍装置の一実施例を示す
回路構成図である。 1,2……冷媒圧縮機、13,14……冷媒回
路、17,18……除霜用側路管、19……中間
熱交換器、20,21……高圧側冷媒管、22…
…低圧側冷媒管。
The drawing is a circuit configuration diagram showing an embodiment of the refrigeration system according to the present invention. 1, 2... Refrigerant compressor, 13, 14... Refrigerant circuit, 17, 18... Defrosting side pipe, 19... Intermediate heat exchanger, 20, 21... High pressure side refrigerant pipe, 22...
...Low pressure side refrigerant pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、凝縮器、膨張装置、蒸発器を順次配
管接続すると共に圧縮機の出口側と蒸発器の入口
側を除霜用側路管で接続している冷媒回路を複数
組合せて構成している冷凍装置において、夫々の
冷媒回路の圧縮機の出口側に各回路で共用される
1個の中間熱交換器を設ける一方、夫々の冷媒回
路の蒸発器の出口側に前記中間熱交換器を通る側
路管を設けてなり、前記夫々の冷媒回路は、冷却
運転時には冷媒が圧縮機、中間熱交換器、凝縮
器、膨張装置、蒸発器を順次流れる冷凍サイクル
を構成する一方、除霜運転時には冷媒が圧縮機、
除霜用側路管、蒸発器、側路管、中間熱交換器を
順次流れる除霜サイクルを構成したことを特徴と
する冷凍装置。
1 A refrigerant circuit is constructed by combining multiple refrigerant circuits in which the compressor, condenser, expansion device, and evaporator are sequentially connected via piping, and the outlet side of the compressor and the inlet side of the evaporator are connected by a defrosting side pipe. In a refrigeration system, one intermediate heat exchanger shared by each circuit is provided on the outlet side of the compressor of each refrigerant circuit, and the intermediate heat exchanger is provided on the outlet side of the evaporator of each refrigerant circuit. Each of the refrigerant circuits constitutes a refrigeration cycle in which the refrigerant sequentially passes through the compressor, intermediate heat exchanger, condenser, expansion device, and evaporator during cooling operation, while during defrosting operation Sometimes the refrigerant is in the compressor,
A refrigeration system comprising a defrosting cycle that sequentially flows through a defrosting side pipe, an evaporator, a side pipe, and an intermediate heat exchanger.
JP851078A 1978-01-27 1978-01-27 Freezing device Granted JPS54101532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP851078A JPS54101532A (en) 1978-01-27 1978-01-27 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP851078A JPS54101532A (en) 1978-01-27 1978-01-27 Freezing device

Publications (2)

Publication Number Publication Date
JPS54101532A JPS54101532A (en) 1979-08-10
JPS6140900B2 true JPS6140900B2 (en) 1986-09-11

Family

ID=11695115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP851078A Granted JPS54101532A (en) 1978-01-27 1978-01-27 Freezing device

Country Status (1)

Country Link
JP (1) JPS54101532A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927164A (en) * 1982-08-06 1984-02-13 ダイキン工業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS54101532A (en) 1979-08-10

Similar Documents

Publication Publication Date Title
US3150498A (en) Method and apparatus for defrosting refrigeration systems
US3638444A (en) Hot gas refrigeration defrost structure and method
CN109157861B (en) Indirect condensation type oil gas recovery unit with self-defrosting function
US9845973B2 (en) Cascade refrigeration system
JPH10103800A (en) Composite type refrigerating plant
CN206514562U (en) A kind of refrigeration system of constant temperature humidity chamber
JPS6140900B2 (en)
JPS6230691Y2 (en)
JPS58178159A (en) Multistage cascade cooling system
CN106705478B (en) Hot gas bypass enhanced vapor injection air conditioning system
JP2003004346A (en) Cooling equipment
CN216048455U (en) Refrigerating system capable of refrigerating multiple temperature zones
JPH03170758A (en) Air conditioner
JPS6152564A (en) Air-conditioning hot-water supply device
JPH028660A (en) Freezer
JPS5912526Y2 (en) Refrigeration equipment
JP2814186B2 (en) Cooling system
KR101854254B1 (en) Duality Refrigerating System having Hot gas defrosting
JPS5852460Y2 (en) Refrigeration equipment
JPS6124950A (en) Two-element refrigerator
JPH08189734A (en) Refrigerating device and refrigerant-recovering container
JPS6152909B2 (en)
JPS6230697Y2 (en)
JPH0285660A (en) Heat pump type air conditioner
JP2721727B2 (en) Refrigeration equipment